聚苯并咪唑改性联苯型聚酰亚胺电纺锂离子电池隔膜的热学及其电化学性能

巩桂芬, 范金强, 邹明贵, 刘志强, 马续

巩桂芬, 范金强, 邹明贵, 等. 聚苯并咪唑改性联苯型聚酰亚胺电纺锂离子电池隔膜的热学及其电化学性能[J]. 复合材料学报, 2022, 39(6): 2742-2749. DOI: 10.13801/j.cnki.fhclxb.20210726.003
引用本文: 巩桂芬, 范金强, 邹明贵, 等. 聚苯并咪唑改性联苯型聚酰亚胺电纺锂离子电池隔膜的热学及其电化学性能[J]. 复合材料学报, 2022, 39(6): 2742-2749. DOI: 10.13801/j.cnki.fhclxb.20210726.003
GONG Guifen, FAN Jinqiang, ZOU Minggui, et al. Thermal and electrochemical properties of polybenzimidazole-modified biphenyl polyimide electrospun lithium-ion battery separator[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2742-2749. DOI: 10.13801/j.cnki.fhclxb.20210726.003
Citation: GONG Guifen, FAN Jinqiang, ZOU Minggui, et al. Thermal and electrochemical properties of polybenzimidazole-modified biphenyl polyimide electrospun lithium-ion battery separator[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2742-2749. DOI: 10.13801/j.cnki.fhclxb.20210726.003

聚苯并咪唑改性联苯型聚酰亚胺电纺锂离子电池隔膜的热学及其电化学性能

详细信息
    通讯作者:

    巩桂芬,博士,教授,硕士生导师,研究方向为聚合物基锂离子电池隔膜材料  E-mail:ggf-hust@163.com

  • 中图分类号: TB332; TQ340.64

Thermal and electrochemical properties of polybenzimidazole-modified biphenyl polyimide electrospun lithium-ion battery separator

  • 摘要: 为了改善商业隔膜孔隙率和吸液率不高、耐热性和热尺寸稳定性不佳的问题,通过选用聚苯并咪唑(PBI)预聚体对聚酰亚胺(PI)进行改性,采用高压静电纺丝法制备了质量比PBI∶PI=0.3∶1.0的复合纤维隔膜。研究了复合纤维隔膜的微观形貌、孔隙率、吸液率、热性能、电化学性能及电池性能,并将PBI∶PI=0.3∶1.0的复合纤维隔膜、PI纤维隔膜及聚丙烯(Celgard 2400,PP)隔膜进行了性能对比。结果表明,PBI∶PI=0.3∶1.0的PBI/PI复合纤维隔膜孔隙率达82%,吸液率达618%;在空气气氛中,300℃无尺寸收缩,在N2气氛中,分解温度在400℃以上,800℃时残重大于50%;离子电导率达1.29×10−3 S/cm,较PP隔膜几乎提高了1个数量级;界面阻抗为489.34 Ω,较PP隔膜降低了17%;电化学稳定窗口提高到5.05 V,为PP隔膜的119%;以PBI∶PI=0.3∶1.0的复合纤维隔膜组装的CR 2032型电池表现出优异的电池性能,经大电流放电后电池性能稳定,初始放电容量达130.01 mA·h/g,在1 A/s循环100次后容量保持率高达98.91%,均优于Celgard 2400隔膜电池。
    Abstract: In order to improve the problems of low porosity, low electrolyte uptake of commercial separators, poor heat resistance and thermal dimensional stability, Polybenzimidazole (PBI) was used to modify polyimide (PI). The PBI∶PI=0.3∶1.0 (mass ratio) composite fiber separator was prepared by the method of high-voltage electrostatic spinning. The microscopic morphology, porosity, electrolyte uptake, thermal performance, electrochemical performance and battery performance of the composite fiber separator were studied. The performance of composite fiber separator with mass ratio of PBI∶PI=0.3∶1.0, PI fiber separator and polypropylene (Celgard 2400, PP) separator were compared. The results show that the composite fiber separator with PBI∶PI=0.3∶1.0 has a porosity of 82% and electrolyte uptake of 618%; in an air atmosphere, there is no size shrinkage at 300℃; in a nitrogen atmosphere, the decomposition temperature is above 400℃, and the residual mass at 800℃ is more than 50%. The ionic conductivity reaches 1.29×10−3 S/cm, which is almost an order of magnitude higher than PP separatos; the interface impedance is 489.34 Ω, which is 17% lower than PP separator; the electrochemical stability window is increased to 5.05 V, which is 19% of the PP separator; CR 2032 battery assembled with PBI∶PI=0.3∶1.0 composite fiber separator shows excellent battery performance. After high current discharged, cells properties remain stable, initial discharge capacity is 130.01 mA·h/g, capacity retention rate is 98.91% after 100 cycles of 1 A/s, which is better than PP separator cells.
  • 糖尿病是一种严重威胁人类健康的慢性病。全球糖尿病患者人数从1980年的1.08亿增加到2023年的5.37亿。葡萄糖传感器在糖尿病的诊断和治疗中起着重要作用[1-3]。糖尿病患者要定期检测生理血糖水平,并将血糖水平维持在正常浓度范围内。而且,准确评价食品中的葡萄糖含量对维持糖尿病患者血液中葡萄糖的生理水平至关重要[4-5]。食品和饮料中葡萄糖含量的信息对生产者和消费者都有参考价值。葡萄糖检测在葡萄酒酿造工艺和乳制品工业的发酵过程中是至关重要的[4-5]。迄今为止,检测葡萄糖的方法很多。在各种分析方法中,电化学葡萄糖传感器具有灵敏度高、选择性好、操作简单、成本低等优点,并能实现自我监控和床边血糖检测[5-8]。基于酶的电化学葡萄糖传感器已经商业化并取得了巨大的成功。由于自然酶容易受到环境(温度、湿度、酸碱度等)影响,非酶葡萄糖传感器受到广泛关注[1-3, 8]

    金属-有机框架(Metal-origanic frameworks,MOFs)材料是一类新兴的多孔材料,存在电化学传感器应用潜力[9-12]。它们具有金属活性位点丰富、表面积大、结构多样、孔径可调和功能可调等优点。Li等[13]开发了Co-MOF纳米片阵列构建葡萄糖检测平台,其灵敏度为10886 μA·L/(mmol·cm2),检测极限为1.3 nmol/L。Khan等[14]以MOF-199为前驱体合成 CuO/C复合材料,催化葡萄糖的氧化反应。Cu-MOFs修饰电极在0.06至5 mmol/L的线性范围内,对葡萄糖氧化显示出相对较好的电催化活性,其灵敏度为89 mA·L/(mmol·cm2),检测限为10.5 nmol/L。在另一份报告中,球形Ni-MOFs 颗粒在单独使用时表现出较差的电化学葡萄糖传感性能[15]。然而,当它们与碳纳米管的杂交后,对葡萄糖检测的灵敏度为13.85 mA·L/(mmol·cm2),检测极限为0.82 mmol/L,线性范围为1至1.6 mmol/L。此外,Zha等[16]开发了基于NiCo-MOF/C复合材料的无创血糖检测平台,其高灵敏度和检测极限分别为2701.29 μA·L/(mmol·cm2)和0.09 μmol/L。MOFs衍生复合材料在电化学葡糖糖传感器领域得到一定程度的应用。

    另一方面,随着实时传感设备和护理点设备的发展需要,经济的、可靠的、规模化的电极制备方法受到广泛关注[17]。作为一种商业化电极制备方法,丝网印刷技术具有设备简单、图案设计灵活、操作简单、经济等特点[17]。该技术在生物传感器领域,尤其指尖血糖检测中取得商业成功。Li等[18]实验组通过丝网印刷技术开发了一种具有优化三电极配置的多功能电化学平台,检测葡萄糖浓度。Ji等[19]实验组基于智能手机的循环伏安系统,采用石墨烯修饰的丝网印刷电极检测葡萄糖浓度。因此,本文在室温条件合成Co基MOFs(Co-ZIF-67),采用丝网印刷技术,制备了Co-ZIF-67修饰的商业银-碳电极,研究其对葡萄糖的传感性能。

    六水硝酸钴(Co(NO3)2·6H2O,99.5%) 、聚乙烯醇(PVA,92%~94%)、聚乙烯吡咯烷酮(PVP,K23-27)、甲醇(CH2OH,99.5%)、3-(N-吗啉)丙磺酸钠(MOPs-Na,C7H14NO4SNa,99.5%)、羟乙基纤维素(HEC)、丙烯酰胺(C3H5NO,99.0%)、抗坏血酸(C6H6O8,99.0%)、半乳糖(C6H12O6,99.0%)、羧甲基纤维素((C6+2yH7+x+2yO2+x+3yNay)n)、柠檬酸(C6H8O7,99.5%)、葡萄糖(C6H12O6,96%)和葡聚糖(DEAE-Dextran,70 kDa)购自上海阿拉丁生化科技股份有限公司。过硫酸铵(H8N2O8S2,98.5%)购自上海麦克林生化科技有限公司。

    采用X-射线衍射仪(Smartlab9kw,Rigaku)对样品的物相和晶体结构进行表征。通过X射线光电子能谱(ESCALAB 250Xi,赛默飞)对样品的元素和表面信息进行分析。采用扫描电子显微镜扫描电镜(SEM,SU8100,日立)和透射电子显微镜(TEM,JEM2100,JEOL)对样品进行形貌表征。通过电化学工作站(CH650E,上海辰华仪器有限公司)评估修饰电极对葡萄糖的电化学传感性能。本研究配制了不同浓度葡萄糖(0.1~0.5 mmol/L)的0.1 mol/L氢氧化钠溶液。

    Co-ZIF-67纳米材料在室温条件下制备而成。合成过程中,12 mmol/L的Co(NO3)2·6H2O完全溶解于100 mL甲醇中,记为溶液 A;48 mmol/L的2-甲基咪唑溶解于1000 mL甲醇中,记为溶液 B。溶液B迅速地加入到溶液A中,形成混合液C。该混合液C磁力搅拌10 min后,在室温环境下静置24 h,形成沉淀物。采用甲醇清洗沉淀物,并在60℃干燥过夜,得到紫色Co-ZIF-67粉末。

    把20 mg Co-ZIF-67在1 mL的超纯水中超声30 min,得到溶液D。0.55 g MOPs 钠盐,0.075 g的羟乙基纤维素,1.75 g丙烯酰胺和0.05 g过硫酸铵分别溶解于25 mL的超纯水中,磁力搅拌2 h后形成混合浆料。将1 mL溶液D与9 mL浆料磁性搅拌1 h后,形成 Co-ZIF-67丝网印刷油墨。

    将Co-ZIF-67油墨均匀的丝网印刷在商业银-碳电极的工作区域,经烘干(45℃,15 min)、贴亲水膜、裁剪,制备了便携式一次性条形葡萄糖检测电极。该电极包括一个工作电极,一个对电极。工作电极的表面积为3.78 mm×0.252 mm=0.9526 mm2。每个电极所分析的溶液量为10 μL。亲水膜的作用是形成流道,吸附检测样品。Co-MOF修饰电极的制备过程见图1

    图  1  Co-ZIF-67修饰电极的制备过程
    Figure  1.  Preparation of Co-ZIF-67 modified electrodes
    MOFs—Metal-origanic frameworks

    采用XRD技术研究了Co-ZIF-67的晶体结构。从图2(a)可以看出,在2θ=10.4°、12.7°、14.7°、16.4°、18.0°、22.1°、24.4°、26.5°、29.8°、30.5°和32.5°时,分别对应于ZIF-67的(002)、(112)、(022)、(013)、(222)、(114)、(233)、(134)、(044)、(244)、(235)晶面,这与已报道的ZIF-67样品的XRD结果一致[20-22]。采用X射线光电子能谱(XPS)对Co-ZIF-67的表面信息进行了分析。从图2(b)可以看出,样品包含Co2p、O1s、N1s、C1s、Co3s和Co3p核能级区域。Co2p和 C1s的XPS精细谱分别如图2(c)图2(d)所示。Co2p精细谱含有两个主峰,其中780.1 eV峰来自Co2p3/2;795.3 eV峰来自Co2p1/2。激振峰分别位于785.5和801.7 eV。除了主峰,C1s精细谱还有两个拟合峰。结合能位于286.2和288.1 eV,分别归属于C—N和C—O。上述结果表明,Co-ZIF-67已经被成功制备。采用SEM和TEM研究了样品的形貌。如图3(a)~3(f)所示,Co-ZIF-67呈现多面形,且尺寸分布相对较窄。

    图  2  Co-ZIF-67的XRD图谱(a)、XPS全谱(b)、Co2p (c)和C1s (d)精细谱
    Figure  2.  XRD pattern (a), XPS spectra (b), Co2p (c) and C1s regions (d) of Co-ZIF-67
    图  3  Co-ZIF-67在不同放大倍数的SEM和TEM图像
    Figure  3.  SEM and TEM images of Co-ZIF-67 at different magnifications

    采用循环伏安(CV)技术评估了Co-ZIF-67修饰电极的电化学性能。图4(a)是Co-ZIF-67修饰电极在50 mV/s扫速时对0.3 mmol/L葡萄糖在不同pH值溶液中的响应信号。很明显,当pH=13时,Co-ZIF-67表现出对葡萄糖较大的催化活性。当葡萄糖浓度增加时,Co-ZIF-67修饰电极电流信号也随之增强(图4(b))。然而,信号的区分度不大。图4(c)是Co-ZIF-67修饰电极在不同扫速(10、30、50、70、90、110和130 mV/s)下对葡萄糖信号的变化。随着扫速增大,电流信号明显得到加强。将0.5 V电流强度与扫描速度的算术平方根进行拟合,其线性关系为:I (μA/cm2)=0.14v1/2–0.12 (R2=0.988,R2为决定系数)。这说明Co-ZIF-67修饰电极对应的电化学反应是受扩散控制的[23]

    图  4  Co-ZIF-67修饰电极在不同pH值(a)、葡萄糖浓度(b)、扫速(c)对葡萄糖的CV测试曲线;(d)扫描速率(v)的算数平方根与电流(I) (0.5 V)之间的线性关系
    Figure  4.  CV curves of Co-ZIF-67 modified electrodes with different pH (a), glucose concentrations (b), and scan rates (c); (d) Corresponding linear relationship between the arithmetic square root of the scanning rate (v) and current (I, 0.5 V)
    R2—The coefficient of determination, which determinates the linear relationship of the fit curve

    采用差分脉冲伏安法(Differential pulse voltammetry,DPV)进一步评估了Co-ZIF-67修饰电极的电化学性能。如图5(a)所示,在0~0.5 mmol/L 葡萄糖溶液中观测了Co-ZIF-67修饰电极表面的氧化和还原反应,其对葡萄糖可能的催化机制为:Co-ZIF-67修饰电极对葡萄糖表现出较CV更强的DPV响应信号,这也表明,Co-ZIF-67对葡萄糖确实存在电催化效果[24-27]。此外,溶液中没有葡萄糖时,Co-ZIF-67修饰电极在0.4~0.6 V有一个不明显的氧化还原峰。随着葡萄糖浓度的增加,该修饰电极的响应信号也随之增强,氧化还原峰变得更加明显,这主要是由于高电位下碱性溶液中Co-ZIF-67中Co2+被氧化为Co3+。此时,Co3+因从葡萄糖得电子(变为Co2+)并不断将葡萄糖氧化为葡萄糖酸从而产生电流信号[28-29]。因此,Co-ZIF-67修饰电极具有较好的电催化性能。如图5(b)所示,Co-ZIF-67修饰电极的电流平均值(0.55 V)与葡萄糖浓度呈线性关系,其线性方程为:I (μA/cm2)=−3.730×C(mmol/L) − 5.720 (R2=0.9639)。

    图  5  (a) Co-ZIF-67修饰电极在不同葡萄糖浓度中的差分脉冲伏安法(DPV)测试曲线;(b)每5支Co-ZIF-67修饰电极在0.55 V电位对不同浓度葡萄糖的平均电流响应信号;(c) Co-ZIF-67修饰电极对不同葡萄糖浓度的安培响应;(d)每5支电极对不同葡萄糖浓度的平均响应电流(取第15 s数值)
    Figure  5.  (a) Differential pulse voltammetry (DPV) curves of Co-ZIF-67 modified electrodes in the presence of glucose; (b) Linear relationship between average DPV current density response and different glucose concentrations of every five electrodes at 0.55 V; (c) Amperometric response of Co-ZIF-67 modified SPEs to different glucose concentration; (d) Corresponding linear curve of average current density of five electrodes in the 15th s to glucose concentrations

    采用安培响应技术在Co-ZIF-67修饰电极上对葡萄糖的传感性能做了进一步的评估。图5(c)显示随着电解质溶液中葡萄糖浓度的增加,响应电流随之增强。安培响应电流与葡萄糖浓度之间呈线性关系(图5(d)),其方程为:I (μA/cm2)=−1.390×C(mmol/L)−2.630 (R2=0.9504)。经过处理,Co-ZIF-67修饰电极对葡萄糖的检测灵敏度为1390 nA·L/(mmol·cm2),检测限为0.58 μmol/L (S/N=3),线性范围为0.1~0.5 mmol/L。值得一提的是,与已报道的电极相比,Co-ZIF-67修饰电极的灵敏度具有较大的优势,如表1所示[27, 29-34]

    表  1  Co-ZIF-67修饰电极及其他电极的葡萄糖传感性能
    Table  1.  Glucose sensing performance of Co-ZIF-67-modified electrodes and other previously reported electrodes
    Type of electrode Sensitivity/(μA·L·mmol−1·cm−2) Detection limit/(μmol·L−1) Linear range/(mmol·L−1) Ref.
    Ag NPs/MOF-74(Ni) 1290 4.7 0.01-4 [27]
    NF/NiCo2O4 NWs@Co3O4 NPs 8163.2 0.001-1.7 [29]
    CuCo-MOF 6861 0.12 [30]
    Ni2Co1-BDC/GCE 3925.3 0.29 0.0005-2.8995 [31]
    Ni/Co(HHTP)MOF/CC 3250 0.1 0.0003-2.312 [32]
    MIL-88A@NiFe-PB 1963.2 0.12 0.005-1 [33]
    Ni3(HHTP)2/CNT 4774 4.1 0.004-3.9 [34]
    Co-MOFs/SPEs 1.393 0.58 0.1-0.5 This work
    Notes: CC—Carbon cloth; BDC—1, 4-benzenedicarboxylic acid; GCE—Glassy carbon electrode; HHTP—2, 3, 6, 7, 10, 11-hexahydroxytriphenylene; MIL—Materials from Institute Lavoisier; PB—Prussian blue; CNT—Carbon nanotubes; NF—Nickel foam; NWs—Nanowires; NPs—Nanoparticles; SPEs—Screen-printing electrodes.
    下载: 导出CSV 
    | 显示表格

    图6(a)描述了Co-ZIF-67修饰电极抗干扰性能。从图上可以看出,干扰物质抗坏血酸(AA,3 mmol/L)、艾考糊精(INN,0.164 mol/L)、半乳糖(GAL,8 mmol/L)、谷胱甘肽(GSH,30 mmol/L)、麦芽糖(MAL,0.584 mol/L)引起的响应电流变化分别为−3.9%、−14.3%、−19.3%、−14.6%和−8.4%。与干扰物质相比,滴加0.1 mmol/L葡萄糖溶液时电流响应的显著变化表明。因此,Co-ZIF-67修饰电极具有较强的抗干扰能力。随后,通过长时间空气存放观察Co-ZIF-67修饰电极对0.1 mmol/L 葡萄糖的电流响应来评估的其稳定性。如图6(b)所示,Co-ZIF-67修饰电极表现出良好的稳定性。16天后,该电极仍然具有96%的初始响应。重现性是对电极的一个重要衡量标准。如图6(c)所示,Co-ZIF-67修饰电极的相对标准方差(Relative standard deviation,RSD)仅为10%,这说明该电极具有较好的重现性。

    图  6  (a)干扰检查:5支Co-ZIF-67修饰电极 对0.1 mmol/L 葡萄糖(GLU)、0.164 mol/L 艾考糊精(INN)、9 mmol/L 半乳糖(GAL)、30 mmol/L谷胱甘肽(GSH)和0.584 mol/L 麦芽糖(MAL) 的平均安培响应;(b)稳定性:每5支Co-ZIF-67修饰电极在第1 d、4 d、7 d、10 d、13 d和16 d内对0.1 mmol/L 葡萄糖的安培响应信号;(c)重现性:10支Co-ZIP-67修饰电极对0.1 mmol/L 葡萄糖的响应
    Figure  6.  (a) Interference examination: Average amperometric responses of five CuO nanomaterials modified SPEs to 0.1 mmol/L glucose (GLU), 0.164 mol/L alcodextrin (INN), 9 mmol/L galactose (GAL), 30 mmol/L glutathione (GSH) and 0.584 mol/L maltose (MAL); (b) Stability of every 5 Co-ZIF-67 modified electrodes to 0.1 mmol/L glucose on the 1st, 4th, 7th, 10th, 13th and 16th days; (c) Reproducibility of Co-ZIF-67 modified electrodes to 0.1 mmol/L glucose

    为了研究Co-ZIF-67修饰电极在实际样品中检测葡萄糖的性能,我们进行了加标回收实验(拜安进血糖仪(拜安进血糖试纸(葡萄糖脱氢酶),拜耳公司))。将血清稀释在NaOH溶液中,血清浓度为0.12 mmol/L。如表2所示,葡萄糖的回收率在93.97%~101.5%,RSD小于6.2%。这也表明Co-ZIF-67修饰电极具有潜在应用。

    表  2  Co-ZIF-67修饰的Ag-C电极检测血清样品的葡萄糖含量(n=3)
    Table  2.  Glucose detection in human serum samples using Co-ZIF-67 modified Ag-C electrodes (n=3)
    Sample Serum glucose/(mmol·L−1) Added glucose/(mmol·L−1) Detected glucose/(mmol·L−1) RSD/% Recovery rate/%
    Human
    serum
    0.12 0.18 0.29 6.20 93.97
    0.28 0.39 4.37 101.5
    0.36 0.47 3.90 98.97
    Note: RSD—Relative standard deviation.
    下载: 导出CSV 
    | 显示表格

    (1)基于室温合成的Co-ZIF-67,采用丝网印刷技术批量构建了Co-ZIF-67修饰的商业银-碳电极。

    (2) Co-ZIF-67修饰电极表现出优异的葡萄糖电催化性能:0.58 μmol/L的检测极限,1.393 μA·L/(mmol·cm2)的灵敏度,高的抗干扰性,96%的空气稳定性。

    (3)研究表明,Co-ZIF-67的低能耗合成及其Co-ZIF-67修饰电极的批量化制备为葡萄糖传感器的发展提供一个可参考的方向。

  • 图  1   聚酰亚胺(PI) (a) 纤维隔膜和聚苯并咪唑(PBI)/PI (b)复合纤维隔膜的SEM图像

    Figure  1.   SEM images of polyimide (PI) (a) and polybenzimidazole (PBI)/PI (b) composite fiber separator

    图  2   PBI/PI复合纤维隔膜,PI纤维隔膜和PP隔膜在25℃、100℃、200℃和300℃处理后的热收缩照片

    Figure  2.   Photos of PBI/PI composite fiber separators, PI fiber separators and PP separators after treatment at 25℃, 100℃, 200℃ and 300℃

    图  3   PBI/PI复合纤维隔膜和PI纤维隔膜热失重曲线

    Figure  3.   Thermal mass loss curves of PBI/PI composite fiber separators and PI fiber separators

    图  4   PBI/PI复合纤维隔膜、PI纤维隔膜和PP隔膜的交流阻抗谱图

    Figure  4.   Nyquist plots of PBI/PI composite fiber separators, PI fiber separators and PP separators

    图  5   PBI/PI复合纤维隔膜、PI纤维隔膜和PP隔膜的界面阻抗图谱

    Figure  5.   Electrochemical impedance spectra of PBI/PI composite fiber separators, PI fiber separators and PP separators

    图  6   PBI/PI复合纤维隔膜、PI纤维隔膜和PP隔膜的电化学稳定窗口曲线

    Figure  6.   Electrochemical stability window of PBI/PI composite fiber separators, PI fiber separators and PP separators

    图  7   PBI/PI复合纤维隔膜,PI纤维隔膜和PP隔膜在1 A/s的充放电曲线

    Figure  7.   Charge-discharge curves PBI/PI, PI fiber separators and PP separators at 1 A/s

    图  8   PBI/PI复合纤维隔膜、PI纤维隔膜和PP隔膜在1 A/s下进行100个循环的放电容量

    Figure  8.   Discharge stability of PBI/PI, PI fiber separators and PP separators batteries with a high current density at 1 A/s after 100 cycles

    图  9   PBI/PI复合纤维隔膜、PI纤维隔膜和PP隔膜在不同倍率下的放电容量

    Figure  9.   Dischrge capability of PBI/PI, PI fiber separators and PP separators batteries at different discharge rates

    表  1   PBI/PI复合纤维隔膜、PI纤维隔膜、聚丙烯(PP)隔膜的孔隙率和吸液率

    Table  1   Porosity and electrolyte uptake of PBI/PI composite fiber separators, PI and polypropylene (PP) separators

    SamplePorosity/%Electrolyte uptake/%
    PBI/PI 82 618
    PI 76 565
    PP (Celgard 2400) 42 150
    Note: Celgard 2400 is a single-layer PP separator with a thickness of 25 μm.
    下载: 导出CSV
  • [1]

    SHEN Chen, WANG Huaiguo. Research on the technological development of lithium-ion battery industry in China[J]. Journal of Physics: Conference Series,2019,1347(1):012087.

    [2]

    CANO Z P, BANHAM D, YE S, et al. Batteries and fuel cells for emerging electric vehicle markets[J]. Nature Energy,2018,3(4):279-289. DOI: 10.1038/s41560-018-0108-1

    [3]

    LIU Zhifang, JIANG Yingjun, HU Qiaomei, et al. Safer lithium-ion batteries from the separator aspect: Development and future perspectives[J]. Energy & Environmental Materials,2020,4(3):336-362.

    [4]

    MUHAMMAD W, SHAMSHAD A, FENG Chao, et al. Recent development in separators for high-temperature lithium-ion batteries[J]. Small,2019,15(33):1901689.

    [5]

    PARIKH D, CHRISTENSEN T, HSIEH C T, et al. Elucidation of separator effect on energy density of Li-ion batteries[J]. Journal of The Electrochemical Society,2019,166(14):3377-3383. DOI: 10.1149/2.0571914jes

    [6]

    HEIDARI AA, Mahdavi H. Recent development of polyolefin-based microporous separators for liion batteries: A review[J]. The Chemical Record,2020,20(6):570-595. DOI: 10.1002/tcr.201900054

    [7]

    LAGADEC M F, ZAHN R, WOOD V. Characterization and performance evaluation of lithium-ion battery separators[J]. Nature Energy,2019,4:16-25. DOI: 10.1038/s41560-018-0295-9

    [8]

    LI Yaqian, YU Le, HU Weiren, et al. Thermotolerant separators for safe lithium-ion batteries under extreme conditions[J]. Journal of Materials Chemistry A,2020,8(39):20294-20317. DOI: 10.1039/D0TA07511F

    [9] 巩桂芬, 邹明贵, 崔巍巍, 等. 锂离子电池隔膜材料EVOLi-OMMT的制备及其性能[J]. 复合材料学报, 2022, 39(3): 1186-1193.

    GONG Guifen, ZOU Minggui, CUI Weiwei, et al. preparation and performance of EVOLi-OMMT separator material for lithium ion battery[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1186-1193(in Chinese).

    [10]

    LI Xiaoyan, CHEN Weichen, QIAN Qingrong, et al. Electrospinning-based strategies for battery materials[J]. Advanced Energy Materials,2021,11(2):2000845. DOI: 10.1002/aenm.202000845

    [11]

    XUE Jiajia, WU Tong, DAI Yunqian, et al. Electrospinning and electrospun nanofibers: Methods, materials, and applications[J]. Chemical Reviews,2019,119(8):5298-5415. DOI: 10.1021/acs.chemrev.8b00593

    [12] 崔巍巍, 孟庆朋, 王振宇, 等. 大倍率高耐热聚醚酰亚胺-聚偏氟乙烯芯壳纳米纤维锂离子电池隔膜[J]. 复合材料学报, 2019, 36(1):69-76.

    CUI Weiwei, MENG Qingpeng, WANG Zhenyu, et al. Large-rate, high-heat-resistant poly-etherimide-polyvinylidene fluoride core-shell nanofiber lithium ion battery separator[J]. Acta Materiae Compositae Sinica,2019,36(1):69-76(in Chinese).

    [13]

    HE Lei, CAO Jianhua, LIANG Tian, et al. Effect of monomer structure on properties of polyimide as LIB separator and its mechanism study[J]. Electrochimica Acta,2020,337:135838.

    [14]

    YU Haibin, SHI Yake, YUAN Biao, et al. Recent developments of polyimide materials for lithium-ion battery separators[J]. Ionics,2021,27(3):907-923. DOI: 10.1007/s11581-020-03865-2

    [15] 巩桂芬, 王磊, 李泽. 静电纺聚乙烯-乙烯醇磺酸锂/聚酰亚胺锂离子电池隔膜复合材料的电化学性能[J]. 复合材料学报, 2018, 35(10):2632-2639.

    GONG Guifen, WANG Lei, LI Ze. Electro-chemical performance of electrospun polyethylene-lithium vinyl alcohol sulfo-nate/polyimide lithium-ion battery diaphragm composite[J]. Acta Materiae Compositae Sinica,2018,35(10):2632-2639(in Chinese).

    [16]

    ZHOLOBKO O, WU X F, ZHOU Z P, et al. A comparative experimental study of the hygroscopic and mechanical behaviors of electrospun nanofiber membranes and solution-cast films of polybenzimidazole[J]. Journal of Applied Polymer Science,2020,137(39):49639.

    [17]

    CHO S J, CHOI H, JI H Y. Evaluation of PBI nanofiber membranes as a high-temperature resistance separator for lithium-ion batteries[J]. Fibers and Polymers,2020,21(5):993-998. DOI: 10.1007/s12221-020-9955-z

    [18]

    SUN Guohua, KONG lushi, LIU Bingxue, et al. Ultrahigh-strength, nonflammable and high-wettability separators based on novel polyimide-core@polybenzimidazole-sheath nanofibers for advanced and safe lithium-ion batteries[J]. Journal of Membrane Science,2019,582:132-139. DOI: 10.1016/j.memsci.2019.04.005

    [19]

    SUN Guohua, LIU Bingxue, NIU Hongqing, et al. In situ welding: Superb strength, good wettability and fire resistance tri-layer separator with shutdown function for high-safety lithium-ion battery[J]. Journal of Membrane Science,2020,595:117509.

    [20]

    MAEYOSHI Y, DONG D, KUBOTA M, et al. Long-term stable lithium metal anode in highly concentrated sulfolane-based electrolytes with ultrafine porous polyimide separator[J]. ACS Applied Materials & Interfaces,2019,11(29):25833-25843.

    [21] 孙国华. 基于芳杂环聚合物纤维的制备、微结构调控及其性能研究[D]. 北京: 北京化工大学, 2020.

    SUN Guohua. Study on preparation, microstructure control and performance of aromatic heterocyclic polymer fibers[D]. Beijing: Beijing University of Chemical Technology, 2020(in Chinese).

    [22] 梁乃强. 锂离子电池用聚苯并咪唑隔膜的制备及其性能研究[D]. 上海: 上海交通大学, 2017.

    LIANG Naiqiang. Study on preparation and performance of polybenzimidazole separator for lithium ion batteries[D]. Shanghai: Shanghai Jiaotong University, 2017(in Chinese).

    [23] 巩桂芬, 王磊, 兰健. EVOH-SO3Li/PET电纺锂离子电池隔膜电化学性能[J]. 材料工程, 2018, 46(3):7-12.

    GONG Guifen, WANG Lei, LAN Jian. Electrochemical performance of electrospun lithium-ion battery separator[J]. Journal of Materials Engineering,2018,46(3):7-12(in Chinese).

    [24]

    LIU Xiaoting, ZHANG Bin, WU Yingnan, et al. The effects of polybenzimidazole nanofiber separator on the safety and performance of lithium-ion batteries: Characterization and analysis from the perspective of mechanism[J]. Jour-nal of Power Sources,2020,475:228624. DOI: 10.1016/j.jpowsour.2020.228624

图(9)  /  表(1)
计量
  • 文章访问数:  1108
  • HTML全文浏览量:  509
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-10
  • 修回日期:  2021-07-07
  • 录用日期:  2021-07-08
  • 网络出版日期:  2021-07-25
  • 刊出日期:  2022-05-31

目录

/

返回文章
返回