Effect of black phosphorous nanosheet on the flame retardance and mechanical property of polypropylene
-
摘要: 利用球磨法制备了纳米黑磷(BP)与羟基锡酸锌(ZHS)复合的纳米复合阻燃剂ZHS-BP,将ZHS-BP通过熔融共混方式添加到聚丙烯(PP)中,研究了复合材料的热稳定性、燃烧性能和力学性能。结果表明BP和ZHS的加入都可以提高PP的热解残炭。仅添加2wt% BP可以使PP材料的极限氧指数由19.7%提高至23.8%,同时,BP的添加可以有效降低PP材料燃烧时的热释放速率峰值(PHRR)和总热释放量(THR),对比纯PP分别降低32.52%和17.80%。但是,BP的添加会导致PP有毒烟气释放的增加,通过引入ZHS作为抑烟剂,制备了ZHS-BP/PP复合材料,其烟气平均比消光面积 (av-SEA) 和CO释放较BP/PP分别降低了15.42%和29.76%。材料的力学性能测试表明,加入单一的BP或ZHS会降低PP的力学性能,而ZHS-BP复合体系的加入可以有效提高复合材料的力学性能。与BP/PP相比,ZHS-BP/PP复合材料的拉伸强度和断裂拉伸率分别提高了12.51%和4.04%。Abstract: Ball-milling the mixture of black phosphorous (BP) and zinc hydroxyl stannate (ZHS) was carried out to prepare ZHS-BP nanocomposite, which was then introduced into polypropylene (PP) matrix as flame retardant via melt blending. The thermal stability, combustion and mechanical properties of the PP based composites were investigated. Results show that the addition of BP and ZHS could increase the carbon residue of PP, and only 2wt% BP increases the limiting oxygen index (LOI) of the BP/PP composite from 19.7% (for pure PP) to 23.8%. Moreover, BP can effectively reduce the peak heat release rate (PHRR) and total heat release (THR) of BP/PP composite, the values of which are decreased by 32.52% and 17.80% respectively compared with that of pure PP. However, the release of toxic gases from PP combustion is increased obviously as BP is added, ZHS was then introduced as the assistant agent to suppress the smoke release. As a result, the average specific extinction area (av-SEA) and CO emission of ZHS-BP/PP are decreased by 15.42% and 29.76% respectively compared with BP/PP. Mechanical properties test shows that merely adding BP or ZHS has negative effect on the mechanical properties of the composites. However, the addition of ZHS-BP nanocomposite effectively improves the mechanical properties. Compared with BP/PP, the tensile strength and breaking tensile ratio of ZHS-BP/PP composites are increased by 12.51% and 4.04%, respectively.
-
Key words:
- polypropylene /
- nanomaterials /
- black phosphorus /
- zinc hydroxy stannate /
- flame retardancy /
- mechanical property
-
图 6 PP、2%ZHS/PP、2%BP/PP、1%ZHS-1%BP/PP、0.5%ZHS-0.5%BP/PP和1.5%ZHS-1.5%BP/PP复合材料的锥形量热曲线:(a)热释放速率曲线;(b)总热释放量曲线;(c) CO释放率曲线;(d) CO2释放率曲线
Figure 6. Cone calorimetric test curves of PP, 2%ZHS/PP, 2%BP/PP, 1%ZHS-1%BP/PP, 0.5%ZHS-0.5%BP/PP and 1.5%ZHS-1.5%BP/PP composites: (a) Heat release rate (HRR) curves; (b) Total heat release (THR) curves; (c) CO release rate curves; (d) CO2 release rate curves
表 1 羟基锡酸锌-纳米黑磷/聚丙烯(ZHS-BP/PP)复合材料的物料配比
Table 1. Formulations of zinc hydroxyl stannate-black phosphorous/polypropylene (ZHS-BP/PP) composite materials
wt% Sample PP ZHS BP PP 100 0 0 2%ZHS/PP 98 2 0 2%BP/PP 98 0 2 1%ZHS-1%BP/PP 98 1 1 0.5%ZHS-0.5%BP/PP 99 0.5 0.5 1.5%ZHS-1.5%BP/PP 97 1.5 1.5 表 2 PP、2%ZHS/PP、2%BP/PP、1%ZHS-1%BP/PP、0.5%ZHS-0.5%BP/PP和1.5%ZHS-1.5%BP/PP复合材料在N2中的TGA及DSC数据
Table 2. TGA and DSC data of of PP, 2%ZHS/PP, 2%BP/PP, 1%ZHS-1%BP/PP, 0.5%ZHS-0.5%BP/PP and 1.5%ZHS-1.5%BP/PP composites in N2
Simple T5%/℃ Tmax/℃ Y800/% YG/% Tg/℃ PP 398.5 440.7 0.15 0.15 −5.95 2%ZHS/PP 376.3 452.7 4.15 2.51 −6.63 2%BP/PP 399.4 459.9 3.77 3.57 −6.28 1%ZHS-1%BP/PP 428.9 458.6 3.08 2.17 −7.57 0.5%ZHS-0.5%BP/PP 419.0 447.2 1.42 0.97 −13.52 1.5%ZHS-1.5%BP/PP 420.9 456.9 4.26 2.90 −11.26 Notes: T5%—Temperature at 5% mass loss; Tmax—Temperature at maximum mass loss rate; Y800—Char yield at 800℃; YG—Normalized of char yield;Tg—Glass transition temperature. 表 3 PP、2%ZHS/PP、2%BP/PP、1%ZHS-1%BP/PP、0.5%ZHS-0.5%BP/PP和1.5%ZHS-1.5%BP/PP复合材料锥形量热测试结果
Table 3. Cone calorimeter test results of PP, 2%ZHS/PP, 2%BP/PP, 1%ZHS-1%BP/PP, 0.5%ZHS-0.5%BP/PP and 1.5%ZHS-1.5%BP/PP composites
Simple TTI/s PHRR/(kW·m−2) THR/(MJ·m−2) Avg EHC/(MJ·kg−1) Av-SEA/(m2·kg−1) CO/(kg·kg−1) PP 38 1242.9 81.9 36.6 261.7 0.057 2%ZHS/PP 28 1057.6 77.3 36.0 292.1 0.055 2%BP/PP 21 838.7 67.6 31.6 517.2 0.168 1%ZHS-1%BP/PP 24 967.2 72.7 33.9 437.4 0.118 0.5%ZHS-0.5%BP/PP 26 956.7 80.7 35.3 350.4 0.102 1.5%ZHS-1.5%BP/PP 22 808.9 74.4 33.6 435.8 0.151 Notes: TTI—Ignition time; PHRR—Peak heat release rate; THR—Total value of heat release; Avg EHC—Average effective heat of combustion; Av-SEA—Average specific extinction area; CO—Carbon monoxide production. -
[1] JIANG Z W, LIU G S. Microencapsulation of ammonium polyphosphate with melamine-formaldehyde-tris(2-hydroxyethyl)isocyanurate resin and its flame retardancy in polypropylene[J]. RSC Advances,2015,5(107):88445-88455. doi: 10.1039/C5RA14586D [2] DANG L, TANG D L, DU X L, et al. Synergistic effects of magnesium oxysulte whisker and multiwalled carbon nanotube on flame retardancy, smoke suppression, and thermal properties of polypropylene[J]. Journal of Applied Polymer Science,2020,137(40):49210. [3] MARTINS R C, CUNHA REZENDE M J, CHAER NASCIMENTO M A, et al. Synergistic action of montmorillonite with an intumescent formulation: The impact of the nature and the strength of acidic sites on the flame-retardant properties of polypropylene composites[J]. Polymers,2020,12(12):2781. [4] XU S, ZHANG M, LI S Y, et al. Intercalation of a novel containing nitrogen and sulfur anion into hydrotalcite and its highly efficient flame retardant performance for polypropylene[J]. Applied Clay Science,2020,191:105600. [5] PEREZ N, QI X L, NIE S, et al. Flame retardant polypropylene composites with low densities[J]. Materials,2019,12(1):152. [6] ZHAO W J, CHENG Y M, LI Z W, et al. Improvement in fire-retardant properties of polypropylene filled with intumescent flame retardants, using flower-like nickel cobaltate as synergist[J]. Journal of Materials Science,2021,56(3):2702-2716. doi: 10.1007/s10853-020-05367-y [7] YIN S H, REN X L, LIAN P C, et al. Synergistic effects of black phosphorus/boron nitride nanosheets on enhancing the flame-retardant properties of waterborne polyurethane and its flame-retardant mechanism[J]. Polymers,2020,12(7):1487. [8] YU S W, XIAO S J, ZHAO Z W, et al. Microencapsulated ammonium polyphosphate by polyurethane with segment of dipentaerythritol and its application in flame retardant polypropylene[J]. Chinese Journal of Chemical Engineering,2019,27(7):1735-1743. doi: 10.1016/j.cjche.2019.04.023 [9] XU S, LI S Y, ZHANG M, et al. Fabrication of green alginate-based and layered double hydroxides flame retardant for enhancing the fire retardancy properties of polypropylene[J]. Carbohydrate Polymers,2020,234:115891. doi: 10.1016/j.carbpol.2020.115891 [10] WANG H Z, NIU H, DONG J Y. Inherently flame retardant polypropylene copolymer[J]. Polymer,2017,126:109-115. doi: 10.1016/j.polymer.2017.07.050 [11] YU G X, MA C, LI J. Flame retardant effect of cytosine pyrophosphate and pentaerythritol on polypropylene[J]. Composites Part B: Engineering,2019,180:107520. [12] REN X L, LIAN P C, XIE D L, et al. Properties, preparation and application of black phosphorus/phosphorene for energy storage: A review[J]. Journal of Materials Science,2017,52(17):10364-10386. doi: 10.1007/s10853-017-1194-3 [13] LIU Y J, GAO P F, ZHANG T M, et al. Azide passivation of black phosphorus nanosheets: Covalent functionalization affords ambient stability enhancement[J]. Angewandte Chemie-International Edition,2019,131(5):1493-1497. doi: 10.1002/anie.201813218 [14] LI B, LAI C, ZENG G, et al. Black phosphorus, a rising star 2D nanomaterial in the post-graphene era: Synthesis, properties, modifications, and photocatalysis applications[J]. Small,2019,15(8):1804565. doi: 10.1002/smll.201804565 [15] REN X L, MEI Y, LIAN P C, et al. A novel application of phosphorene as a flame retardant[J]. Polymers,2018,10(3):227. [16] QIU S L, ZOU B, ZHANG T, et al. Integrated effect of NH2-functionalized/triazine based covalent organic framework black phosphorus on reducing fire hazards of epoxy nanocomposites[J]. Chemical Engineering Journal,2020,401:126058. [17] QIU S L, ZHOU Y F, ZHOU X, et al. Air-stable polyphosphazene-functionalized few-layer black phosphorene for flame retardancy of epoxy resins[J]. Small,2019,15(10):e1805175. doi: 10.1002/smll.201805175 [18] REN X L, MEI Y, LIAN P C, et al. Fabrication and application of black phosphorene/graphene composite material as a flame retardant[J]. Polymers,2019,11(2):193. [19] ZOU B, QIU S L, REN X Y, et al. Combination of black phosphorus nanosheets and MCNTs via phosphorus carbon bonds for reducing the flammability of air stable epoxy resin nanocomposites[J]. Journal of Hazardous Materials,2020,383:121069. [20] ZHOU Y F, HUANG J L, WANG J L, et al. Rationally designed functionalized black phosphorus nanosheets as new fire hazard suppression material for polylactic acid[J]. Polymer Degradation and Stability,2020,178:109194. [21] LIU F, ZHOU Y L, GAO Q, et al. Preparation of zinc hydroxystannate coated dendritic-fibrillar barium carbonate and its flame retardant effect on soft poly (vinyl chloride)[J]. Journal of Macromolecular Science, Part B-Physics,2020,59(11):659-671. doi: 10.1080/00222348.2020.1788801 [22] WANG W, KAN Y C, LIU J J, et al. Self-assembly of zinc hydroxystannate on amorphous hydrous TiO2 solid sphere for enhancing fire safety of epoxy resin[J]. Journal of Hazrdous Materials,2017,340:263-271. doi: 10.1016/j.jhazmat.2017.06.068 [23] LIU X W, WU W H, QI Y X, et al. Synthesis of a hybrid zinc hydroxystannate/reduction graphene oxide as a flame retardant and smoke suppressant of epoxy resin[J]. Journal of Thermal Analysis and Calorimetry,2016,126(2):553-559. doi: 10.1007/s10973-016-5516-5 [24] KIM J S, SONG J E, LIM D, et al. Flame-retardant mechanism and mechanical properties of wet-spun poly(acrylonitrile-co-vinylidene chloride) fibers with antimony trioxide and zinc hydroxystannate[J]. Polymers,2020,12(11):2442. [25] LEE S H, YI G R, LIM D Y, et al. Study on the flame retardant and mechanical properties of wet-spun poly(acrylonitrile-co-vinylchloride) fibers with antimony trioxide and zinc hydroxystannate[J]. Fibers and Polymers,2019,20(4):779-786. doi: 10.1007/s12221-019-1137-5 [26] SANG B, LI Z W, YU L G, et al. Preparation of zinc hydroxystannate-titanate nanotube flame retardant and evaluation its smoke suppression efficiency for flexible polyvinyl chloride matrix[J]. Materials Letters,2017,204:133-137. doi: 10.1016/j.matlet.2017.06.026 [27] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 塑料-用氧指数法测定燃烧行为-第2部分: 室温试验: GB/T 2406.2—2009 [S]. 北京: 中国质检出版社, 2009.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Plastics—Determination of burning behaviour by oxygen index method—Part 2: Ambient temperature test: GB/T 2406.2—2009 [S]. Beijing: China Quality Inspection Press, 2009 (in Chinese). [28] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 塑料-燃烧性能的测定-水平法和垂直法: GB/T 2408—2008 [S]. 北京: 中国质检出版社, 2008.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Plastics—Determination of burning characteristics—Horizontal and vertical test: GB/T 2408—2008 [S]. Beijing: China Quality Inspection Press, 2008 (in Chinese). [29] 国际标准化组织. 对火的反应试验. 热释放率、发烟率和质量损失率. 第1部分: 热释放率(锥形热量计法): ISO 5660-1—2002 [S]. 日内瓦: 瑞典标准协会, 2002.International Organization for Standardization. Reaction to fire test. Heat release rate, smoke emission rate and mass loss rate. Part 1: Rate of heat release (cone calorimeter method): ISO 5660-1—2002 [S]. Geneva: Swedish Standards Institute, 2002 (in Chinese). [30] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 塑料-拉伸性能的测定-第2部分: 模塑和挤塑塑料的试验条件: GB/T 1040.2—2006 [S]. 北京: 中国质检出版社, 2006.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Plastics—Determination of tensile properties—Part 2: Test conditions for moulding and extrusion plastics: GB/T 1040.2—2006 [S]. Beijing: China Quality Inspection Press, 2006 (in Chinese). [31] CAI W, CAI T M, HE L X, et al. Natural antioxidant functionalization for fabricating ambient-stable black phosphorus nanosheets toward enhancing flame retardancy and toxic gases suppression of polyurethane[J]. Journal of Hazardous Materials,2020,387:121971. doi: 10.1016/j.jhazmat.2019.121971 [32] LONG M Y, PENG S, DENG W S, et al. A robust superhydrophobic PDMS@ZnSn(OH)(6) coating with under-oil self-cleaning and flame retardancy[J]. Journal of Materials Chemistry A,2017,5(43):22761-22771. doi: 10.1039/C7TA06190K [33] QIU S, ZOU B, SHENG H B, et al. Electrochemically exfoliated functionalized black phosphorene and its polyurethane acrylate nanocomposites: Synthesis and applications[J]. ACS Applied Materials & Interfaces,2019,11(14):13652-13664. doi: 10.1021/acsami.8b22115 [34] QU Z, WU K, JIAO E, et al. Surface functionalization of few-layer black phosphorene and its flame retardancy in epoxy resin[J]. Chemical Engineering Journal,2020,382:122991. [35] QU Z C, WANG K X, XU C A, et al. Simultaneous enhancement in thermal conductivity and flame retardancy of flexible film by introducing covalent bond connection[J]. Chemical Engineering Journal,2021,421:129729. [36] ZHU X J, ZHANG T M, SUN Z J, et al. Black phosphorus revisited: A missing metal-free elemental photocatalyst for visible light hydrogen evolution[J]. Advanced Materials,2017,29(17):1605776. [37] HAN L X, LIU J, WANG Z J, et al. Shape-controlled synthesis of ZnSn(OH)6 crystallites and their HCHO-sensing properties[J]. CrystEngComm,2012,14(10):3380-3386. [38] LI H Q, HONG W S, CUI Y M, et al. High photocatalytic activity of C-ZnSn(OH)6 catalysts prepared by hydrothermal method[J]. Journal of Molecular Catalysis A: Chemical,2013,378:164-173. doi: 10.1016/j.molcata.2013.06.012 [39] QU H Q, WU W H, ZHENG Y J, et al. Synergistic effects of inorganic tin compounds and Sb2O3 on thermal properties and flame retardancy of flexible poly(vinyl chloride)[J]. Fire Safety Journal,2011,46(7):462-467. doi: 10.1016/j.firesaf.2011.07.006 [40] SHI Y Q, GUI Z, YU B, et al. Graphite-like carbon nitride and functionalized layered double hydroxide filled polypropylene-grafted maleic anhydride nanocomposites: Comparison in flame retardancy, and thermal, mechanical and UV-shielding properties[J]. Composites Part B: Engineering,2015,79:277-284. doi: 10.1016/j.compositesb.2015.04.046 [41] CAI W, LI Z X, MU X W, et al. Barrier function of graphene for suppressing the smoke toxicity of polymer/black phosphorous nanocomposites with mechanism change[J]. Journal of Hazardous Materials,2021,404:124106. [42] QU Z C, WU K, MENG W H, et al. Surface coordination of black phosphorene for excellent stability, flame retardancy and thermal conductivity in epoxy resin[J]. Chemical Engineering Journal,2020,397:125416. [43] GU M L, LI Y H, ZHANG M, et al. Bismuth nanoparticles and oxygen vacancies synergistically attired Zn2SnO4 with optimized visible-light-active performance[J]. Nano Energy,2021,80:105415. [44] LIU L, WANG W, SHI Y Q, et al. Electrostatic-interaction-driven assembly of binary hybrids towards fire-safe epoxy resin nanocomposites[J]. Polymers,2019,11(4):724. [45] YANG L, WANG Y Y. Smoke suppressant and flame retardant properties of PVC/zinc hydroxystannate composites[J]. Advanced Materials Research,2012,512:2804-2807. doi: 10.4028/www.scientific.net/AMR.512-515.2804