Conductivity of recycling carbon fiber concrete
-
摘要: 碳纤维增强树脂复合材料从生产、服役到退役的整个生命周期都会产生巨量废弃物,带来了严重的环境污染与资源浪费问题。本文将生产过程中产生的废弃碳纤维掺加到混凝土中,研究其对混凝土强度及导电性的影响规律与机制。结果表明,回收碳纤维对混凝土强度改善效果不明显,这是由于工业碳纤维表面的涂层使其在混凝土拌合过程中更易聚集成束,不易分散。回收碳纤维的掺入可明显提升混凝土导电性,掺量为0wt%~0.3wt%时,干燥/吸水过程改变混凝土孔结构且C—S—H凝胶重新排列、局部收缩与部分不可逆特性使混凝土产生新的导电路径,电阻率随含水率降低呈现先升后降的趋势;掺量为0.4wt%~1.5wt%时,混凝土内部形成了稳定的物理接触导电网络,龄期及含水率对导电率无明显影响。Abstract: The whole life cycle of carbon fiber reinforced polymer composite from production, service to retirement will produce huge amount of waste, bringing serious environmental pollution and resource waste. In this paper, the waste carbon fiber produced in the production process was added to the concrete to study its influence law and mechanism on the strength and conductivity of concrete. The results show that the recovery effect of carbon fiber on the strength of concrete is not obvious, because the coating on the surface of industrial carbon fiber makes it easier to gather into bundles and not easy to disperse in the process of concrete mixing. The incorporation of recycling carbon fiber can significantly improve the conductivity of concrete. When the content of recycling carbon fiber is 0wt%-0.3wt%, the drying/water absorption process changes the pore structure of concrete. And the C—S—H gel rearrangement, local shrinkage and partial irreversible characteristics make concrete produce a new conductive path. The resistivity increases first and then decreases with the decrease of water content. When the content is 0.4wt%-1.5wt%, a stable physical contact conductive network is formed in the concrete, and the age and moisture content have no obvious effect on the conductivity.
-
图 10 C—S—H凝胶在水饱和和无水状态下的微观结构(曲线、正方形、圆圈和三角分别代表C—S—H骨架片、层间孔隙水、凝胶孔隙水和其他非水惰性流体)[26]
Figure 10. Micro-structure of C—S—H gel at water-saturated and water-free states (Curve, square, circle and triangle represent the C—S—H backbone sheet, interlayer pore water, gel pore water and other inert fluids rather than water, respectively)[26]
图 12 烘干及吸水过程下回收碳纤维混凝土电阻率变化
Figure 12. Change of resistivity of recycling carbon fiber concrete during drying and water absorption
M0-M25—Cement mortar specimens with nano carbon fiber contents of 0%, 1.0%, 1.5%, 2.0%, 2.5% cement volume; CF0% and CF0.2%—Cement mortar specimens with carbon fiber contents of 0% and 0.2% of cement mass
表 1 回收碳纤维参数
Table 1. Parameters of recycling carbon fiber
Length/mm Diameter/μm Density/(g·cm−3) Tensile strength/MPa Tensile modulus/GPa Elongation/% 20 7 1.76 3530 230 1.5 表 2 水泥化学成分
Table 2. Chemical composition of cement
Composition CaO SiO2 Al2O3 Fe2O3 Na2O K2O MgO SO3 TiO2 Else Content/wt% 61.83 19.68 4.72 3.66 0.43 1.27 1.31 0.05 2.73 2.23 表 3 回收碳纤维混凝土配合比
Table 3. Proportion of recycled carbon fiber concrete
kg/m3 Cement Water Sand Calculus Water reducer 474 120 667 1087 4.7 -
[1] YANG S, CHENG Y, XIAO X, et al. Development and appli-cation of carbon fiber in batteries[J]. Chemical Engineering Journal,2020,384:123294. doi: 10.1016/j.cej.2019.123294 [2] 佘乐卿. 碳纤维混凝土智能桥梁控制方法[D]. 武汉: 武汉理工大学, 2007.SHE Leqing. Control of intelligent bridges of carbon fiber concrete[D]. Wuhan: Wuhan University of Technology, 2007(in Chinese). [3] ANDERSEN N, ERIKSSON O, HILLMAN K, et al. Wind turbines’ end-of-life: Quantification and characterisation of future waste materials on a national level[J]. Energies,2016,9(12):999. doi: 10.3390/en9120999 [4] LEFEUVRE A, GARNIER S, JACQUEMIN L, et al. Anticipating in-use stocks of carbon fiber reinforced polymers and related waste flows generated by the commercial aeronauti-cal sector until 2050[J]. Resources, Conservation & Re-cycling,2017,125:264-272. [5] LIU P, BARLOW C Y. Wind turbine blade waste in 2050[J]. Waste Management,2017,62:229-240. doi: 10.1016/j.wasman.2017.02.007 [6] 齐德永. 碳纤维复合材料回收与再利用研究现状[J]. 中国化工贸易, 2018, 10(4):156. doi: 10.3969/j.issn.1674-5167.2018.04.144QI Deyong. Research status of recycling and reuse of carbon fiber composite materials[J]. China Chemical Trade,2018,10(4):156(in Chinese). doi: 10.3969/j.issn.1674-5167.2018.04.144 [7] PICKERING S J. Recycling technologies for thermoset composite materials—Current status[J]. Composites Part A: Applied Science and Manufacturing,2006,37(8):1206-1215. doi: 10.1016/j.compositesa.2005.05.030 [8] WANG S, XING X, ZHANG X, et al. Room-temperature fully recyclable carbon fiber reinforced phenolic composites through dynamic covalent boronic ester bonds[J]. Journal of Materials Chemistry A,2018,6(23):10868-10878. doi: 10.1039/C8TA01801D [9] KIM K W, LEE H M, AN J H, et al. Recycling and characterization of carbon fibers from carbon fiber reinforced epoxy matrix composites by a novel super-heated-steam method[J]. Journal of Environmental Management,2017,203(3):872-879. [10] DEHGHANI A, ASLANI F. The effect of shape memory alloy, steel, and carbon fibers on fresh, mechanical, and electrical properties of self-compacting cementitious compo-sites[J]. Cement & Concrete Composites,2020,112:103659. [11] HAN B, ZHANG L, ZHANG C, et al. Reinforcement effect and mechanism of carbon fibers to mechanical and electrically conductive properties of cement-based materials[J]. Construction and Building Materials,2016,125:479-489. doi: 10.1016/j.conbuildmat.2016.08.063 [12] 刘子田. 碳纤维智能混凝土的制备及其性能研究[D]. 南京: 南京理工大学, 2006.LIU Zitian. Preparation and performance of carbon fiber smart concrete[D]. Nanjing: Nanjing University of Science and Technology, 2006(in Chinese). [13] 刘起. 碳纤维水泥基复合材料受拉构件破坏全过程研究[D]. 沈阳: 东北大学, 2008.LIU Qi. Study on the whole fracturing process of cement based on carbon fibers composite[D]. Shenyang: Northeastern University, 2008(in Chinese). [14] 郑华升. 机敏混凝土结构的温差、变形自调节控制系统研究[D]. 武汉: 武汉理工大学, 2006.ZHENG Huasheng. Research on the temperature difference and deformation self-adjusting control system of smart concrete structure[D]. Wuhan: Wuhan University of Technology, 2006(in Chinese). [15] TIAN Z, LI Y, ZHENG J, et al. A state-of-the-art on self-sensing concrete: Materials, fabrication and properties[J]. Composites Part B: Engineering,2019,177:107437. doi: 10.1016/j.compositesb.2019.107437 [16] KIMM M, PICO D, GRIES T. Investigation of surface modification and volume content of glass and carbon fibers from fiber reinforced polymer waste for reinforcing concrete[J]. Journal of Hazardous Materials,2020,390:121797. doi: 10.1016/j.jhazmat.2019.121797 [17] HE D, SOO V K, KIM H C, et al. Comparative life cycle energy analysis of carbon fiber pre-processing, processing and post-processing recycling methods[J]. Resources, Conservation and Recycling,2020,158:104794. doi: 10.1016/j.resconrec.2020.104794 [18] ZHANG J, CHEVALI V S, WANG H, et al. Current status of carbon fiber and carbon fiber composites recycling[J]. Composites Part B: Engineering,2020,193:108053. doi: 10.1016/j.compositesb.2020.108053 [19] FANECA G, SEGURA I, TORRENTS J M, et al. Development of conductive cementitious materials using recycled carbon fibers[J]. Cement and Concrete Composites,2018,92:135-144. doi: 10.1016/j.cemconcomp.2018.06.009 [20] 中华人民共和国住房和城乡建设部, 国家市场监督管理总局. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019.Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of concrete physical ancJ mechanical properties: GB/T 50081—2019[S]. Beijing: China Construction Industry Press, 2019(in Chinese). [21] 佟钰, 田鑫, 朱长军, 等. 短切碳纤维混凝土的力学强度实验与分析[J]. 硅酸盐通报, 2015, 34(8):2281-2285, 2297.TONG Yu, TIAN Xin, ZHU Changjun, et al. experiments and analysis on mechanical strength of carbon fiber reinforced concrete[J]. Bulletin of the Chinese Ceramic Society,2015,34(8):2281-2285, 2297(in Chinese). [22] 郭传慧, 汤婉, 刘数华. 碳纤维对导电混凝土性能和微结构的影响[J]. 硅酸盐通报, 2017, 36(10):3531-3535.GUO Chuanhui, TANG Wan, LIU Shuhua. Effect of carbon fiber on the properties and microstructure of conductive concrete[J]. Bulletin of the Chinese Ceramic Society,2017,36(10):3531-3535(in Chinese). [23] 尚国秀. 碳纤维水泥基复合材料纤维分散性及导电性能试验研究[D]. 郑州: 郑州大学, 2015.SHANG Guoxiu. Fiber dispersion and conductive perfor-mance experimental research on carbon fiber cement-based composites[D]. Zhengzhou: Zhengzhou University, 2015(in Chinese). [24] 温晓尉. 水环境下碳纤维混凝土渗透性和导电机理的研究[D]. 济南: 山东大学, 2010.WEN Xiaowei. The permeability and the performance of the electric conduction of the carbon fiber reinforced cement composite under water[D]. Ji'nan: Shandong University, 2010(in Chinese). [25] 申嘉荣, 徐千军. 高温对混凝土孔隙结构改变和抗压强度降低作用的规律研究[J]. 材料导报, 2020, 34(2):46-51.SHEN Jiarong, XU Qianjun. Characteristics of pore structure change and compressive strength reduction of concrete under elevated temperatures[J]. Materials Review,2020,34(2):46-51(in Chinese). [26] ZHOU C, REN F, WANG Z, et al. Why permeability to water is anomalously lower than that to many other fluids for cement-based material?[J]. Cement and Concrete Research,2017,100:373-384. doi: 10.1016/j.cemconres.2017.08.002 [27] ZHOU Chunsheng, REN Fangzhou, ZENG Qiang, et al. Pore-size resolved water vapor adsorption kinetics of white cement mortars as viewed from proton NMR relaxation[J]. Cement and Concrete Research,2018,105:31-43. doi: 10.1016/j.cemconres.2017.12.002 [28] 汪晖. 环境条件对纳米碳纤维水泥基材料压阻性能的影响[D]. 哈尔滨: 哈尔滨工业大学, 2017.WANG Hui. Influence of environmental condition on piezoresistivity of carbon nanofibers cement-based mater-ials[D]. Harbin: Harbin Institute of Technology, 2017(in Chinese). [29] 白轲. 碳纤维水泥基复合材料的导电性能研究[D]. 长沙: 中南大学, 2009.BAI Ke. Research on the electrical conductivity of carbon fiber cement-based composites[D]. Changsha: Central South University, 2009(in Chinese).