留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型半导体聚乙烯基二氧噻吩@对苯二甲酸铟复合材料的制备、表征与导电性能

田俐 刘强 王会锋 吴杰灵 易益涛

田俐, 刘强, 王会锋, 等. 新型半导体聚乙烯基二氧噻吩@对苯二甲酸铟复合材料的制备、表征与导电性能[J]. 复合材料学报, 2022, 39(6): 2661-2667. doi: 10.13801/j.cnki.fhclxb.20210728.002
引用本文: 田俐, 刘强, 王会锋, 等. 新型半导体聚乙烯基二氧噻吩@对苯二甲酸铟复合材料的制备、表征与导电性能[J]. 复合材料学报, 2022, 39(6): 2661-2667. doi: 10.13801/j.cnki.fhclxb.20210728.002
TIAN Li, LIU Qiang, WANG Huifeng, et al. Synthesis, characterization and electric conductivity of novel poly (divinyldioxythiophene@indium p-phthalic semi-conductor composites[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2661-2667. doi: 10.13801/j.cnki.fhclxb.20210728.002
Citation: TIAN Li, LIU Qiang, WANG Huifeng, et al. Synthesis, characterization and electric conductivity of novel poly (divinyldioxythiophene@indium p-phthalic semi-conductor composites[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2661-2667. doi: 10.13801/j.cnki.fhclxb.20210728.002

新型半导体聚乙烯基二氧噻吩@对苯二甲酸铟复合材料的制备、表征与导电性能

doi: 10.13801/j.cnki.fhclxb.20210728.002
基金项目: 国家自然科学基金(51202066);教育部新世纪优秀人才支持计划项目(NCET-13-0784)
详细信息
    通讯作者:

    田俐,研究生,教授,博士生导师,研究方向为纳米光电材料  E-mail:849050031@qq.com

  • 中图分类号: 0461

Synthesis, characterization and electric conductivity of novel poly (divinyldioxythiophene@indium p-phthalic semi-conductor composites

  • 摘要: 由于单体间易发生交联反应而使聚乙烯基二氧噻吩(PEDOT)导电性能下降和造成后续成型加工的困难,因而寻找合适的聚合方法制备PEDOT显得尤为重要。以金属有机框架材料(MOFs)为反应模板,在对苯二甲酸铟配位聚合物(In-BDC)的一维孔道内实现了3, 4-二乙烯基二氧噻吩(EDOT)的自由基氧化聚合,得到了PEDOT@ In-BDC复合材料。采用XRD、SEM、FTIR、TG及N2吸脱附等方法对所制备的PEDOT@In-BDC复合材料进行了表征分析。结果表明,EDOT氧化聚合反应的单体转化率为91%;在整个EDOT单体的聚合过程中,In-BDC的框架结构保持稳定,其比表面积(BET)为45 m2/g;将EDOT单体引入In-BDC模板孔道内发生聚合反应得到的PEDOT@In-BDC复合材料可以提高金属有机框架材料In-BDC的热稳定性。电流-电压(I-V)线性扫描分析结果显示,PEDOT@In-BDC复合材料是基于PEDOT而具有导电性的一类新型半导体材料,其电导率为2.7×10−5 S/m;与功能性多孔材料In-BDC模板 (10−12 S/cm) 相比,PEDOT@In-BDC复合材料的电导率至少提高6个数量级。

     

  • 图  1  孔径分别为1.7 nm(P1) 和0.6 nm(P2)的对苯二甲酸铟配位聚合物(In-BDC)的孔道结构

    Figure  1.  Channel structure of the indium p-phthalic coordination polymer (In-BDC) with the porediameters of 1.7 nm (P1) and 0.6 nm (P2)

    图  2  所制备的In-BDC的孔径分布曲线

    Figure  2.  Pore size distribution curve of as-preapared In-BDC

    图  3  活化后In-BDC (a)、3, 4-乙烯基二氧噻吩(EDOT)@In-BDC (b) 和聚乙烯基二氧噻吩(PEDOT)@In-BDC复合材料 (c) 的SEM图像

    Figure  3.  SEM images of actived In-BDC (a), divinyldioxythiophene (EDOT)@Cu-BTC (b) and poly(divinyldioxythiophene (PEDOT)@In-BDC composites (c)

    图  4  In-BDC、EDOT@In-BDC和PEDOT@In-BDC复合材料的XRD图谱

    Figure  4.  XRD patterns of In-BDC, EDOT@In-BDC and PEDOT@In-BDC composites

    图  5  In-BDC、EDOT@In-BDC和PEDOT@In-BDC复合材料的FTIR图谱

    Figure  5.  FTIR spectra of In-BDC, EDOT@In-BDC and PEDOT@In-BDC composites

    图  6  EDOT@In-BDC 和PEDOT@In-BDC复合材料的TGA曲线

    Figure  6.  TGA curves of EDOT@In-BDC and PEDOT@In-BDC composites

    图  7  PEDOT@In-BDC复合材料制备过程的结构演变

    Figure  7.  Structural change of PEDOT@In-BDC composites during its preparation

    图  8  In-BDC和PEDOT@In-BDC复合材料在77 K下的N2吸附图

    Figure  8.  N2 adsorption isotherms of actived In-BDC and PEDOT@In-BDC composites at 77 K

    图  9  室温下In-BDC和PEDOT@In-BDC复合材料电流-电压(I-V)关系

    Figure  9.  Room-temperature current-voltage (I-V) plots of In-BD and PEDOT@In-BDC composites

  • [1] LIU J, ZHANG F, ZOU X, et al. Facile synthesis of MIL-68(In) films with controllable morphology[J]. European Journal of Inorganic Chemistry,2012,2012(35):5784-5790.
    [2] 陶益杰, 郑文伟, 程海峰, 等. 电致变色导电聚合物PEDOT的研究进展[J]. 材料导报, 2010, 24(7):113-117.

    TAO Y J, ZHENG W W, CHENG H F, et al. Research progress in electrochromic conducting polymer PEDOT[J]. Materials Review,2010,24(7):113-117(in Chinese).
    [3] 范武升, 陈杰, 吴瑞凯, 等. PEDOT热电材料研究进展[J]. 高分子通报, 2018, 8:14-17.

    FAN W S, CHEN J, WU R K, et al. Research progress of PEDOT thermelectric materisla[J]. Chinses Journal of Polymer Bulletin,2018,8:14-17(in Chinese).
    [4] ZHAN L Z, SONG Z P, ZHANG J Y, et al. PEDOT: cathode active material with high specific capacity in novel electrolyte system[J]. Electrochim Acta,2008,53:8319. doi: 10.1016/j.electacta.2008.06.053
    [5] KIM T Y, PARK C M, KIM J E, et al. Electronic, chemical and structural change induced by organic solvents in tosylate-doped poly(3,4-ethylenedioxy-thiophene) (PEDOT-OTs)[J]. Synthetic Metals,2005,149:169. doi: 10.1016/j.synthmet.2004.12.011
    [6] RICARDO V, DAVID B, PENA J M S. Electro-optical analysis of PEDOT symmetrical electrochromic devices[J]. Solar Energy Mater Solar Cells,2008,92:107. doi: 10.1016/j.solmat.2007.03.037
    [7] PATRA S, BARAI K, MUNICHANDRAIAH N. Scanning electron microscopy studies of PEDOT prepared by various electrochemical routes[J]. Synthetic Metals,2008,158:430. doi: 10.1016/j.synthmet.2008.03.002
    [8] MESHERS S C J, VAN DUREN J K J, JANSSEN R A J. Themally induced transient absorption of light by poly(3,4-ethene-dioxythiophene): poly(styrenesulfonic acid)(PEDOT: PSS) film: A way to probcharge-carrier thermalization processes[J]. Advanced Functional Materials,2003,13(10):805. doi: 10.1002/adfm.200304398
    [9] 汪斌华, 邓永红, 戈钧, 等. 不同溶剂中导电聚合物PEDOT的化学氧化聚合及光谱研究[J]. 功能材料, 2005, 36(10):1610. doi: 10.3321/j.issn:1001-9731.2005.10.040

    WANG B H, DENG Y H, GE J, et al. Chemical synthesis of poly(3,4-ethylenedioxythiophene) in three different solvents[J]. Journal of Functional materials,2005,36(10):1610(in Chinese). doi: 10.3321/j.issn:1001-9731.2005.10.040
    [10] UEMURA T, NAKANISHI R, MOCHIZUKI S, et al. Radical polymerization of 2,3-dimethyl-1,3-butadiene in coordination nanochannels[J]. Chemical Communication,2015,51(48):9892-9895. doi: 10.1039/C5CC01933H
    [11] 陈启多, 韩凯, 程君, 等. 纳米硅/导电聚合物复合负极的制备与性能[J]. 电池, 2019, 49(1):3-7.

    CHEN Q D, HAN K, CHENG J, et al. Synthesis and performance of nano-silicon/conducting polymer composite anode[J]. Battery Bimonthly,2019,49(1):3-7(in Chinese).
    [12] LV Q. Unstirred preparation of soluble electroconductive polypyrrole nanoparticles[J]. Microchimica Acta,2010,168(3-4):205-213. doi: 10.1007/s00604-009-0278-4
    [13] 陈小军, 胡翠雯, 崔子怡, 等. 直写3D打印GNPs-MWCNT导电聚合物复合材料的制备及性能[J]. 机械工程材料, 2020, 44(11):83-88. doi: 10.11973/jxgccl202011015

    CHEN X J, HU C W, CUI Z Y, et al. Preparation and performance of GNPs-MWCNT conductive polymer composite materials by direct writing 3D printing[J]. Materials for Mechanical Engineering,2020,44(11):83-88(in Chinese). doi: 10.11973/jxgccl202011015
    [14] LU C, BEN T, XU S, et al. Electrochemical synthesis of a microporous conductive polymer based on a metal-organic framework thin film[J]. Angewandte Chemie International Ediation,2014,53(25):6454-6458. doi: 10.1002/anie.201402950
    [15] NAYAK A, RAMA P S, KUMAR S, et al. Structural tuning of low band gap intermolecular push/pull side-chain polymers for organic photovoltaic applications[J]. Polymer Science,2017,35(9):1073-1085.
    [16] WANG X, YANG C, LIU P. Well-defined polypyrrole nanoflakes via chemical oxidative polymerization in the presence of sodium alkane sulfonate[J]. Materials Letters,2011,65(10):1448-1450. doi: 10.1016/j.matlet.2011.02.031
    [17] 何亚萍, 韩权, 李伟, 等. 石墨烯-导电聚合物复合材料制备[J]. 化工新型材料, 2016, 44(10):45-48.

    HE Y P, HAN Q, LI W, et al. Preparation of graphene-conductive polymer composite[J]. New Chemical Materials,2016,44(10):45-48(in Chinese).
    [18] KAZARI M, VAEZI M R, KAZEMZADEH A. Enhanced rate performance of polypyrrole-coated sulfur/MWCNT cathode material: A kinetic study by electrochemical impedance spectroscopy[J]. Ionics,2013,20(5):635-643.
    [19] FENG X, YAN Z, LI R, et al. The synthesis of shape-controlled polypyrrole/graphene and the study of its capacitance properties[J]. Polymer Bulletin,2013,70(8):2291-2304. doi: 10.1007/s00289-013-0952-x
    [20] YANAI N, KITAYAMA K, HIJIKATA Y, et al. Gas detection by structural variations of fluorescent guest molecules in a flexible porous coordination polymer[J]. Nature Materials,2011,10(10):787-793. doi: 10.1038/nmat3104
    [21] YANAI N, UEMURA T, INOUE M, et al. Guest-to-host transmission of structural changes for stimuli-responsive adsorption property[J]. Journal of America Chemistry Society,2012,134(10):4501-4504. doi: 10.1021/ja2115713
    [22] UEMURA T, UCHIDA N, ASANO A, et al. Highly photoconducting pi-stacked polymer accommodated in coordination nanochannels[J]. Journal of America Chemistry Society,2012,134(20):8360-8363. doi: 10.1021/ja301903x
    [23] KITAO T, BRACCO S, COMOTTI A, et al. Confinement of single polysilane chains in coordination nanospaces[J]. Journal of America Chemistry Society,2015,137(15):5231-5238. doi: 10.1021/jacs.5b02215
    [24] KITAO T, ZHANG Y, KITAGAWA S, et al. Hybridization of MOFs and polymers[J]. Chemistry Society Review,2017,46(11):3108-3133. doi: 10.1039/C7CS00041C
    [25] UEMURA T, MOCHIZAKI S, KITAGAWA S. Radical copolymerization mediated by unsaturated metal sites in coordination nanochannels[J]. ACS Macro Letters,2015,4(7):788-791. doi: 10.1021/acsmacrolett.5b00370
    [26] UEMURA T, NAKANISHI R, KASEDA T, et al. Controlled cyclopolymerization of difunctional vinyl monomers in coordination nanochannels[J]. Macromolecules,2014,47(21):7321-7326. doi: 10.1021/ma501232n
    [27] DISTEFANO G, SUZUKI H, TSUJIMOTO M, et al. Highly ordered alignment of a vinyl polymer by host-guest cross-polymerization[J]. Nature Chemistry,2013,5(4):335-341. doi: 10.1038/nchem.1576
  • 加载中
图(9)
计量
  • 文章访问数:  795
  • HTML全文浏览量:  385
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-02
  • 修回日期:  2021-07-09
  • 录用日期:  2021-07-16
  • 网络出版日期:  2021-07-29
  • 刊出日期:  2022-06-01

目录

    /

    返回文章
    返回