Friction and wear properties of hollow glass microspheres/ultrahigh molecular weight polyethylene composites under low speed and high normal loads conditions
-
摘要: 为提升超高分子量聚乙烯(UHMWPE)材料在低速、重载工况下的摩擦磨损性能,使用经偶联剂表面处理的空心玻璃微珠(HGM)对UHMWPE进行填充改性,通过热压成型工艺制备HGM/UHMWPE复合材料。对HGM/UHMWPE复合材料的硬度、结晶度等进行表征,并对该材料进行干摩擦环境下的重载球盘往复摩擦试验以测定其摩擦磨损性能。结果表明,添加少量HGM可以提高UHMWPE的硬度与结晶度。当摩擦时间较短时,加入HGM会在一定程度上增大UHMWPE的摩擦系数,同时磨损率随复合材料中HGM含量的增加而先降低后升高,当HGM含量为1wt%时,复合材料磨损率最低,在50 N与100 N两种法向载荷的摩擦试验中相比于纯UHMWPE磨损率分别降低44.7%与48.4%。随着摩擦时间的增长,复合材料摩擦系数与磨损率均有不同程度的升高。当摩擦时间达到120 min时,HGM含量为2wt%的复合材料平均摩擦系数最低。此时添加少量HGM的HGM/UHMWPE复合材料在磨损率上与纯UHMWPE磨损率接近。Abstract: In order to improve the friction and wear properties or ultrahigh molecular weight polyethylene (UHMWPE) under low speed and high normal loads conditions, composites consisting of hollow glass microspheres (HGM) treated with coupling agent and UHMWPE were prepared by hot pressing. The hardness and the crystallinity of composites were characterized, and the friction and wear properties of composites were measured by ball-disk reciprocating friction test in condition of high normal loads and dry friction. As the results, the hardness and the crystallinity of composites with a small amount of HGM added are higher than that of the pure UHMWPE. The friction coefficient of composites in a short time becomes higher to a certain extent as the content of HGM rising, and the wear rate decreases first and then increases. The composite with 1wt% HGM content has the lowest wear rate, the wear rate of which decreases by 44.7% and 48.4% in the friction tests under normal loads of 50 N and 100 N respectively compared with the wear rate of pure UHMWPE. With the increase of friction time, the friction coefficient and wear rate of the composites increase to varying degrees. The composite with 2wt% HGM has the lowest average friction coefficient during 120 min-friction-test, and the wear rates of pure UHMWPE and HGM/UHMWPE composites containing a small amount of HGM are close.
-
表 1 空心玻璃微珠(HGM)改性超高分子量聚乙烯(UHMWPE)试样配方
Table 1. Formula of hollow glass microspheres (HGM) modified ultrahigh molecular weight polyethylene (UHMWPE)
Sample HGM/wt% Coupling agent/wt% UHMWPE/wt% 1 0 0 100 2 1 4 95 3 2 4 94 4 3 4 93 5 4 4 92 6 5 4 91 -
[1] NIU S, OUYANG X, LIU Y. Experimental study on the influence of temperature on the wear performance of polymer sliding plate materials for bridge bearings[J]. IOP Conference Series: Earth and Environmental Science,2021,638(1):012095. [2] 中华人民共和国铁道部. 铁路桥梁盆式支座: TB/T 2331—2013[S]. 北京: 中国铁道出版社, 2014.Ministry of Railways of the People's Republic of China. Pot bearings for railway bridges: TB/T 2331—2013[S]. Beijing: China Railway Publishing House, 2014(in Chinese). [3] 张恒, 王李波, 高誉鹏, 等. 纳米改性增强超高分子量聚乙烯复合材料研究进展[J]. 材料导报, 2016, 30(5):33-39.ZHANG Heng, WANG Libo, GAO Yupeng, et al. Research progress of nano-modified ultra-high molecular weight polyethylene composites[J]. Materials Review,2016,30(5):33-39(in Chinese). [4] 黄安平, 朱博超, 贾军纪, 等. 超高分子量聚乙烯的研发及应用[J]. 高分子通报, 2012(4):127-132.HUANG Anping, ZHU Bochao, JIA Junji, et al. Development and application of ultra high molecular weight polyethylene[J]. Chinese Polymer Bulletin,2012(4):127-132(in Chinese). [5] 邓亚玲. UHMWPE表面仿生关节软骨构建及性能研究[D]. 南京: 南京理工大学, 2016.DENG Yaling. Design and tribological properties of UHMWPE surface bionic articular cartilage[D]. Nanjing: Nanjing University of Science and Technology, 2016(in Chinese). [6] 姜稳定, 黄安民, 朱志勇, 等. 两款高速铁路桥梁支座滑块的制备及对比研究[J]. 工程塑料应用, 2009, 37(11):51-53. doi: 10.3969/j.issn.1001-3539.2009.11.014JIANG Wending, HUANG Anmin, ZHU Zhiyong, et al. Preparation and comparative study of two kinds of sliding blocks for high-speed railway bridge bearings[J]. Engineering Plastics Application,2009,37(11):51-53(in Chinese). doi: 10.3969/j.issn.1001-3539.2009.11.014 [7] 李志, 王艳令, 刘持政, 等. 超高分子量聚乙烯成型技术研究进展[J]. 塑料, 2014, 43(2):34, 38-43.LI Zhi, WANG Yanling, LIU Chizheng, et al. Development of Processing technology of ultra high molecular weight polyethylene composite[J]. Plastics,2014,43(2):34, 38-43(in Chinese). [8] 代栋梁. UHMWPE纤维的辐照交联改性及抗蠕变性能研究[D]. 上海: 东华大学, 2017.DAI Dongliang. Study on the irradiated crosslinking modification and creep resistance of ultrahigh molecular weight polyethylene fiber[D]. Shanghai: Donghua University, 2017(in Chinese). [9] LIU X, ZHANG S, XU X, et al. Study on the creep and recovery behaviors of UHMWPE/CNTs composite fiber[J]. Fibers and Polymers,2013,14(10):1635-1640. doi: 10.1007/s12221-013-1635-9 [10] PANIN S V, KORNIENKO L A, POLTARANIN M A, et al. Mechanical and tribotechnical characteristics of nanocomposites based on mixture of ultrahigh molecular weight polyethylene and polypropylene[J]. Advanced Materials Research,2014,872:36-44. [11] CAO Z, SHI G, YAN X, et al. In situ fabrication of CuO/UHMWPE nanocomposites and their tribological perfor-mance[J]. Journal of Applied Polymer Science,2019,136(36):47925. [12] DANILOVA S N, YARUSOVA S B, KULCHIN Y N, et al. UHMWPE/CaSiO3 nanocomposite: Mechanical and tribological properties[J]. Polymers,2021,13(4):570. doi: 10.3390/polym13040570 [13] XIONG L, XIONG D, JIN J. Study on tribological properties of irradiated crosslinking UHMWPE nano-composite[J]. Journal of Bionic Engineering,2009,6(1):7-13. doi: 10.1016/S1672-6529(08)60102-X [14] CHIESA R, TANZI M C, ALFONSI S, et al. Enhanced wear performance of highly crosslinked UHMWPE for artificial joints[J]. Journal of Biomedical Materials Research,2000,50(3):381-387. doi: 10.1002/(SICI)1097-4636(20000605)50:3<381::AID-JBM12>3.0.CO;2-P [15] SREEKANTH P S R, KANAGARAJ S. Influence of multi walled carbon nanotubes reinforcement and gamma irradiation on the wear behaviour of UHMWPE[J]. Wear,2015,334-335:82-90. doi: 10.1016/j.wear.2014.12.014 [16] XIONG L, XIONG D, YANG Y, et al. Effect of irradiation dose on plastic deformation of vacuum hot pressed ultra high molecular weight polyethylene[J]. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms,2010,268(17-18):2846-2849. [17] GUPTA N, WOLDESENBET E. Hygrothermal studies on syntactic foams and compressive strength determination[J]. Composite Structures,2003,61(4):311-320. doi: 10.1016/S0263-8223(03)00060-6 [18] 李红玲, 董斌, 韩延安, 等. 钛酸酯偶联剂的偶联机理及研究进展[J]. 表面技术, 2012, 41(4):99-102.LI hongling, DONG bin, HAN Yanan, et al. The coupling mechanism and research progress on titanate coupling agents[J]. Surface Technology,2012,41(4):99-102(in Chinese). [19] LIU W, XIE Z, JIA C. Surface modification of ceramic powders by titanate coupling agent for injection molding using partially water soluble binder system[J]. Journal of the European Ceramic Society,2012,32(5):1001-1006. doi: 10.1016/j.jeurceramsoc.2011.11.017 [20] 魏海荣. 玻璃微珠填充UHMWPE性能研究[D]. 北京: 北京化工大学, 2012.WEI Hairong. Properties of hollow glass bead filled UHMWPE[D]. Beijing: Beijing University of Chemical Technology, 2012(in Chinese). [21] 苏荣锦. 高性能超高分子量聚乙烯复合材料的制备与性能研究[D]. 株洲: 湖南工业大学, 2012.SU Rongjin. Study on preparation and properties of high properties UHMWPE composites[D]. Zhuzhou: Hunan University of Technology, 2012(in Chinese). [22] 全国塑料标准化技术委员会. 塑料和硬橡胶使用硬度计测定压痕硬度(邵氏硬度): GB/T 2411—2008[S]. 北京: 中国质检出版社, 2011.National Technical Committee on Plastics of Standardization Administration of China. Plastics and ebonite-Deter-mination of indentation hardness by means of a duronmeter(shore hardness): GB/T 2411—2008[S]. Beijing: China Quality Inspection Press, 2011(in Chinese). [23] 倪自丰, 葛世荣. 超高分子量聚乙烯结晶度对生物摩擦学性能的影响[J]. 润滑与密封, 2008, 33(12):1-4. doi: 10.3969/j.issn.0254-0150.2008.12.001NI Zifeng, GE Shirong. The biotribological behavior of ultra-high molecular weight polyethylene as a function of crystallinity[J]. Lubrication Engineering,2008,33(12):1-4(in Chinese). doi: 10.3969/j.issn.0254-0150.2008.12.001 [24] 叶素娟, 范清, 禹权. 钛酸钾晶须填充超高分子量聚乙烯复合材料的性能研究[J]. 塑料, 2008, 37(6):5-8.YE Sujuan, FAN Qing, YU Quan. Properties of the PTW filled UHMWPE composites[J]. Plastics,2008,37(6):5-8(in Chinese). [25] 袁月. 物理填充和化学交联的超高分子量聚乙烯复合材料及其摩擦学性能[D]. 扬州: 扬州大学, 2016.YUAN Yue. Physical filling and chemical crosslinked uItra highMolecular weight polyethylene composites and its tribological performance[D]. Yangzhou: Yangzhou University, 2016(in Chinese). [26] 石国军, 袁月, 李翠, 等. 玻璃微珠增强超高分子量聚乙烯的耐磨耐热性能研究[J]. 摩擦学学报, 2015, 35(6):714-723.SHI Guojun, YUAN Yue, LI Cui, et al. Wear-and-heat-resistant performances of ultra high molecular weight polyethylene composites reinforced by glass beads[J]. Tribology,2015,35(6):714-723(in Chinese). [27] 王秋凤, 王鸿灵, 王云霞, 等. 表面粗糙度对UHMWPE微动摩擦磨损性能的影响[J]. 摩擦学学报, 2015, 35(4):441-447.WANG Qiufeng, WANG Hongling, WANG Yunxia, et al. Effects of surface roughness on fretting wear of UHMWPE under different conditions[J]. Tribology,2015,35(4):441-447(in Chinese). [28] 温建萍, 甄明辉, 沈洲. 偶联修饰纳米蒙脱土/超高分子量聚乙烯基复合材料的摩擦磨损性能[J]. 硅酸盐学报, 2007, 35(8):1040-1045. doi: 10.3321/j.issn:0454-5648.2007.08.018WEN Jianping, ZHEN Minghui, SHEN Zhou. Friction wear behavior of coupling modified nano-montmorillonite/ultra high molecular weight polyethylene composites[J]. Journal of the Chinese Ceramic Society,2007,35(8):1040-1045(in Chinese). doi: 10.3321/j.issn:0454-5648.2007.08.018 [29] 佟金, 任露泉, 陈永潭, 等. 聚四氟乙烯和超高分子量聚乙烯的磨粒磨损性能与机理研究[J]. 摩擦学学报, 1994, 14(1):65-72.TONG Jin, REN Luquan, CHEN Yongtan, et al. Study on abrasive wear properties and mechanism of polytetrafluoroethylene and ultrahigh molecular weight polyethylene[J]. Tribology,1994,14(1):65-72(in Chinese). [30] 李飞, 郭奕友, 成惠斌, 等. 超高分子量聚乙烯摩擦磨损行为及拉曼成像[J]. 高分子材料科学与工程, 2020, 36(2):82-89.LI Fei, GUO Yiyou, CHENG Huibin, et al. Friction behavior and raman imaging of ultra high molecular weight polyethylene[J]. Polymeric Materials Science and Engineering,2020,36(2):82-89(in Chinese).