留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冷链物流中二元有机相变储能材料的制备与热物性能

李妍 郭彦峰 付俊 梁静

李妍, 郭彦峰, 付俊, 等. 冷链物流中二元有机相变储能材料的制备与热物性能[J]. 复合材料学报, 2022, 39(6): 2679-2689. doi: 10.13801/j.cnki.fhclxb.20210721.002
引用本文: 李妍, 郭彦峰, 付俊, 等. 冷链物流中二元有机相变储能材料的制备与热物性能[J]. 复合材料学报, 2022, 39(6): 2679-2689. doi: 10.13801/j.cnki.fhclxb.20210721.002
LI Yan, GUO Yanfeng, FU Jun, et al. Preparation and thermophysical performance of organic phase change energy storage materials in cold chain transportation[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2679-2689. doi: 10.13801/j.cnki.fhclxb.20210721.002
Citation: LI Yan, GUO Yanfeng, FU Jun, et al. Preparation and thermophysical performance of organic phase change energy storage materials in cold chain transportation[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2679-2689. doi: 10.13801/j.cnki.fhclxb.20210721.002

冷链物流中二元有机相变储能材料的制备与热物性能

doi: 10.13801/j.cnki.fhclxb.20210721.002
基金项目: 国家质检总局科技项目(2014QK131);陕西省教育厅重点实验室科学研究计划项目(15JS074);浙江省基础公益研究计划项目(LGG19E080004)
详细信息
    通讯作者:

    郭彦峰,博士,教授,研究方向为智能运输包装与缓冲材料、果品保鲜贮运工程 E-mail:guoyf@xaut.edu.cn

  • 中图分类号: TQ325.9

Preparation and thermophysical performance of organic phase change energy storage materials in cold chain transportation

  • 摘要: 有机相变储能材料相变潜热高、化学性质稳定、无过冷度和相分离现象。通过对正癸酸、月桂酸甲酯、正癸醇、月桂酸及十四烷进行热力学分析并进行两两复配,得到正癸酸-月桂酸甲酯(摩尔比为30∶70)、正癸酸-正癸醇(摩尔比为36∶64)及月桂酸-十四烷(摩尔比为21∶79)三种二元有机复配物,其相变温度均在0~5℃且相变焓较高。利用聚N-异丙基丙烯酰胺(PNIPAM)凝胶对二元有机复配物分别吸附,得到一类适用于果品保质包装与物流技术的相变储能材料;并在凝胶制备过程中加入聚乙二醇1000 (PEG1000)致孔剂,可有效提高凝胶在二元有机复配物的溶胀度。结果表明,PNIPAM-40%PEG1000/正癸酸-月桂酸甲酯相变储能材料的相变温度为3.2℃,相变潜热为188.10 J/g;PNIPAM-40%PEG1000/正癸酸-正癸醇相变储能材料的相变温度为1.2℃,相变潜热为177.74 J/g;PNIPAM-40%PEG1000/月桂酸-十四烷相变储能材料的相变温度为4.2℃,相变潜热为206.17 J/g。

     

  • 图  1  PNIPAM-40%PEG1000凝胶制备过程

    Figure  1.  PNIPAM-40%PEG1000 gel preparation process

    PEG1000—Polyethylene glycol 1000; APS—Ammonium peroxodisulphate; TEMED—Tetramethylethylenediamine

    图  2  二元有机复配物FTIR图谱

    Figure  2.  FTIR spectra of binary organic compound

    图  3  二元有机复配物的差示扫描量热曲线

    Figure  3.  Differential scanning calorimetry curves of binary organic compound

    图  4  二元有机复配物的热物性数据

    Figure  4.  Thermophysical data of binary organic compound

    T0—Initial temperature; T1—Final temperature; ΔH—Enthalpy of phase change

    图  5  PNIPAM凝胶在二元有机复配物中的溶胀度

    Figure  5.  Swelling ratios of PNIPAM gels in binary organic compounds

    C—Concentration

    图  6  PNIPAM和PNIPAM-40%PEG1000凝胶的FTIR图谱

    Figure  6.  FTIR spectra of the gel PNIPAM and PNIPAM-40%PEG1000

    图  7  PNIPAM-y%PEGx凝胶的SEM图像

    Figure  7.  SEM images of the PNIPAM-y%PEGx gels

    图  8  PNIPAM-y%PEGx凝胶在二元有机复配物中的溶胀性能

    Figure  8.  Swelling performance of PNIPAM-y%PEGx gel in binary organic compounds

    图  9  PNIPAM-y%PEGx/二元有机复配物的相变焓

    Figure  9.  Enthalpy of phase transition of PNIPAM-y%PEGx/binary organic compounds

    表  1  聚N-异丙基丙烯酰胺(PNIPAM)-聚乙二醇(PEG)凝胶的命名

    Table  1.   Naming of poly(N-isopropylacrylamide) (PNIPAM)-polyethylene glycol (PEG) gel

    SampleMass ratio of PEG∶NIPAM/%Molecular weight of PEG
    PNIPAM-y%PEGx y x
    Note: NIPAM—N-isopropylacrylamide.
    下载: 导出CSV

    表  2  有机物的热物性数据

    Table  2.   Thermophysical data of organic matter

    SamplePhase transition
    temperature/℃
    Latent heats of
    phase transition/
    (J·g−1)
    Decanoic acid 31.39 153.72
    Methyl laurate 4.74 179.25
    1 decanol 6.13 200.31
    Lauric acid 44.54 181.14
    Tetradecane 5.68 215.85
    下载: 导出CSV

    表  3  二元有机复配物最低共熔点

    Table  3.   The lowest common melting point of binary organic compound

    SampleThe lowest common
    melting point/℃
    Molar
    ratio
    Decanoic acid-methyl laurate −0.86 29∶71
    Decanoic acid-1 decanol −0.74 29∶71
    Lauric acid-tetradecane 3.58 13∶87
    下载: 导出CSV
  • [1] 孙士茼, 汪致洵, 林湘宁, 等. 含热电联供型光热电站与建筑相变储能的离网型综合能源系统[J]. 中国电机工程学报, 2019, 39(20):5926-5937.

    SUN S T, WANG Z X, LIN X N, et al. Off-grid integrated energy system with combined heat and power CSP plants and phase change storage building[J]. Proceedings of the CSEE,2019,39(20):5926-5937(in Chinese).
    [2] 翟天尧, 李廷贤, 仵斯, 等. 高导热膨胀石墨/硬脂酸定形相变储能复合材料的制备及储/放热特性[J]. 科学通报, 2018, 63(7):674-683. doi: 10.1360/N972017-00831

    ZHAI T Y, LI T X, WU S, et al. Preparation and thermal performance of form-stable expanded graphite/stearic acid composite phase change materials with high thermal conductivity[J]. Chinese Science Bulletin,2018,63(7):674-683(in Chinese). doi: 10.1360/N972017-00831
    [3] HADIYA J P, SHUKLA A K N. Thermal energy storage using phase change materials: A way forward[J]. International Journal of Global Energy Issues,2018,41:108-127. doi: 10.1504/IJGEI.2018.092311
    [4] YANG Y, PANG Y, LIU Y, et al. Preparation and thermal properties of polyethylene glycol/expanded graphite as novel form-stable phase change material for indoor energy saving[J]. Materials Letters,2018,216:220-223. doi: 10.1016/j.matlet.2018.01.025
    [5] 纪旭阳, 金兆国, 梁福鑫. 相变材料在建筑节能中的应用[J]. 功能高分子学报, 2019, 32(5):541-549.

    JI X Y, JIN Z G, LIANG F X. Application of phase change materials in building energy conservation[J]. Journal of Functional Polymers,2019,32(5):541-549(in Chinese).
    [6] 王曼婷, 高泽华, 兰楚文, 等. 基于相变材料G $ {\rm{e}}_{x} $S $ {\rm{b}}_{y} $T $ {\rm{e}}_{z} $(GST)的微波可调超材料器件研究[J]. 电子元件与材料, 2019, 38(2):64-70.

    WANG M T, GAO Z H, LAN C W, et al. Microwave tunable metadevices based on phase-change materials G $ {\rm{e}}_{{x}} $S $ {\rm{b}}_{{y}} $T $ {\rm{e}}_{{z}} $ (GST)[J]. Electronic Components and Materials,2019,38(2):64-70(in Chinese).
    [7] WEI F, LI Y, SUI Q, et al. A novel thermal energy storage system in smart building based on phase change material[J]. Smart Grid, IEEE Transactions on,2019,10:2846-2857. doi: 10.1109/TSG.2018.2812160
    [8] 李晓燕, 张晓雅, 邱雪君, 等. 相变蓄冷技术在食品冷链运输中的研究进展[J]. 包装工程, 2019, 40(15):150-157.

    LI X Y, ZHANG X Y, QIU X J, et al. Research progress of phase change cold storage technology in food cold chain transportation[J]. Packaging Engineering,2019,40(15):150-157(in Chinese).
    [9] 李玉洋, 章学来, 徐笑锋, 等. 正辛酸-肉豆蔻酸低温相变材料的制备和循环性能[J]. 化工进展, 2018, 37(2):689-693.

    LI Y Y, ZHANG X L, XU X F, et al. Preparation and cyclic properties of low temperature phase change materials of N-caprylic acid and myristic acid[J]. Chemical Industry and Engineering Progress,2018,37(2):689-693(in Chinese).
    [10] 林酿志, 李传常. 相变储能材料及其冷链运输应用[J]. 储能科学与技术, 2021, 10(3): 1040-1050

    LIN N Z, LI C C. Phase change materials for energy storage in cold-chain transportation[J]. Energy Storage Science and Technology, 2021, 10(3): 1040-1050(in Chinese).
    [11] 颉江龙, 魏霞. 相变储能材料在建筑节能中的研究进展与应用[J]. 现代化工, 2019, 39(11):48-52.

    JI J L, WEI X. Research progress in phase change energy storage materials and application in buildings energy saving[J]. Modern Chemical Industry,2019,39(11):48-52(in Chinese).
    [12] FASHANDI M, LEUNG S N. Sodium acetate trihydrate-chitin nanowhisker nanocomposites with enhanced phase change performance for thermal energy storage[J]. Solar Energy Materials and Solar Cells,2018,178:259-265. doi: 10.1016/j.solmat.2018.01.037
    [13] 何媚质, 杨鲁伟, 张振涛. 无机相变材料CaCl2·6H2O的过冷特性[J]. 化工学报, 2017, 68(11):4016-4024.

    HE M Z, YANG L W, ZHANG Z T. Supercooling characteris-tics of inorganic phase change material CaCl2·6H2O[J]. Journal of Chemical Industry and Engineering,2017,68(11):4016-4024(in Chinese).
    [14] 章学来, 徐蔚雯, 刘田田, 等. 月桂酸-癸酸/十四醇-十二烷复合相变储能材料的制备与性能研究[J]. 制冷学报, 2016, 37(1):60-64. doi: 10.3969/j.issn.0253-4339.2016.01.060

    ZHANG X L, XU W W, LIU T T, et al. Preparation and properties of lauric acid-decanoic/tetradecyl alcohol-dodecane composite as PCMs for thermal energy storage[J]. Journal of Refrigeration,2016,37(1):60-64(in Chinese). doi: 10.3969/j.issn.0253-4339.2016.01.060
    [15] WANG Y, LIU Z, NIU X, et al. Preparation, characterization, and thermal properties of microencapsulated phase change material for low-temperature thermal energy storage[J]. Energy and Fuels,2019,33:1631-1636. doi: 10.1021/acs.energyfuels.8b02504
    [16] 王朝贺. 有机复合相变蓄能传热材料的制备及性能研究[D]. 南昌: 南昌大学, 2020.

    WANG C H. Preparation and characterization of organic composite phase change energy storage and heat transfer materials[D]. Nanchang: Nanchang University, 2020(in Chinese).
    [17] 周孙希, 章学来, 刘升, 等. 癸醇-棕榈酸/膨胀石墨低温复合相变材料的制备与性能[J]. 化工学报, 2019, 70(1):290-297.

    ZHOU S X, ZHANG X L, LIU S, et al. Preparation and properties of decyl alcohol-palmitic acid/expanded graphite low temperature composite phase change material[J]. Journal of Chemical Industry and Engineering,2019,70(1):290-297(in Chinese).
    [18] 贾蒲悦, 武卫东, 王益聪, 等. 新型复合低温相蓄冷材料的研制及热物性优化[J]. 化工学报, 2019, 70(7):2758-2765.

    JIA P Y, WU W D, WANG Y C, et al. Preparation and thermophysical property optimization of a new composite phase change material for cold storage[J]. Journal of Chemical Industry and Engineering,2019,70(7):2758-2765(in Chinese).
    [19] 左建国, 李维仲, 徐士鸣, 等. 辛酸/月桂酸作为相变蓄冷材料的热性能研究[J]. 太阳能学报, 2012, 33(1):131-134. doi: 10.3969/j.issn.0254-0096.2012.01.022

    ZUO J G, LI W Z, XU S M, et al. Thermal properties of caprylic acid and lauric acid as phase change cool storage material[J]. Acta Energiae Solaris Sinica,2012,33(1):131-134(in Chinese). doi: 10.3969/j.issn.0254-0096.2012.01.022
    [20] 黄雪, 崔英德, 尹国强, 等. 正癸酸-棕榈酸-硬脂酸三元脂肪酸复合相变材料的热性能[J]. 化工新型材料, 2015, 43(1):114-116.

    HUANG X, CUI Y D, YIN G Q, et al. Thermal property of ternary fatty acid of decanoic acid-palmitic acid-stearic acid composite phase change materials[J]. New Chemical Materials,2015,43(1):114-116(in Chinese).
    [21] 李云涛, 晏华, 汪宏涛, 等. 正癸酸-月桂酸-硬脂酸三元低共熔体系/膨胀石墨复合相变材料的制备与表征[J]. 材料导报, 2017, 31(2):94-99.

    LI Y T, YAN H, WANG H T, et al. Preparation and characterization of decanoic acid-lauric acid-stearic acid ternary eutectic mixture/expanded graphene composite phase change material with a low eutectic temperature[J]. Materials Reports,2017,31(2):94-99(in Chinese).
    [22] TANG Y, ALVA G, HUANG X, et al. Thermal properties and morphologies of MA-SA eutectics/CNTs as composite PCMs in thermal energy storage[J]. Energy and Buildings,2016,127:603-610. doi: 10.1016/j.enbuild.2016.06.031
    [23] 方玉堂, 谢鸿洲, 梁向晖, 等. 聚苯乙烯-二氧化硅@十四烷复合纳米相变胶囊的表征及其乳液性能[J]. 化工学报, 2015, 66(2):800-805. doi: 10.11949/j.issn.0438-1157.20141287

    FANG Y T, XIE H Z, LIANG X H, et al. Characterization of polystyrene-silica@N-tetradecane composite nano-encapsulated phase change material and Its emulsion performance[J]. Journal of Chemical Industry and Engineering,2015,66(2):800-805(in Chinese). doi: 10.11949/j.issn.0438-1157.20141287
    [24] 周孙希, 章学来, 刘升, 等. 十四烷-正辛酸有机复合相变材料的制备和性能[J]. 储能科学与技术, 2018, 7(4):692-697. doi: 10.12028/j.issn.2095-4239.2018.0072

    ZHOU S X, ZHANG X L, LIU S, et al. Preparation and thermal property of a tetradecane-octanoic acid eutectic phase change material[J]. Energy Storage Science and Technology,2018,7(4):692-697(in Chinese). doi: 10.12028/j.issn.2095-4239.2018.0072
    [25] 中国国家标准化管理委员会. 傅里叶变换红外光谱仪: GB/T 21186—2007[S]. 北京: 中国标准出版社, 2007.

    Standardization Administration of the People’s Republic of China. Fourier transform infrared spectrometer: GB/T 21186-2007[S]. Beijing: China Standards Press, 2007(in Chinese).
    [26] 中国国家标准化管理委员会. 塑料 差示扫描量热法(DSC)第3部分: 熔融和结晶温度及热焓的测定: GB/T 19466.3—2004[S]. 北京: 中国标准出版社, 2004.

    Standardization Administration of the People’s Republic of China. Plastics differential scanning calorimetry (DSC)-Part 3: Determination of temperature and enthalpy of melting and crystallization: GB/T 19466.3—2004[S]. Beijing: China Standards Press, 2004(in Chinese).
    [27] 中国国家标准化管理委员会. 浓缩天然胶乳硫化胶乳溶胀度的测定: GB/T 14797.3—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Natural rubber latex concentrate- prevulcanized rubber latex-Determination of swelling capacity: GB/T 14797.3—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  808
  • HTML全文浏览量:  528
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-26
  • 修回日期:  2021-06-28
  • 录用日期:  2021-07-05
  • 网络出版日期:  2021-07-21
  • 刊出日期:  2022-06-01

目录

    /

    返回文章
    返回