留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Co类普鲁士蓝/多壁碳纳米管纳米复合材料的制备及其超电容性能

杜佳琪 陈俊琳 冀佳帅 张利 刘伟 宋朝霞

杜佳琪, 陈俊琳, 冀佳帅, 等. Co类普鲁士蓝/多壁碳纳米管纳米复合材料的制备及其超电容性能[J]. 复合材料学报, 2022, 39(6): 2724-2733. doi: 10.13801/j.cnki.fhclxb.20210805.002
引用本文: 杜佳琪, 陈俊琳, 冀佳帅, 等. Co类普鲁士蓝/多壁碳纳米管纳米复合材料的制备及其超电容性能[J]. 复合材料学报, 2022, 39(6): 2724-2733. doi: 10.13801/j.cnki.fhclxb.20210805.002
DU Jiaqi, CHEN Junlin, JI Jiashuai, et al. Preparation and electrochemical performance of Co Prussian blue analogue/ multi-walled carbon nanotubes nanocomposite for supercapacitors[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2724-2733. doi: 10.13801/j.cnki.fhclxb.20210805.002
Citation: DU Jiaqi, CHEN Junlin, JI Jiashuai, et al. Preparation and electrochemical performance of Co Prussian blue analogue/ multi-walled carbon nanotubes nanocomposite for supercapacitors[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2724-2733. doi: 10.13801/j.cnki.fhclxb.20210805.002

Co类普鲁士蓝/多壁碳纳米管纳米复合材料的制备及其超电容性能

doi: 10.13801/j.cnki.fhclxb.20210805.002
基金项目: 国家自然科学基金(51877029)
详细信息
    通讯作者:

    刘伟,博士,副教授,硕士生导师,研究方向为超级电容器储能材料 E-mail:liuwei08@dlut.edu.cn

  • 中图分类号: TM53, TB333

Preparation and electrochemical performance of Co Prussian blue analogue/ multi-walled carbon nanotubes nanocomposite for supercapacitors

  • 摘要: Co类普鲁士蓝(CoPBA)作为令人瞩目的超级电容器阳极材料拥有高比容量和优异的循环稳定性,但较差的电子导电性限制了其倍率性能。利用ZIF-67作为前驱体合成了Co类普鲁士蓝/多壁碳纳米管(CoPBA/MWCNT)复合材料,并使用XRD、SEM和TEM对材料的结构和形貌进行表征。在三电极体系中,测得CoPBA/MWCNT电极在电流密度为1 A·g−1时电容提高到312 F·g−1。制备的CoPBA/MWCNT电极有利于提高材料电导率和机械稳定性,从而获得更高的电化学性能。将CoPBA/MWCNT正极和活性炭(AC)负极组装为非对称电池,测得5000圈循环后容量保留率为83.1%,循环稳定性优异。

     

  • 图  1  Co类普鲁士蓝(CoPBA)/多壁碳纳米管(MWCNT)的合成过程

    Figure  1.  Synthesis process of Co Prussian blue analogue (CoPBA)/multiwalled carbon nanotube (MWCNT)

    2-Mel—2-methylimidazole; CTABr—Cetyl trimethyl ammonium bromide

    图  2  直接合成的CoPBA(D-CoPBA) (a)、D-CoPBA/MWCNT (b)、ZIF-67/MWCNT (c) 和CoPBA/MWCNT (d) 的SEM图像;CoPBA/MWCNT复合材料的EDS能谱 (e) 和TEM图像 ((f)~(h))

    Figure  2.  SEM images of direct synthetic CoPBA (D-CoPBA) (a), D-CoPBA/MWCNT (b), ZIF-67/MWCNT (c) and CoPBA/MWCNT (d); EDS mapping (e) and TEM images ((f)-(h)) of CoPBA/MWCNT composite material

    图  3  CoPBA/MWCNT、MWCNT和D-CoPBA复合材料的XRD (a)和FTIR (b) 图谱

    Figure  3.  XRD patterns (a) and FTIR spectra (b) of CoPBA/MWCNT, MWCNT and D-CoPBA composites

    图  4  D-CoPBA、CoPBA/MWCNT和D-CoPBA/MWCNT电极的CV曲线 (a)、EIS曲线 (c);CoPBA/MWCNT电极扫描速度对比CV曲线 (b) 和赝电容 (d)

    Figure  4.  CV (a) and EIS (c) curves of D-CoPBA、CoPBA/MWCNT and D-CoPBA/MWCNT electrodes; Scan rates comparison CV curves (b) and pseudocapacitance properties (d) of CoPBA/MWCNT electrodes

    ZCPE—Constant phase impedance; Rs—Liquid meet resistance; Zw—Diffusion impedance; Rct—Charge transfer resistance; b1-b4—Slope of lgIp–lgv for 1-4 peaks in Fig.4(a)

    图  5  CoPBA/MWCNT电极在2~10 A·g−1下的恒电流充放电曲线 (a),CoPBA/MWCNT (b)、D-CoPBA (c) 和D-CoPBA/MWCNT (d) 的放电电容与电流密度的点线图

    Figure  5.  Constant current charge and discharge curves of the CoPBA/MWCNT electrode recorded at 2-10 A·g−1 (a); Plots of discharge capacitance vs. current density diagrams for CoPBA/MWCNT (b), D-CoPBA (c) and D-CoPBA/MWCNT (d)

    图  6  活性炭(AC)和CoPBA/MWCNT电极的CV曲线 (a);CoPBA/MWCNT||AC非对称电池不同电压窗口下的CV (b)和GCD曲线(c);CoPBA/MWCNT||AC非对称电池在不同扫描速度下的CV曲线 (d)

    Figure  6.  CV curves of activated carbon (AC) and CoPBA/MWCNT electrodes (a); CV curves (b) and GCD curves (c) of CoPBA/MWCNT||AC hybrid capacitor; CV curves of CoPBA/MWCNT||AC hybrid capacitor recorded at various scan rates (d)

    图  7  不同电流密度下的CoPBA/MWCNT||AC的GCD曲线 ((a)、(b));功率密度P和能量密度E对比的Gagone曲线 (c);放电容量保留率和库伦效率随循环圈数的点线图 (d)

    Figure  7.  GCD curves of CoPBA/MWCNT||AC of different current densities ((a), (b)); Gagone plot showing energy density E vs. power density P (c);Plot of discharge capacitance retention and coulombic efficiency vs. cycle number (d)

  • [1] 肖谧, 宿玉鹏, 杜伯学. 超级电容器研究进展[J]. 电子元件与材料, 2019, 38(9):1-12.

    XIAO Mi, SU Yupeng, DU Boxue. Research progress of supercapacitors[J]. Electronic Components and Materials,2019,38(9):1-12(in Chinese).
    [2] 胡方圆, 刘冬明, 李佳乐, 等. 高性能聚合物在新型储能领域的应用进展[J]. 中国材料进展, 2019, 38(10):990-998.

    HU Fangyuan, LIU Dongming, LI Jiale, et al. Advances in application of high- performance polymers in the new energy storage field[J]. Materials China,2019,38(10):990-998(in Chinese).
    [3] MATHIS T S, KURRA N, WANG X, et al. Energy storage data reporting in perspective-guidelines for interpreting the performance of electrochemical energy storage systems[J]. Advanced Energy Materials,2019,9(39):1902007. doi: 10.1002/aenm.201902007
    [4] WANG J, ZHUANG S, LIU Y. Metal hexacyanoferrates-based adsorbents for cesium removal[J]. Coordination Chemistry Reviews,2018,374:430-438. doi: 10.1016/j.ccr.2018.07.014
    [5] POONAM, SHARMA K, ARORA A, et al. Review of supercapacitors: Materials and devices[J]. Journal of Energy Storage,2019,21:801-825. doi: 10.1016/j.est.2019.01.010
    [6] 王攀, 刘羽熙, 王永贵. PPy/MWNTs/GO复合材料的制备与电化学性能研究[J]. 材料科学与工艺, 2016, 24(3):92-96.

    WANG Pan, LIU Yuxi, WANG Yonggui. Preparation and electrochemical performance of PPy/MWNTs/GO compo-sites[J]. Materials Science & Technology,2016,24(3):92-96(in Chinese).
    [7] 刘连梅, 赵健伟, 陈超. 聚苯胺-石墨烯/聚酰亚胺复合导电纱的制备及其超电容特性[J]. 复合材料学报, 2020, 37(4):786-793.

    LIU Lianmei, ZHAO Jianwei, CHEN Chao. Preparation and supercapacitance characteristics of polyaniline-graphene/polyimide composite conductive yarn[J]. Acta Materiae Compositae Sinica,2020,37(4):786-793(in Chinese).
    [8] 张政, 刘洪达, 宋朝霞, 等. 聚苯胺包覆CoFe类普鲁士蓝复合材料的超电容性能[J]. 复合材料学报, 2020, 37(3):731-739.

    ZHANG Zheng, LIU Hongda, SONG Zhaoxia, et al. Supercapacitive performance of polyaniline coated CoFe Prussian blue analogue composite[J]. Acta Materiae Compositae Sinica,2020,37(3):731-739(in Chinese).
    [9] NAI J, LOU X W. Hollow structures based on prussian blue and its analogs for electrochemical energy storage and conversion[J]. Advanced Materials,2019,31(38):1706825. doi: 10.1002/adma.201706825
    [10] DASSANAYAKE A C, WICKRAMARATNE N P, HOSSAIN M A, et al. Prussian blue-assisted one-pot synthesis of nitrogen-doped mesoporous graphitic carbon spheres for supercapacitors[J]. Journal of Materials Chemistry A,2019,7(38):22092-22102. doi: 10.1039/C9TA08454A
    [11] CHEN J, WEI L, MAHMOOD A, et al. Prussian blue, its analogues and their derived materials for electrochemical energy storage and conversion[J]. Energy Storage Materials,2020,25:585-612. doi: 10.1016/j.ensm.2019.09.024
    [12] LISOWSKA-OLEKSIAK A, NOWAK A P. Metal hexacyanoferrate network synthesized inside polymer matrix for electrochemical capacitors[J]. Journal of Power Sources,2007,173(2):829-836. doi: 10.1016/j.jpowsour.2007.05.046
    [13] ZHAO F, WANG Y, XU X, et al. Cobalt hexacyanoferrate nanoparticles as a high-rate and ultra-stable supercapacitor electrode material[J]. ACS Applied Materials & Interfaces,2014,6(14):11007-11012. doi: 10.1021/am503375h
    [14] WANG J G, ZHANG Z, ZHANG X, et al. Cation exchange formation of prussian blue analogue submicroboxes for high-performance Na-ion hybrid supercapacitors[J]. Nano Energy,2017,39:647-653. doi: 10.1016/j.nanoen.2017.07.055
    [15] SONG Z, LIU W, ZHOU Q, et al. Cobalt hexacyanoferrate/ MnO2 nanocomposite for asymmetrical supercapacitors with enhanced electrochemical performance and its charge storage mechanism[J]. Journal of Power Sources,2020,465:228266. doi: 10.1016/j.jpowsour.2020.228266
    [16] RAWOOL C R, PUNDE N S, RAJPUROHIT A S, et al. High energy density supercapacitive material based on a ternary hybrid nanocomposite of cobalt hexacyanoferrate/carbon nanofibers/polypyrrole[J]. Electrochimica Acta,2018,268:411-423. doi: 10.1016/j.electacta.2018.02.111
    [17] ZHANG X, TAO L, HE P, et al. A novel cobalt hexacyanoferrate/multi-walled carbon nanotubes nanocomposite: Spontaneous assembly synthesis and application as electrode materials with significantly improved capacitance for supercapacitors[J]. Electrochimica Acta,2018,259:793-802. doi: 10.1016/j.electacta.2017.11.007
    [18] REN L, WANG J G, LIU H, et al. Metal-organic-framework-derived hollow polyhedrons of prussian blue analogues for high power grid-scale energy storage[J]. Electrochimica Acta,2019,321:134671. doi: 10.1016/j.electacta.2019.134671
    [19] DENG L, HAO Z, WANG J, et al. Preparation and capacitance of graphene/multiwall carbon nanotubes/MnO2 hybrid material for high-performance asymmetrical electrochemical capacitor[J]. Electrochimica Acta,2013,89:191-198. doi: 10.1016/j.electacta.2012.10.106
    [20] KHAN A, ALI M, ILYAS A, et al. ZIF-67 filled PDMS mixed matrix membranes for recovery of ethanol via pervaporation[J]. Separation and Purification Technology,2018,206:50-58.
    [21] KETTLE S F A, DIANA E, MARCHESE E M C, et al. The vibrational spectra of the cyanide ligand revisited: The ν(CN) infrared and Raman spectroscopy of Prussian blue and its analogues[J]. Journal of Raman Spectroscopy,2011,42(11):2006-2014. doi: 10.1002/jrs.2944
    [22] YIN X, LI H, WANG H, et al. Self-templating synthesis of cobalt hexacyanoferrate hollow structures with superior performance for Na-ion hybrid supercapacitors[J]. ACS Applied Materials & Interfaces,2018,10(35):29496-29504.
    [23] LEE P K, NIA P M, WOI P M. Self-assembled Prussian blue-polypyrrole nanocomposites for energy storage application[J]. Journal of Applied Electrochemistry,2019,49(6):631-638. doi: 10.1007/s10800-019-01310-5
    [24] SONG Z, LIU W, YUAN Q, et al. Microporous/mesoporous cobalt hexacyanoferrate nanocubes for long-cycle life asymmetric supercapacitors[J]. Journal of Materials Science: Materials in Electronics,2018,29(17):14897-14905. doi: 10.1007/s10854-018-9628-5
    [25] LU K, SONG B, GAO X, et al. High-energy cobalt hexacyanoferrate and carbon micro-spheres aqueous sodium-ion capacitors[J]. Journal of Power Sources,2016,303:347-353. doi: 10.1016/j.jpowsour.2015.11.031
    [26] ZHANG D, ZHANG J, YANG Z, et al. Nickel hexacyanoferrate/carbon composite as a high-rate and long-life cathode material for aqueous hybrid energy storage[J]. Chemical Communications,2017,53(76):10556-10559. doi: 10.1039/C7CC04914E
    [27] KRISHNAMOORTHY K, PAZHAMALAI P, SAHOO S, et al. A high-energy aqueous sodium-ion capacitor with nickel hexacyanoferrate and graphene electrodes[J]. ChemElectroChem,2017,4(12):1-8.
    [28] MAIER M A, SURESH BABU R, SAMPAIO D M, et al. Binder-free polyaniline interconnected metal hexacyanoferrates nanocomposites (Metal=Ni, Co) on carbon fibers for flexible supercapacitors[J]. Journal of Materials Science: Materials in Electronics,2017,28(23):17405-17413. doi: 10.1007/s10854-017-7674-z
    [29] YAO H, ZHANG F, ZHANG G, et al. A new hexacyanoferrate nanosheet array converted from copper oxide as a high-performance binder-free energy storage electrode[J]. Electrochimica Acta,2019,294:286-296. doi: 10.1016/j.electacta.2018.10.056
    [30] SENTHILKUMAR S T, KIM J, WANG Y, et al. Flexible and wearable fiber shaped high voltage supercapacitors based on copper hexacyanoferrate and porous carbon coated carbon fiber electrodes[J]. Journal of Materials Chemistry A,2016,4(13):4934-4940. doi: 10.1039/C6TA00093B
    [31] 元宝. 石墨烯/铁氰化镍电极材料及其非对称超级电容器的组装[D]. 哈尔滨: 哈尔滨工程大学, 2017.

    YUAN Bao. The assembly of asymmetric supercapacitor based on graphene/nickel hexacyanoferrate composites[D]. Harbin: Harbin Engineering University, 2017(in Chinese).
    [32] LAFORGUE P, SIMON P, FAUVARQUE J F, et al. Activated carbon/conducting polymer hybrid supercapacitors[J]. Journal of the Electrochemical Society,2003,150(5):A645-A651. doi: 10.1149/1.1566411
    [33] XU K, ZOU R, LI W, et al. Design and synthesis of 3D interconnected mesoporous NiCo2O4@CoxNi1-x(OH)2 core-shell nanosheet arrays with large areal capacitance and high rate performance for supercapacitors[J]. Journal of Materials Chemistry A,2014,2(26):10090-10097. doi: 10.1039/c4ta01489h
    [34] LIU W, LI X, ZHU M, et al. High-performance all-solid state asymmetric supercapacitor based on Co3O4 nanowires and carbon aerogel[J]. Journal of Power Sources,2015,282:179-186. doi: 10.1016/j.jpowsour.2015.02.047
  • 加载中
图(8)
计量
  • 文章访问数:  1162
  • HTML全文浏览量:  457
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-11
  • 修回日期:  2021-07-07
  • 录用日期:  2021-07-24
  • 网络出版日期:  2021-08-05
  • 刊出日期:  2022-06-01

目录

    /

    返回文章
    返回