留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

几种改性剂对多孔聚酰亚胺含油性能和摩擦性能的影响

胡旭东 李锦棒 叶锦宗 周宁宁 谢超 李建勇 卿涛 张激扬

胡旭东, 李锦棒, 叶锦宗, 等. 几种改性剂对多孔聚酰亚胺含油性能和摩擦性能的影响[J]. 复合材料学报, 2022, 39(6): 2619-2630. doi: 10.13801/j.cnki.fhclxb.20210728.001
引用本文: 胡旭东, 李锦棒, 叶锦宗, 等. 几种改性剂对多孔聚酰亚胺含油性能和摩擦性能的影响[J]. 复合材料学报, 2022, 39(6): 2619-2630. doi: 10.13801/j.cnki.fhclxb.20210728.001
HU Xudong, LI Jinbang, YE Jinzong, et al. Effects of several modifiers on oil-bearing and tribological properties of porous polyimides[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2619-2630. doi: 10.13801/j.cnki.fhclxb.20210728.001
Citation: HU Xudong, LI Jinbang, YE Jinzong, et al. Effects of several modifiers on oil-bearing and tribological properties of porous polyimides[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2619-2630. doi: 10.13801/j.cnki.fhclxb.20210728.001

几种改性剂对多孔聚酰亚胺含油性能和摩擦性能的影响

doi: 10.13801/j.cnki.fhclxb.20210728.001
基金项目: 宁波市科技创新2025重大专项(2018B10004;2019B10078);浙江省自然基金(LY21E050003);精密转动和传动机构长寿命技术北京市重点实验室开放基金(BZ0388201803)
详细信息
    通讯作者:

    李锦棒,博士,副教授,硕士生导师,研究方向为摩擦学  E-mail:lijinbang@nbu.edu.cn

  • 中图分类号: TH145.4

Effects of several modifiers on oil-bearing and tribological properties of porous polyimides

  • 摘要: 为探索多孔聚酰亚胺(PI)材料含油性能及摩擦性能的增强改进方法,采用介孔碳、石墨烯和稀土为改性剂制备多孔PI材料。研究了不同改性剂对材料的含油性能、摩擦性能和力学性能的影响。实验结果表明,介孔碳可大幅提升多孔PI的含油率,相比纯PI,介孔碳含量2wt%时的含油率提高了55.6%,但材料的摩擦系数有增大的趋势,力学性能也明显下降;少量的石墨烯可以提高多孔PI的含油性能和摩擦性能,但随着石墨烯含量的增加,多孔PI的含油摩擦系数快速增加,且冲击强度大幅降低;稀土极大改善了多孔PI的含油摩擦性能,随着稀土含量从0wt%增至5wt%,摩擦系数从0.05下降到0.026,超过5wt%后出现拐点,但所有试样含油摩擦系数均低于纯PI,且含油率呈上升趋势。相比介孔碳和石墨烯,稀土改性多孔PI的力学性能没有出现大幅降低的情况,对多孔PI综合性能的增强效果最优。

     

  • 图  1  稀土/聚酰亚胺(PI)材料试样实物图

    Figure  1.  Photos of rare earth/polyimides (PI) polymer material specimens

    图  2  介孔碳改性的PI聚合物含油性能测试结果:(a) 含油率;(b) 含油保持率

    Figure  2.  Oil performance test results of mesoporous carbon modified PI polymer: (a) Oil content; (b) Oil retention

    图  3  介孔碳改性的PI聚合物摩擦系数:(a) 干摩擦系数;(b) 平均干摩擦系数;(c) 含油摩擦系数;(d) 平均含油摩擦系数

    Figure  3.  Friction coefficient of mesoporous carbon modified PI polymer: (a) Dry coefficient friction; (b) Average dry friction coefficient; (c) Oil friction coefficient; (d) Average oil friction coefficient

    图  4  介孔碳改性的PI聚合物力学性能:(a) 杨氏模量和拉伸强度变化柱状图;(b) 应力-应变曲线;(c) 冲击强度

    Figure  4.  Mechanical property of mesoporous carbon modified PI polymer: (a) Histogram of Young’s modulus and tensile strength; (b) Stress-strain curves; (c) Impact strength

    图  5  石墨烯改性的PI聚合物含油性能测试结果: (a) 含油率;(b) 含油保持率

    Figure  5.  Oil performance test results of graphene modified PI polymer: (a) Oil content; (b) Oil retention

    图  6  石墨烯改性的PI聚合物摩擦系数:(a)干摩擦系数;(b)平均干摩擦系数;(c)含油摩擦系数;(d)平均含油摩擦系数

    Figure  6.  Friction coefficient of graphene modified PI polymer: (a) Dry coefficient friction; (b) Average dry friction coefficient; (c) Oil friction coefficient; (d) Average oil friction coefficient

    图  7  石墨烯改性的PI聚合物力学性能:(a) 杨氏模量和拉伸强度变化柱状图;(b) 应力-应变曲线;(c) 冲击强度

    Figure  7.  Mechanical property of graphene modified PI polymer: (a) Histogram of Young's modulus and tensile strength; (b) Stress-strain curves; (c) Impact strength

    图  8  稀土改性的PI聚合物含油性能测试结果:(a) 含油率;(b) 含油保持率

    Figure  8.  Oil performance test results of rare earth modified PI polymer: (a) Oil content; (b) Oil retention

    图  9  稀土改性的PI聚合物摩擦系数:(a) 干摩擦系数;(b) 平均干摩擦系数;(c) 含油摩擦系数;(d) 平均含油摩擦系数

    Figure  9.  Friction coefficients of rare earth modified PI polymer: (a) Dry coefficient friction; (b) Average dry friction coefficient; (c) Oil friction coefficient; (d) Average oil friction coefficient

    图  10  稀土改性的PI聚合物力学性能:(a) 杨氏模量和拉伸强度变化柱状图;(b) 应力-应变曲线

    Figure  10.  Mechanical property of rare earth modified PI polymer: (a) Histogram of Young’s modulus and tensile strength; (b) Stress-strain curves

    图  11  稀土改性的PI聚合物光镜下对磨球表面、共聚焦显微镜下磨痕表面

    Figure  11.  Surface of the grinding ball under light microscope of rare earth modified PI polymer, the worn surface under confocal microscope of rare earth modified PI polymer

    图  12  稀土改性的PI聚合物材料内部孔结构及孔隙率:(a) 进出汞曲线;(b) 孔径分布

    Figure  12.  Internal pore structure and porosity of rare earth modified PI polymer: (a) Mercury inflow and outflow curves; (b) Pore size distribution

    图  13  稀土改性的PI聚合物吸油试验

    Figure  13.  Oil absorption experiment of rare earth modified PI polymer

    表  1  稀土改性的PI聚合物试样在光学显微镜下的磨痕宽度

    Table  1.   Wear mark width of rare earth modified PI polymer specimens under light microscope

    SampleGrinding crack width/μm
    Pure PI 577.3
    1wt%rare earth/porous PI 509.7
    5wt%rare earth/porous PI 457.1
    下载: 导出CSV
  • [1] LV Mei, WANG Chao, WANG Qihua, et al. Highly stable tribological performance and hydrophobicity of porous polyimide material filled with lubricants in a simulated space environment[J]. RSC Advances, 2015, 5: 53543-53549.
    [2] 段春俭, 邵明超, 李宋, 等. 极端条件下的聚酰亚胺自润滑复合材料的研究进展[J]. 中国科学: 化学, 2018, 48(12):1561-1567. doi: 10.1360/N032018-00188

    DUAN Chunjian, SHAO Mingchao, LI Song, et al. The research progress in polyimide self-lubricating composites under extreme conditions[J]. Scientia Sinica: Chimica,2018,48(12):1561-1567(in Chinese). doi: 10.1360/N032018-00188
    [3] 李冰, 律微波, 赵宁, 等. 聚酰亚胺基固体润滑材料研究进展[J]. 化工新型材料, 2017, 45(6):8-10.

    LI Bing, LV Weibo, ZHAO Ning, et al. Research development of polyimide based solid lubricant[J]. New Chemical Materials,2017,45(6):8-10(in Chinese).
    [4] ZHANG Di, WANG Chao, WANG Qihua, et al. High thermal stability and wear resistance of porous thermosetting heterocyclic polyimide impregnated with silicone oil[J]. Tribology International,2019,140:105728.
    [5] PIETER S, PATRICK D B, GUSTAAF S. Role of internal additives in the friction and wear of carbon-fiber-reinforced polyimide[J]. Journal of Applied Polymer Science,2010,116(2):1146-1156.
    [6] SATHYAN K, HSU H Y, LEE S H, et al. Long-term lubrication of momentum wheels used in spacecrafts—An overview[J]. Tribology International,2010,43(1-2):259-267.
    [7] ROY A, MU L W, SHI Y J. Tribological properties of polyimide coating filled with carbon nanotube at elevated temperatures[J]. Polymer Composites,2020,41(7):2652-2661.
    [8] 王云飞, 张朋, 刘刚, 等. 航空发动机用聚酰亚胺树脂基复合材料衬套研究进展[J]. 材料工程, 2016, 44(9):121-128. doi: 10.11868/j.issn.1001-4381.2016.09.019

    WANG Yunfei, ZHANG Peng, LIU Gang, et al. Progress in research on polymide composite bushings for aeroengine[J]. Journal of Materials Engineering,2016,44(9):121-128(in Chinese). doi: 10.11868/j.issn.1001-4381.2016.09.019
    [9] 卓航, 李是卓, 韩恩林, 等. 高强高模聚酰亚胺纤维/环氧树脂复合材料力学性能与破坏机制[J]. 复合材料学报, 2019, 36(9):2101-2109.

    ZHUO Hang, LI Shizhuo, HAN Enlin, et al. Mechanical properties and failure mechanism of high strength and high modulus polyimide fiber/epoxy composites[J]. Acta Materiae Compositae Sinica,2019,36(9):2101-2109(in Chinese).
    [10] 阮洪伟, 张韶华, 王廷梅, 等. 多孔聚酰亚胺含油轴承保持架的磨损机理研究[J]. 空间控制技术与应用, 2019, 45(3):64-70. doi: 10.3969/j.issn.1674-1579.2019.03.010

    RUAN Hongwei, ZHANG Shaohua, WANG Tingmei, et al. On wear mechanism of porous polyimide oil-containing bearing[J]. Aerospace Control and Application,2019,45(3):64-70(in Chinese). doi: 10.3969/j.issn.1674-1579.2019.03.010
    [11] 邱优香, 王齐华, 王超, 等. 多孔聚酰亚胺含油材料的储油性能及摩擦学行为研究[J]. 摩擦学学报, 2012, 32(6):538-543.

    QIU Youxiang, WANG Qihua, WANG Chao, et al. Oil-containing and tribological properties of porous polyimide containing lubricant oil[J]. Tribology,2012,32(6):538-543(in Chinese).
    [12] 赵华俊, 王晓雷, 黄巍. 多孔聚酰亚胺保持架对轴承贫油润滑性能研究[J]. 机械制造与自动化, 2018, 47(3):31-34.

    ZHAO Huajun, WANG Xiaolei, HUANG Wei. Study of effect of porous polyimide retainer on bearing at starved lubrication[J]. Machine Building & Automation,2018,47(3):31-34(in Chinese).
    [13] 闫普选, 朱鹏, 黄丽坚, 等. 聚酰亚胺多孔 含油材料的摩擦磨损性能研究[J]. 摩擦学学报, 2008(3):272-276. doi: 10.3321/j.issn:1004-0595.2008.03.016

    YAN P X, ZHU P, HUANG L J, et al. Study on tribological properties of porous polyimide containing lubricants[J]. Tribology,2008(3):272-276(in Chinese). doi: 10.3321/j.issn:1004-0595.2008.03.016
    [14] 周宁宁, 卿涛, 张韶华, 等. 碳纳米管填充多孔聚合物材料含油性能研究[J]. 润滑与密封, 2017, 42(2):120-123. doi: 10.3969/j.issn.0254-0150.2017.02.024

    ZHOU Ningning, QING Tao, ZHANG Shaohua, et al. Research on oil-containing performance of porous polymer materials filled with carbon nanotubes[J]. Lubrication Engineering,2017,42(2):120-123(in Chinese). doi: 10.3969/j.issn.0254-0150.2017.02.024
    [15] JIA Weihong, YANG Shengrong, REN Sili, et al. Preparation and tribological behaviors of porous oil-containing polyimide/hollow mesoporous silica nanospheres compo-site films[J]. Tribology International,2020,145:106184.
    [16] 叶锦宗, 李锦棒, 周宁宁, 等. 成型工艺对多孔PI材料摩擦学及力学性能的影响[J]. 材料工程, 2020, 48(9):144-151.

    YE Jinzong, LI Jinbang, ZHOU Ningning, et al. Effect of molding process on tribology and mechanical properties of porous PI materials[J]. Journal of Materials Engineering,2020,48(9):144-151(in Chinese).
    [17] 卿涛, 周宁宁, 周刚, 等. 空间摩擦学在卫星活动部件轴系的应用研究现状及发展[J]. 润滑与密封, 2015, 40(2):100-108+115.

    QING Tao, ZHOU Ningning, ZHOU Gang, et al. Application research status and development of space tribology in shafting of statellite moving parts[J]. Lubrication Engineering,2015,40(2):100-108+115(in Chinese).
    [18] 张执南, 谢友柏. 摩擦学系统的系统工程及其航天应用[J]. 飞控与探测, 2019, 2(6):1-11.

    ZHANG Zhinan, XIE Youbo. System engineering of tribology system for space application[J]. Flight Control & Detection,2019,2(6):1-11(in Chinese).
    [19] 张迪, 王超, 卿涛, 等. 空间用多孔聚合物轴承保持架材料研究进展[J]. 机械工程学报, 2018, 54(9):17-26.

    ZHANG Di, WANG Chao, QING Tao, et al. Research progress of porous polymer bearing retainer materials used in aerospace[J]. Journal of Mechanical Engineering,2018,54(9):17-26(in Chinese).
    [20] 张雪杨, 王挺, 吴礼光, 等. 介孔碳/聚酰亚胺杂化膜原位聚合法制备及其气体分离性能[J]. 复合材料学报, 2018, 35(11):2958-2965.

    ZHANG Xueyang, WANG Ting, WU Liguang, et al. Fabrication of mesoporous carbon/polymide hybrid membrane by in-situ polymerization and their gas separation perfor-mance[J]. Acta Materiae Compositae Sinica,2018,35(11):2958-2965(in Chinese).
    [21] TIWARI S K, SAHOO S, WANG N N, et al. Graphene research and their outputs: Status and prospect[J]. Journal of Science: Advanced Materials and Devices,2020,5(1):10-29. doi: 10.1016/j.jsamd.2020.01.006
    [22] 叶恩淦, 朱月华, 蒋利华, 等. 稀土改性剂对玻璃纤维-SiO2/聚四氟乙烯复合材料性能的影响[J]. 复合材料学报, 2018, 35(6):1428-1435.

    YE Engan, ZHU Yuehua, JIANG Lihua, et al. Effect of rare earth modifier on properties of glass fiber-SiO2/polytetrafluoroethylene composites[J]. Acta Materiae Compositae Sinica,2018,35(6):1428-1435(in Chinese).
    [23] 国家技术监督局. 塑性拉伸性能试验方法: GB/T 1040—1992[S]. 北京: 中国标准出版社, 1992.

    State Bureau of Technical Supervision. Test method for plastic tensile properties: GB/T 1040—1992[S]. Beijing: China Standard Press, 1992(in Chinese).
    [24] JIA Zhining, YAN Yanhong, WANG Weizheng. Preparation and tribological properties of PI oil-bearing material with controllable pore size[J]. Industrial Lubrication and Tribology,2017,69(2):88-94.
    [25] ZHANG Di, WANG Tingmei, WANG Qihua, et al. Selectively enhanced oil retention of porous polyimide bearing materials by direct chemical modification[J]. Journal of Applied Polymer Science,2017,134(29):45106. doi: 10.1002/app.45106
    [26] 贾卫红, 马立民, 任嗣利, 等. 多孔PI/MSNT复合含油润滑薄膜的设计制备及其摩擦学性能研究[J]. 摩擦学学报, 2020, 40(4):424-433.

    JIA Weihong, MA Limin, REN Sili, et al. Tribological behaviors of porous oil-containing PI/MSNT composite lubricating films[J]. Tribology,2020,40(4):424-433(in Chinese).
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  1046
  • HTML全文浏览量:  348
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-13
  • 修回日期:  2021-06-17
  • 录用日期:  2021-07-19
  • 网络出版日期:  2021-07-28
  • 刊出日期:  2022-06-01

目录

    /

    返回文章
    返回