Composition design of excess-sulfate phosphogypsum slag cement based on molecular dynamics simulation
-
摘要: 原材料化学成分的组成设计是过硫磷石膏矿渣水泥(PPSC)水化反应与力学强度形成的基础,室内试验与分子动力学模拟(MD)为PPSC原材料的化学组成提供了多尺度调控设计依据。利用Materials Studio(MS)软件建立PPSC结构模型,采用MD与XRD等手段研究了化学成分摩尔比对PPSC抗压强度的影响规律。结果表明:随着CaO/SO3摩尔比的增加和SiO2/Al2O3的降低,PPSC的抗压强度呈增长趋势,当SiO2/Al2O3摩尔比为3.5~3.7、CaO/SO3摩尔比为1.8~2.0时,PPSC的抗压强度较高。分子动力学对PPSC孔结构的模拟结果与抗压强度试验结果规律相反,证明了模拟结果的可靠性。在原子尺度上,分子动力学模拟表明O、Ca、Al及S原子表现出较高的扩散能力,在碱性环境下,硫酸盐激发作用使S=O、Al—O及O=O键长增大而结构失稳水解,生成较多对强度起促进作用的钙矾石。通过调控原材料SiO2/Al2O3摩尔比和CaO/SO3摩尔比可使PPSC形成更加稳定的内部结构。化学成分摩尔比设计及分子动力学模拟方法对PPSC的组成设计和应用推广具有重要意义。Abstract: Chemical composition design of raw materials is the basis of hydration reaction and mechanical strength formation of excess-sulfate phosphorgypsum slag cement (PPSC). Laboratory experiments and molecular dynamics simulation (MD) provide a multi-scale regulation and control design basis for chemical composition of PPSC raw materials. The structural model of the PPSC was established by Materials Studio (MS). The effect of the molar ratios of chemical components on the compressive strength of PPSC was studied by means of MD simulation and XRD. The results show that with the increase of the CaO/SO3 molar ratio and the decrease of SiO2/Al2O3, the compressive strength of PPSC shows an increasing trend. When the SiO2/Al2O3 molar ratio is 3.5-3.7 and the CaO/SO3 molar ratio is 1.8~2.0, the compressive strength of PPSC is higher. The MD simulation result of PPSC pore structure is contrary to the compressive strength test result, which proves the reliability of the simulation result. At the atomic scale, MD simulation shows that O, Ca, Al and S atoms exhibit high diffusion ability. In the alkaline environment, sulphate activation increases the bond length of S=O, Al—O and O=O, and the structure is unstable and hydrolyzed, resulting in more ettringite that promotes strength. By adjusting the raw materials SiO2/Al2O3 molar ratio and CaO/SO3 molar ratio, PPSC can form a more stable internal structure. The design of chemical composition molar ratio and MD simulation methods are of great significance for the composition design and application promotion of PPSC.
-
表 1 磷石膏(PG)、水泥和矿粉(GGBS)的化学组成
Table 1. Chemical compositions of phosphogypsum (PG), cement and granulated blast furnace slag powder (GGBS)
wt% Composition SiO2 Al2O3 SO3 CaO MgO Fe2O3 TiO2 P2O5 Loss PG 2.26 0.40 49.38 38.89 0.06 0.38 0.35 0.43 7.71 Cement 19.14 5.11 4.42 59.03 1.96 3.74 0.33 − 5.52 GGBS 34.74 16.45 3.62 33.55 6.42 1.77 1.75 − 1.64 表 2 PPSC配合比设计
Table 2. Mix design of PPSC
Sample Mass fraction/wt% Molar ratio PG GGBS Cement SiO2/Al2O3 CaO/SO3 P70G25C5 70 25 5 3.5 1.6 P60G35C5 60 35 5 3.5 1.8 P50G45C5 50 45 5 3.5 2.0 P70G20C10 70 20 10 3.7 1.6 P60G30C10 60 30 10 3.7 1.8 P50G40C10 50 40 10 3.7 2.0 P70G15C15 70 15 15 3.9 1.6 P60G25C15 60 25 15 3.9 1.8 P50G35C15 50 35 15 3.9 2.0 Notes: P—Phosphogypsum; G—Granulated blast furnace slag powder; C—Cement. The number after the letter indicates the percentage content; Abbreviations in this table do not contradict other abbreviations in this paper. 表 3 PPSC分子动力学模型中基本单元个数
Table 3. Number of basic units in PPSC molecular dynamics models
Sample Si/Al Ca/S Ca SO3 H2O SiAlO7 Si2AlO10 P50G45C5 1.75 2.0 86 43 86 5 15 P70G20C10 1.85 1.6 180 112 224 3 17 P50G40C10 1.85 2.0 92 46 92 3 17 Note: Si/Al and Ca/S—Ratio of atomic amount. 表 4 PPSC模型中各原子键键长
Table 4. Bond length of each atomic bond in PPSC models
nm Sample Si/Al Ca/S Ca—O Al—O Si—O S=O H—O O=O P50G45C5 1.75 2.0 0.221 0.167 0.165 0.163 0.095 0.271 P70G20C10 1.85 1.6 0.221 0.169 0.167 0.143 0.097 0.247 P50G40C10 1.85 2.0 0.221 0.219 0.167 0.163 0.097 0.271 Reference − − 0.251 0.163 0.159 − 0.097 0.269-0.271 -
[1] 林宗寿, 黄赟. 磷石膏基免煅烧水泥的开发研究[J]. 武汉理工大学学报, 2009, 31(4):53-55. doi: 10.3963/j.issn.1671-4431.2009.04.015LIN Z S, HUANG Y. Investigation on phosphogypsumbase non-calcined cement[J]. Journal of Wuhan University of Technology,2009,31(4):53-55(in Chinese). doi: 10.3963/j.issn.1671-4431.2009.04.015 [2] 林宗寿, 黄赟, 水中和. 过硫磷石膏矿渣水泥与混凝土[M]. 武汉: 武汉理工大学出版社, 2015.LIN Z S, HUANG Y, SHUI Z H. Excess-sulfate phosphogypsum slag cement and concrete[M]. Wuhan: WUTP Wuhan University of Technology Press, 2015(in Chinese). [3] 黎良元, 石宗利, 艾永平. 石膏-矿渣胶凝材料的碱性激发作用[J]. 硅酸盐学报, 2008, 36(3):405-410. doi: 10.3321/j.issn:0454-5648.2008.03.028LI L Y, SHI Z L, AI Y P. Alkaline activation of gypsum-granulated blast furnace slag cementing materials[J]. Journal of the Chinese Ceramic Society,2008,36(3):405-410(in Chinese). doi: 10.3321/j.issn:0454-5648.2008.03.028 [4] 吕洁. 改性磷石膏对水泥性能影响的试验研究[J]. 水泥, 2008(9):4-6. doi: 10.3969/j.issn.1002-9877.2008.09.002LV J. Effect of modified phosphogypusum on cement performance[J]. Cement,2008(9):4-6(in Chinese). doi: 10.3969/j.issn.1002-9877.2008.09.002 [5] 彭家惠, 彭志辉, 张建新, 等. 磷石膏中可溶磷形态、分布及其对性能影响机制的研究[J]. 硅酸盐学报, 2000, 28(4):309-313. doi: 10.3321/j.issn:0454-5648.2000.04.003PENG J H, PENG Z H, ZHANG J X, et al. Study on the form and distribution of water-soluble P2O5 in phosphogypusum and effective mechanism of properties[J]. Journal of the Chinese Ceramic Society,2000,28(4):309-313(in Chinese). doi: 10.3321/j.issn:0454-5648.2000.04.003 [6] 彭家惠, 万体智, 汤玲, 等. 磷石膏中的有机物、共晶磷及其对性能的影响[J]. 建筑材料学报, 2003, 6(4):221-226.PENG J H, WAN T Z, TANG L, et al. Organic matters and P2O5 in crystal lattice and their influence on properties of phosphogypsum[J]. Journal of Building Materials,2003,6(4):221-226(in Chinese). [7] REIJNDERS L. Cleaner phosphogypsum, coalcombustion ashes and waste incineration ashes for application in building materials: A review[J]. Building and Environment,2007,42(2):1036-1042. doi: 10.1016/j.buildenv.2005.09.016 [8] 林宗寿, 黄赟. 碱度对磷石膏基免煅烧水泥性能的影响[J]. 武汉理工大学学报, 2009, 31(4):132-135. doi: 10.3963/j.issn.1671-4431.2009.04.036LIN Z S, HUANG Y. Effect of alkalinity on phosphogypsum-base non-calcined cement[J]. Journal of Wuhan University of Technology,2009,31(4):132-135(in Chinese). doi: 10.3963/j.issn.1671-4431.2009.04.036 [9] 徐玲琳, 周向艺, 李楠, 等. 石膏对硫铝酸盐水泥水化特性的影响[J]. 同济大学学报(自然科学版), 2017, 45(6):885-890.XU L L, ZHOU X Y, LI N, et al. Impact of calcium sulfate on hydration features of calcium sulfoaluminate cement[J]. Journal of Tongji University (Natural Science),2017,45(6):885-890(in Chinese). [10] 王善拔, 季尚行, 刘银江, 等. 碱对硫铝酸盐水泥膨胀性能的影响[J]. 硅酸盐学报, 1986, 14(3):285-292.WANG S B, JI S H, LIU Y J, et al. Effect of alkali on expansion of sulfoaluminate cement[J]. Journal of the Chinese Ceramic Society,1986,14(3):285-292(in Chinese). [11] 赵士豪, 林喜华, 麻鹏飞, 等. 基于临界钙矾石膨胀破坏的磷石膏基复合胶凝材料的配料计算研究[J]. 无机盐工业, 2020, 52(9):91-95. doi: 10.11962/1006-4990.2019-0518ZHAO S H, LIN X H, MA P F, et al. Study on formulation calculation of phosphogypsum-based composite cementitious materials based on expansion and failure of critical AFt[J]. Inorganic Chemicals Industry,2020,52(9):91-95(in Chinese). doi: 10.11962/1006-4990.2019-0518 [12] 方永浩, 朱琦, 岑奕侃, 等. 大掺量超细矿渣粉水泥基胶凝材料的性能与结构及磷石膏的影响[J]. 硅酸盐学报, 2008, 36(4):444-450. doi: 10.3321/j.issn:0454-5648.2008.04.004FANG Y H, ZHU Q, CEN Y K, et al. Properties and structure of high volume superfine blast furnace slag powder cementing materials and the effect of phosphorous gypsum addition[J]. Journal of the Chinese Ceramic Society,2008,36(4):444-450(in Chinese). doi: 10.3321/j.issn:0454-5648.2008.04.004 [13] 国家质量技术监督局. 水泥胶砂强度检验方法: GB/T 17671—1999[S]. 北京: 中国标准出版社, 1999.The State Bureau of Quality and Technical Supervision. Method of testing cements determination of strength: GB/T 17671—1999[S]. Beijing: China Standards Press, 1999(in Chinese). [14] 兰明章, 唐润荣, 陈智丰, 等. 二氧化硅含量对硫铝酸盐水泥性能的影响[J]. 新世纪水泥导报, 2002(4):33-36. doi: 10.3969/j.issn.1008-0473.2002.04.010LAN M Z, TANG R R, CHEN Z F, et al. Effect of silicon dioxide content on properties of sul-phoaluminate cement[J]. Cement Guide for New Epoch,2002(4):33-36(in Chinese). doi: 10.3969/j.issn.1008-0473.2002.04.010 [15] HUANG Y B, QIAN J S, LU L C, et al. Phosphogypsum as a component of calcium sulfoaluminatecement: Hazardous elements immobilization, radioactivity and performances[J]. Journal of Cleaner Production,2020,248:119287. doi: 10.1016/j.jclepro.2019.119287 [16] HUANG S J. Mechanical properties of hydrated calcium silicate simulated by molecular dynamics[J]. Bulletin of the Chinese Ceramic Society,2018,37(5):1687-1692. [17] 王晴, 康升荣, 吴丽梅, 等. 地聚合物凝胶结构建模及分子动力学模拟[J]. 材料导报, 2020, 34(2):56-61.WANG Q, KANG S R, WU L M, et al. Structural modeling and molecular dynamics simulation of geopolymers gel[J]. Materials Reports,2020,34(2):56-61(in Chinese). [18] 周宇, 徐方, 顾功辉, 等. 地聚合物早期力学性能及分子动力学模拟研究[J]. 建筑材料学报, 2021, 24(1):93-98. doi: 10.3969/j.issn.1007-9629.2021.01.013ZHOU Y, XU F, GU G H, et al. Early compressive strength and molecular dynamics simulation of geopolymer[J]. Journal of Building Materials,2021,24(1):93-98(in Chinese). doi: 10.3969/j.issn.1007-9629.2021.01.013 [19] CHEN B M, QIAO G, HOU D S, et al. Cement-based material modified by in-situ polymerization: From experiments to molecular dynamics investigation[J]. Composites Part B: Engineering,2020,194:108036. doi: 10.1016/j.compositesb.2020.108036 [20] POWERS T C, BROWNYARD T L. Studies of the physical properties of hardened Portland cement paste[J]. ACI Structural Journal,1947,43(9):845-880. [21] RYSHKEWITCH E. Compression strength of porous sintered alumina and zirconia[J]. Journal of the American Ceramic Society,1953,36(2):65-68. doi: 10.1111/j.1151-2916.1953.tb12837.x [22] SCHILLER K K. Strength of porous materials[J]. Cement and Concrete Research,1971,1(4):419-422. doi: 10.1016/0008-8846(71)90035-4 [23] HOU D S, LI T, WANG P. Molecular dynamics study on the structure and dynamics of NaCl solution transport in the nanometer channel of CASH gel[J]. ACS Sustainable Chemistry & Engineering,2018,6:9498-9509.