留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米黑磷阻燃聚丙烯及对力学性能的影响

李永翔 尹思浩 谢于辉 梅玉立 谢德龙 梅毅

李永翔, 尹思浩, 谢于辉, 等. 纳米黑磷阻燃聚丙烯及对力学性能的影响[J]. 复合材料学报, 2022, 39(7): 3178-3190. doi: 10.13801/j.cnki.fhclxb.20210804.004
引用本文: 李永翔, 尹思浩, 谢于辉, 等. 纳米黑磷阻燃聚丙烯及对力学性能的影响[J]. 复合材料学报, 2022, 39(7): 3178-3190. doi: 10.13801/j.cnki.fhclxb.20210804.004
LI Yongxiang, YIN Sihao, XIE Yuhui, et al. Effect of black phosphorous nanosheet on the flame retardance and mechanical property of polypropylene[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3178-3190. doi: 10.13801/j.cnki.fhclxb.20210804.004
Citation: LI Yongxiang, YIN Sihao, XIE Yuhui, et al. Effect of black phosphorous nanosheet on the flame retardance and mechanical property of polypropylene[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3178-3190. doi: 10.13801/j.cnki.fhclxb.20210804.004

纳米黑磷阻燃聚丙烯及对力学性能的影响

doi: 10.13801/j.cnki.fhclxb.20210804.004
基金项目: 云南省基础研究计划青年项目(202101AU070012);云南省教育厅科学研究基金项目(2021J0050)
详细信息
    通讯作者:

    谢德龙,博士,教授,博士生导师,研究方向为高分子阻燃和涂料应用 E-mail:cedlxie@kust.edu.cn

    梅毅,博士,教授,博士生导师,研究方向为磷化工节能与新材料 E-mail:meiyi_412@sina.com

  • 中图分类号: TB332

Effect of black phosphorous nanosheet on the flame retardance and mechanical property of polypropylene

  • 摘要: 利用球磨法制备了纳米黑磷(BP)与羟基锡酸锌(ZHS)复合的纳米复合阻燃剂ZHS-BP,将ZHS-BP通过熔融共混方式添加到聚丙烯(PP)中,研究了复合材料的热稳定性、燃烧性能和力学性能。结果表明BP和ZHS的加入都可以提高PP的热解残炭。仅添加2wt% BP可以使PP材料的极限氧指数由19.7%提高至23.8%,同时,BP的添加可以有效降低PP材料燃烧时的热释放速率峰值(PHRR)和总热释放量(THR),对比纯PP分别降低32.52%和17.80%。但是,BP的添加会导致PP有毒烟气释放的增加,通过引入ZHS作为抑烟剂,制备了ZHS-BP/PP复合材料,其烟气平均比消光面积 (av-SEA) 和CO释放较BP/PP分别降低了15.42%和29.76%。材料的力学性能测试表明,加入单一的BP或ZHS会降低PP的力学性能,而ZHS-BP复合体系的加入可以有效提高复合材料的力学性能。与BP/PP相比,ZHS-BP/PP复合材料的拉伸强度和断裂拉伸率分别提高了12.51%和4.04%。

     

  • 图  1  BP-bulk(块状晶体)、BP、ZHS-BP、ZHS的XRD图谱

    Figure  1.  XRD patterns of BP-bulk, BP, ZHS-BP and ZHS

    图  2  BP的TEM图像(a)和HRTEM图像(b)、ZHS-BP的TEM图像((c)、(d))和SAED图像(e)以及BP的AFM图像((f)、(g))

    Figure  2.  TEM image (a) and HRTEM image (b) of BP, TEM image ((c), (d)) and SAED patterns of ZHS-BP (e) as well as AFM image of BP ((f), (g))

    图  3  BP(a)和ZHS-BP(b)高分辨率P 2p、BP(c)和ZHS-BP(d)高分辨率O 1s、ZHS和ZHS-BP高分辨率Sn 3d(e)以及高分辨率Zn 2p(f)

    Figure  3.  High-resolution P 2p of BP (a) and ZHS-BP (b), high-resolution O 1s of BP (c) and ZHS-BP (d), high-resolution Sn 3d (e) and high-resolution Zn 2p (f) of ZHS and ZHS-BP

    图  4  BP、ZHS、ZHS-BP的TG曲线

    Figure  4.  TG curves of BP, ZHS and ZHS-BP

    图  5  PP、2%ZHS/PP、2%BP/PP、1%ZHS-1%BP/PP、0.5%ZHS-0.5%BP/PP和1.5%ZHS-1.5%BP/PP复合材料的TG曲线

    Figure  5.  TG curves of PP, 2%ZHS/PP, 2%BP/PP, 1%ZHS-1%BP/PP, 0.5%ZHS-0.5%BP/PP and 1.5%ZHS-1.5%BP/PP composites

    图  6  PP、2%ZHS/PP、2%BP/PP、1%ZHS-1%BP/PP、0.5%ZHS-0.5%BP/PP和1.5%ZHS-1.5%BP/PP复合材料的锥形量热曲线:(a)热释放速率曲线;(b)总热释放量曲线;(c) CO释放率曲线;(d) CO2释放率曲线

    Figure  6.  Cone calorimetric test curves of PP, 2%ZHS/PP, 2%BP/PP, 1%ZHS-1%BP/PP, 0.5%ZHS-0.5%BP/PP and 1.5%ZHS-1.5%BP/PP composites: (a) Heat release rate (HRR) curves; (b) Total heat release (THR) curves; (c) CO release rate curves; (d) CO2 release rate curves

    图  7  PP、2%ZHS/PP、1%ZHS-1%BP/PP、2%BP/PP复合材料的极限氧指数(LOI)

    Figure  7.  Limiting oxygen index (LOI) of PP, 2%ZHS/PP, 1%ZHS-1%BP/PP and 2%BP/PP composites

    图  8  2%ZHS/PP ((a)、(a'))、2%BP/PP ((b)、(b'))、1%ZHS-1%BP/PP ((c)、(c'))在锥形量热测试后残炭照片和SEM图像

    Figure  8.  Carbon residue and SEM images of 2%ZHS/PP ((a), (a')), 2%BP/PP ((b), (b')) and 1%ZHS-1%BP/PP ((c), (c')) composite after cone calorimetry

    图  9  2%BP/PP P2p (a)、1%ZHS-1%BP P2p (b)、1%ZHS-1%BP/PP O1s (c)残炭XPS图谱

    Figure  9.  XPS spectra of carbon residue of 2%BP/PP P2p (a), 1%ZHS-1%BP/PP P2p (b) and 1%ZHS-1%BP/PP O1s (c)

    图  10  2%ZHS/PP (a)、2%BP/PP (b)、1%ZHS-1%BP/PP(c)残炭拉曼图谱

    Figure  10.  Raman patterns of carbon residue of 2%ZHS/PP (a), 2%BP/PP (b) and 1%ZHS-1%BP/PP (c)

    图  11  PP、2%ZHS/PP、2%BP/PP、1%ZHS-1%BP/PP复合材料拉伸性能(a)、应力-应变曲线(b)

    Figure  11.  Tensile properties (a), stress-strain curves (b) of PP, 2%ZHS/PP, 2%BP/PP and 1%ZHS-1%BP/PP composites

    图  12  PP(a)、2%ZHS/PP(b)、2%BP/PP(c)、1%ZHS-1%BP/PP(d)断裂表面SEM图像

    Figure  12.  SEM images of fractured surfaces of PP (a), 2%ZHS/PP (b), 2%BP/PP (c) and 1%ZHS-1%BP/PP (d)

    表  1  羟基锡酸锌-纳米黑磷/聚丙烯(ZHS-BP/PP)复合材料的物料配比

    Table  1.   Formulations of zinc hydroxyl stannate-black phosphorous/polypropylene (ZHS-BP/PP) composite materials wt%

    SamplePPZHSBP
    PP 100 0 0
    2%ZHS/PP 98 2 0
    2%BP/PP 98 0 2
    1%ZHS-1%BP/PP 98 1 1
    0.5%ZHS-0.5%BP/PP 99 0.5 0.5
    1.5%ZHS-1.5%BP/PP 97 1.5 1.5
    下载: 导出CSV

    表  2  PP、2%ZHS/PP、2%BP/PP、1%ZHS-1%BP/PP、0.5%ZHS-0.5%BP/PP和1.5%ZHS-1.5%BP/PP复合材料在N2中的TGA及DSC数据

    Table  2.   TGA and DSC data of of PP, 2%ZHS/PP, 2%BP/PP, 1%ZHS-1%BP/PP, 0.5%ZHS-0.5%BP/PP and 1.5%ZHS-1.5%BP/PP composites in N2

    SimpleT5%/℃Tmax/℃Y800/%YG/%Tg/℃
    PP 398.5 440.7 0.15 0.15 −5.95
    2%ZHS/PP 376.3 452.7 4.15 2.51 −6.63
    2%BP/PP 399.4 459.9 3.77 3.57 −6.28
    1%ZHS-1%BP/PP 428.9 458.6 3.08 2.17 −7.57
    0.5%ZHS-0.5%BP/PP 419.0 447.2 1.42 0.97 −13.52
    1.5%ZHS-1.5%BP/PP 420.9 456.9 4.26 2.90 −11.26
    Notes: T5%—Temperature at 5% mass loss; Tmax—Temperature at maximum mass loss rate; Y800—Char yield at 800℃; YG—Normalized of char yield;Tg—Glass transition temperature.
    下载: 导出CSV

    表  3  PP、2%ZHS/PP、2%BP/PP、1%ZHS-1%BP/PP、0.5%ZHS-0.5%BP/PP和1.5%ZHS-1.5%BP/PP复合材料锥形量热测试结果

    Table  3.   Cone calorimeter test results of PP, 2%ZHS/PP, 2%BP/PP, 1%ZHS-1%BP/PP, 0.5%ZHS-0.5%BP/PP and 1.5%ZHS-1.5%BP/PP composites

    SimpleTTI/sPHRR/(kW·m−2)THR/(MJ·m−2)Avg EHC/(MJ·kg−1)Av-SEA/(m2·kg−1)CO/(kg·kg−1)
    PP 38 1242.9 81.9 36.6 261.7 0.057
    2%ZHS/PP 28 1057.6 77.3 36.0 292.1 0.055
    2%BP/PP 21 838.7 67.6 31.6 517.2 0.168
    1%ZHS-1%BP/PP 24 967.2 72.7 33.9 437.4 0.118
    0.5%ZHS-0.5%BP/PP 26 956.7 80.7 35.3 350.4 0.102
    1.5%ZHS-1.5%BP/PP 22 808.9 74.4 33.6 435.8 0.151
    Notes: TTI—Ignition time; PHRR—Peak heat release rate; THR—Total value of heat release; Avg EHC—Average effective heat of combustion; Av-SEA—Average specific extinction area; CO—Carbon monoxide production.
    下载: 导出CSV
  • [1] JIANG Z W, LIU G S. Microencapsulation of ammonium polyphosphate with melamine-formaldehyde-tris(2-hydroxyethyl)isocyanurate resin and its flame retardancy in polypropylene[J]. RSC Advances,2015,5(107):88445-88455. doi: 10.1039/C5RA14586D
    [2] DANG L, TANG D L, DU X L, et al. Synergistic effects of magnesium oxysulte whisker and multiwalled carbon nanotube on flame retardancy, smoke suppression, and thermal properties of polypropylene[J]. Journal of Applied Polymer Science,2020,137(40):49210.
    [3] MARTINS R C, CUNHA REZENDE M J, CHAER NASCIMENTO M A, et al. Synergistic action of montmorillonite with an intumescent formulation: The impact of the nature and the strength of acidic sites on the flame-retardant properties of polypropylene composites[J]. Polymers,2020,12(12):2781.
    [4] XU S, ZHANG M, LI S Y, et al. Intercalation of a novel containing nitrogen and sulfur anion into hydrotalcite and its highly efficient flame retardant performance for polypropylene[J]. Applied Clay Science,2020,191:105600.
    [5] PEREZ N, QI X L, NIE S, et al. Flame retardant polypropylene composites with low densities[J]. Materials,2019,12(1):152.
    [6] ZHAO W J, CHENG Y M, LI Z W, et al. Improvement in fire-retardant properties of polypropylene filled with intumescent flame retardants, using flower-like nickel cobaltate as synergist[J]. Journal of Materials Science,2021,56(3):2702-2716. doi: 10.1007/s10853-020-05367-y
    [7] YIN S H, REN X L, LIAN P C, et al. Synergistic effects of black phosphorus/boron nitride nanosheets on enhancing the flame-retardant properties of waterborne polyurethane and its flame-retardant mechanism[J]. Polymers,2020,12(7):1487.
    [8] YU S W, XIAO S J, ZHAO Z W, et al. Microencapsulated ammonium polyphosphate by polyurethane with segment of dipentaerythritol and its application in flame retardant polypropylene[J]. Chinese Journal of Chemical Engineering,2019,27(7):1735-1743. doi: 10.1016/j.cjche.2019.04.023
    [9] XU S, LI S Y, ZHANG M, et al. Fabrication of green alginate-based and layered double hydroxides flame retardant for enhancing the fire retardancy properties of polypropylene[J]. Carbohydrate Polymers,2020,234:115891. doi: 10.1016/j.carbpol.2020.115891
    [10] WANG H Z, NIU H, DONG J Y. Inherently flame retardant polypropylene copolymer[J]. Polymer,2017,126:109-115. doi: 10.1016/j.polymer.2017.07.050
    [11] YU G X, MA C, LI J. Flame retardant effect of cytosine pyrophosphate and pentaerythritol on polypropylene[J]. Composites Part B: Engineering,2019,180:107520.
    [12] REN X L, LIAN P C, XIE D L, et al. Properties, preparation and application of black phosphorus/phosphorene for energy storage: A review[J]. Journal of Materials Science,2017,52(17):10364-10386. doi: 10.1007/s10853-017-1194-3
    [13] LIU Y J, GAO P F, ZHANG T M, et al. Azide passivation of black phosphorus nanosheets: Covalent functionalization affords ambient stability enhancement[J]. Angewandte Chemie-International Edition,2019,131(5):1493-1497. doi: 10.1002/anie.201813218
    [14] LI B, LAI C, ZENG G, et al. Black phosphorus, a rising star 2D nanomaterial in the post-graphene era: Synthesis, properties, modifications, and photocatalysis applications[J]. Small,2019,15(8):1804565. doi: 10.1002/smll.201804565
    [15] REN X L, MEI Y, LIAN P C, et al. A novel application of phosphorene as a flame retardant[J]. Polymers,2018,10(3):227.
    [16] QIU S L, ZOU B, ZHANG T, et al. Integrated effect of NH2-functionalized/triazine based covalent organic framework black phosphorus on reducing fire hazards of epoxy nanocomposites[J]. Chemical Engineering Journal,2020,401:126058.
    [17] QIU S L, ZHOU Y F, ZHOU X, et al. Air-stable polyphosphazene-functionalized few-layer black phosphorene for flame retardancy of epoxy resins[J]. Small,2019,15(10):e1805175. doi: 10.1002/smll.201805175
    [18] REN X L, MEI Y, LIAN P C, et al. Fabrication and application of black phosphorene/graphene composite material as a flame retardant[J]. Polymers,2019,11(2):193.
    [19] ZOU B, QIU S L, REN X Y, et al. Combination of black phosphorus nanosheets and MCNTs via phosphorus carbon bonds for reducing the flammability of air stable epoxy resin nanocomposites[J]. Journal of Hazardous Materials,2020,383:121069.
    [20] ZHOU Y F, HUANG J L, WANG J L, et al. Rationally designed functionalized black phosphorus nanosheets as new fire hazard suppression material for polylactic acid[J]. Polymer Degradation and Stability,2020,178:109194.
    [21] LIU F, ZHOU Y L, GAO Q, et al. Preparation of zinc hydroxystannate coated dendritic-fibrillar barium carbonate and its flame retardant effect on soft poly (vinyl chloride)[J]. Journal of Macromolecular Science, Part B-Physics,2020,59(11):659-671. doi: 10.1080/00222348.2020.1788801
    [22] WANG W, KAN Y C, LIU J J, et al. Self-assembly of zinc hydroxystannate on amorphous hydrous TiO2 solid sphere for enhancing fire safety of epoxy resin[J]. Journal of Hazrdous Materials,2017,340:263-271. doi: 10.1016/j.jhazmat.2017.06.068
    [23] LIU X W, WU W H, QI Y X, et al. Synthesis of a hybrid zinc hydroxystannate/reduction graphene oxide as a flame retardant and smoke suppressant of epoxy resin[J]. Journal of Thermal Analysis and Calorimetry,2016,126(2):553-559. doi: 10.1007/s10973-016-5516-5
    [24] KIM J S, SONG J E, LIM D, et al. Flame-retardant mechanism and mechanical properties of wet-spun poly(acrylonitrile-co-vinylidene chloride) fibers with antimony trioxide and zinc hydroxystannate[J]. Polymers,2020,12(11):2442.
    [25] LEE S H, YI G R, LIM D Y, et al. Study on the flame retardant and mechanical properties of wet-spun poly(acrylonitrile-co-vinylchloride) fibers with antimony trioxide and zinc hydroxystannate[J]. Fibers and Polymers,2019,20(4):779-786. doi: 10.1007/s12221-019-1137-5
    [26] SANG B, LI Z W, YU L G, et al. Preparation of zinc hydroxystannate-titanate nanotube flame retardant and evaluation its smoke suppression efficiency for flexible polyvinyl chloride matrix[J]. Materials Letters,2017,204:133-137. doi: 10.1016/j.matlet.2017.06.026
    [27] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 塑料-用氧指数法测定燃烧行为-第2部分: 室温试验: GB/T 2406.2—2009 [S]. 北京: 中国质检出版社, 2009.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Plastics—Determination of burning behaviour by oxygen index method—Part 2: Ambient temperature test: GB/T 2406.2—2009 [S]. Beijing: China Quality Inspection Press, 2009 (in Chinese).
    [28] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 塑料-燃烧性能的测定-水平法和垂直法: GB/T 2408—2008 [S]. 北京: 中国质检出版社, 2008.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Plastics—Determination of burning characteristics—Horizontal and vertical test: GB/T 2408—2008 [S]. Beijing: China Quality Inspection Press, 2008 (in Chinese).
    [29] 国际标准化组织. 对火的反应试验. 热释放率、发烟率和质量损失率. 第1部分: 热释放率(锥形热量计法): ISO 5660-1—2002 [S]. 日内瓦: 瑞典标准协会, 2002.

    International Organization for Standardization. Reaction to fire test. Heat release rate, smoke emission rate and mass loss rate. Part 1: Rate of heat release (cone calorimeter method): ISO 5660-1—2002 [S]. Geneva: Swedish Standards Institute, 2002 (in Chinese).
    [30] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 塑料-拉伸性能的测定-第2部分: 模塑和挤塑塑料的试验条件: GB/T 1040.2—2006 [S]. 北京: 中国质检出版社, 2006.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Plastics—Determination of tensile properties—Part 2: Test conditions for moulding and extrusion plastics: GB/T 1040.2—2006 [S]. Beijing: China Quality Inspection Press, 2006 (in Chinese).
    [31] CAI W, CAI T M, HE L X, et al. Natural antioxidant functionalization for fabricating ambient-stable black phosphorus nanosheets toward enhancing flame retardancy and toxic gases suppression of polyurethane[J]. Journal of Hazardous Materials,2020,387:121971. doi: 10.1016/j.jhazmat.2019.121971
    [32] LONG M Y, PENG S, DENG W S, et al. A robust superhydrophobic PDMS@ZnSn(OH)(6) coating with under-oil self-cleaning and flame retardancy[J]. Journal of Materials Chemistry A,2017,5(43):22761-22771. doi: 10.1039/C7TA06190K
    [33] QIU S, ZOU B, SHENG H B, et al. Electrochemically exfoliated functionalized black phosphorene and its polyurethane acrylate nanocomposites: Synthesis and applications[J]. ACS Applied Materials & Interfaces,2019,11(14):13652-13664. doi: 10.1021/acsami.8b22115
    [34] QU Z, WU K, JIAO E, et al. Surface functionalization of few-layer black phosphorene and its flame retardancy in epoxy resin[J]. Chemical Engineering Journal,2020,382:122991.
    [35] QU Z C, WANG K X, XU C A, et al. Simultaneous enhancement in thermal conductivity and flame retardancy of flexible film by introducing covalent bond connection[J]. Chemical Engineering Journal,2021,421:129729.
    [36] ZHU X J, ZHANG T M, SUN Z J, et al. Black phosphorus revisited: A missing metal-free elemental photocatalyst for visible light hydrogen evolution[J]. Advanced Materials,2017,29(17):1605776.
    [37] HAN L X, LIU J, WANG Z J, et al. Shape-controlled synthesis of ZnSn(OH)6 crystallites and their HCHO-sensing properties[J]. CrystEngComm,2012,14(10):3380-3386.
    [38] LI H Q, HONG W S, CUI Y M, et al. High photocatalytic activity of C-ZnSn(OH)6 catalysts prepared by hydrothermal method[J]. Journal of Molecular Catalysis A: Chemical,2013,378:164-173. doi: 10.1016/j.molcata.2013.06.012
    [39] QU H Q, WU W H, ZHENG Y J, et al. Synergistic effects of inorganic tin compounds and Sb2O3 on thermal properties and flame retardancy of flexible poly(vinyl chloride)[J]. Fire Safety Journal,2011,46(7):462-467. doi: 10.1016/j.firesaf.2011.07.006
    [40] SHI Y Q, GUI Z, YU B, et al. Graphite-like carbon nitride and functionalized layered double hydroxide filled polypropylene-grafted maleic anhydride nanocomposites: Comparison in flame retardancy, and thermal, mechanical and UV-shielding properties[J]. Composites Part B: Engineering,2015,79:277-284. doi: 10.1016/j.compositesb.2015.04.046
    [41] CAI W, LI Z X, MU X W, et al. Barrier function of graphene for suppressing the smoke toxicity of polymer/black phosphorous nanocomposites with mechanism change[J]. Journal of Hazardous Materials,2021,404:124106.
    [42] QU Z C, WU K, MENG W H, et al. Surface coordination of black phosphorene for excellent stability, flame retardancy and thermal conductivity in epoxy resin[J]. Chemical Engineering Journal,2020,397:125416.
    [43] GU M L, LI Y H, ZHANG M, et al. Bismuth nanoparticles and oxygen vacancies synergistically attired Zn2SnO4 with optimized visible-light-active performance[J]. Nano Energy,2021,80:105415.
    [44] LIU L, WANG W, SHI Y Q, et al. Electrostatic-interaction-driven assembly of binary hybrids towards fire-safe epoxy resin nanocomposites[J]. Polymers,2019,11(4):724.
    [45] YANG L, WANG Y Y. Smoke suppressant and flame retardant properties of PVC/zinc hydroxystannate composites[J]. Advanced Materials Research,2012,512:2804-2807. doi: 10.4028/www.scientific.net/AMR.512-515.2804
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  1035
  • HTML全文浏览量:  526
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-03
  • 修回日期:  2021-07-11
  • 录用日期:  2021-07-24
  • 网络出版日期:  2021-08-05
  • 刊出日期:  2022-07-30

目录

    /

    返回文章
    返回