Wear resistance of natural rubber-trans-polyisoprene rubber composites under high loads and high speeds
-
摘要: 飞机轮胎在高速高载下使用,其胎面橡胶复合材料耐磨性直接影响轮胎使用寿命。利用实验室自研磨耗机模拟了飞机轮胎在实际行驶过程中受到的高速(> 11 Hz)高载荷(> 1.8 MPa),探究了载荷、转速和炭黑(CB)用量对天然橡胶-反式聚异戊二烯橡胶复合材料(NR-TPI)耐磨性的影响,并结合橡胶磨耗表面形貌和磨屑的形态特征提出了相关影响机制。结果表明,胶料的磨耗随载荷增大而增大,转速对耐磨性的影响小于载荷。当转速从600 r/min增大到800 r/min时,磨耗速率增大,再增大转速,磨耗速率无明显变化。炭黑用量为40或45份的材料磨耗速率接近,但当炭黑用量为50份时,材料的耐磨性显著提升。观察发现磨耗表面出现黏腻的降解层,且磨屑中同时包含微米级的微粒磨屑和大尺寸卷状磨屑,说明高速高载下耐磨性主要取决于表面层降解和降解层被剥离这两个过程的动态循环,前者占主导时主要发生微粒磨耗,后者占主导时起卷磨耗为主要磨耗机制。载荷和转速对耐磨性的影响主要是通过对这两个过程的影响来实现的。Abstract: Aircraft tires are used at high speeds and loads, and the wear resistance of tread rubber composites directly affects the service life of tires. Using a homemade rubber abrasion device to simulate the high speed (> 11 Hz) and high load (> 1.8 MPa) on the tire during the actual driving process, the effects of load, rotation speed and carbon black (CB) loading on the wear resistance of natural rubber-trans-polyisoprene (NR-TPI) composites were investigated, and the related influencing mechanisms were proposed by combining the morphology of rubber surface and the morphological characteristics of wear debris. The results show that the abrasion of rubber increases with the increase of load. The effect of rotation speed on the abrasion rate is less than that of load. When the rotation speed increases from 600 r/min to 800 r/min, the abrasion rate increases. However, the abrasion rate does not change significantly when the rotation speed is further increased. The abrasion rate of samples with 40 or 45 phr CB is similar, but when 50 phr CB is adopted, the wear resistance of sample is significantly improved. Observation on the abraded surface and the wear debris reveals that sticky degradation layers appear on the rubber surface, and micrometer sized fine-grained wear debris and large-sized crimped wear debris are simultaneously included in the wear debris, indicating that the abrasion resistance of NR-TPI composites mainly depends on the dynamic cycle of the two processes, the degradation of surface layer and the peeling of degradation layer. Particle wear mainly occurs when the former is dominant, while roll-up wear becomes the dominant wear mechanism when the latter is dominant. The effects of load and rotation speed on abrasion resistance are essentially achieved by affecting these two processes.
-
Key words:
- natural rubber /
- trans-polyisoprene rubber /
- high load /
- high speed /
- wear resistance /
- wear mechanism /
- carbon black loading
-
图 3 不同载荷下不同天然橡胶(NR)-反式聚异戊二烯(TPI)复合材料测试轮与磨盘间的压痕
Figure 3. Indentation between test wheel and grinding disk under different loads of different natural rubber (NR)-trans-polyisoprene (TPI) composites
Amount of carbon black used for NP-TPI-1, NP-TPI-2 and NP-TPI-3 is 40, 45 and 50, respectively (Total mass of NR and TPI is 100).
表 1 不同NR-TPI复合材料的力学性能
Table 1. Mechanical properties of different NR-TPI composites
Sample NP-TPI-1 NP-TPI-2 NP-TPI-3 Curing time/(m:s) 20:00 20:00 20:00 Tensile strength/MPa 30.4±0.1 29.0±0.6 28.9±0.4 Tear strength/(kN·m−1) 85.8±5.4 116.9±1.8 116.7±8.8 Shore A hardness 66 69 71 Elongation at break/% 493±10 458±8 428±12 Stress at 100%/MPa 3.2±0.2 3.5±0 4.3±0.2 Stress at 300%/MPa 17.4±0.3 18.6±0 20.9±0.6 表 2 600 r/min下不同NR-TPI复合材料的热机械降解与降解层剥离过程相对快慢的条件
Table 2. Conditions for relative speed of two processes: Thermomechanical degradation and peeling of degradation layer of different NR-TPI composites at 600 r/min
Sample Conditions for (a) Degradation ≫ peeling Conditions for (b) Degradation > peeling Conditions for (c) Degradation < peeling NP-TPI-1 Load≤20 kg 20 kg<Load≤25 kg, Load≥35 kg 25 kg<Load<35 kg NP-TPI-2 Load≤20 kg 20 kg<Load≤25 kg, Load≥35 kg 25 kg<Load<35 kg NP-TPI-3 Load≤20 kg 20 kg<Load≤25 kg Load>25 kg Notes: (a), (b), (c) are from the schematic diagram in Fig. 11. -
[1] GENT A, PULFORD C. Mechanisms of rubber abrasion[J]. Journal of Applied Polymer Science,1983,28(3):943-960. doi: 10.1002/app.1983.070280304 [2] GENT A, NAH C. Abrasion of rubber by a blade abrader: Effect of blade sharpness and test temperature for selected compounds[J]. Rubber Chemistry and Technology,1996,69(5):819-833. doi: 10.5254/1.3538405 [3] WU J, CHEN L, WANG Y, et al. Effect of temperature on wear performance of aircraft tire tread rubber[J]. Polymer Testing,2019,79:106037. doi: 10.1016/j.polymertesting.2019.106037 [4] WU Y P, ZHOU Y, LI J L, et al. A comparative study on wear behavior and mechanism of styrene butadiene rubber under dry and wet conditions[J]. Wear,2016,356-357:1-8. doi: 10.1016/j.wear.2016.01.025 [5] HAKAMI F, PRAMANIK A, RIDGWAY N, et al. Developments of rubber material wear in conveyer belt system[J]. Tribology International,2017,111:148-158. doi: 10.1016/j.triboint.2017.03.010 [6] LANG A, KLÜPPEL M. Influences of temperature and load on the dry friction behaviour of tire tread compounds in contact with rough granite[J]. Wear,2017,380:15-25. [7] HUANG M, GUIBERT M, THÉVENET J, et al. A new test method to simulate low-severity wear conditions experienced by rubber tire materials[J]. Wear,2018,410-411:72-82. doi: 10.1016/j.wear.2018.06.004 [8] NGUYEN V H, ZHENG D, SCHMERWITZ F, et al. An advanced abrasion model for tire wear[J]. Wear,2018,396-397:75-85. doi: 10.1016/j.wear.2017.11.009 [9] FUKAHORI Y, GABRIEL P, LIANG H, et al. A new generalized philosophy and theory for rubber friction and wear[J]. Wear,2020,446-447:203166. [10] SCHALLAMACH A. Abrasion pattern on rubber[J]. Rubber Chemistry and Technology,1953,26(1):230-241. doi: 10.5254/1.3539800 [11] SCHALLAMACH A. Friction and abrasion of rubber[J]. Wear,1958,1(5):384-417. doi: 10.1016/0043-1648(58)90113-3 [12] SOUTHERN E, THOMAS A. Studies of rubber abrasion[J]. Rubber Chemistry and Technology,1979,52(5):1008-1018. doi: 10.5254/1.3535249 [13] FUKAHORI Y, YAMAZAKI H. Mechanism of rubber abrasion: Part I: Abrasion pattern formation in natural rubber vulcanizate[J]. Wear,1994,171(1-2):195-202. doi: 10.1016/0043-1648(94)90362-X [14] FUKAHORI Y, YAMAZAKI H. Mechanism of rubber abrasion: Part 2. General rule in abrasion pattern formation in rubber-like materials[J]. Wear,1994,178(1-2):109-116. doi: 10.1016/0043-1648(94)90135-X [15] MATHEW N, DE S. Scanning electron microscopy studies in abrasion of NR/BR blends under different test conditions[J]. Journal of Materials Science,1983,18(2):515-524. doi: 10.1007/BF00560641 [16] GROSCH K. The speed and temperature dependence of rubber friction and its bearing on the skid resistance of tires[J]. The Physics of Tire Traction: Springer,1974:143-165. [17] THAVAMANI P, BHOWMICK A K, KHASTGIR D. Effect of ageing on strength and wear of tank track pad compounds[J]. Wear,1993,170(1):25-32. doi: 10.1016/0043-1648(93)90347-O [18] PULFORD C. Antioxidant effects during blade abrasion of natural rubber[J]. Journal of Applied Polymer Science,1983,28(2):709-713. doi: 10.1002/app.1983.070280225 [19] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定: GB/T 528—2009[S]. 北京: 中国标准出版社, 2009.Standardization Administration of the People's Republic of China. Determination of tensile stress-strain properties of vulcanized or thermoplastic rubber: GB/T 528—2009[S]. Beijing: China Standards Press, 2009(in Chinese). [20] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶撕裂强度的测定(裤形, 直角形和新月形试样): GB/T 529—2008[S]. 北京: 中国标准出版社, 2008.Standardization Administration of the People's Republic of China. Determination of tear strength of vulcanized or thermoplastic rubber (trousers, right angle and crescent specimens): GB/T 529—2008[S]. Beijing: China Standards Press, 2008(in Chinese). [21] DILEEP P, NARAYANANKUTTY SK. Styrenated phenol modified nanosilica for improved thermo-oxidative and mechanical properties of natural rubber[J]. Polymer Testing,2020,82:106302. doi: 10.1016/j.polymertesting.2019.106302 [22] PANG S, YU Y, ZHANG L, et al. Adjusting silica/rubber interfacial interactions and properties via the click reactions between liquid polybutadiene and silane[J]. Composites Science and Technology,2021:108903. [23] LUO K, YOU G, ZHAO X, et al. Synergistic effects of antioxidant and silica on enhancing thermo-oxidative resistance of natural rubber: Insights from experiments and molecular simulations[J]. Materials & Design,2019,181:107944. [24] LIN J, LUO Y, ZHONG B, et al. Enhanced interfacial interaction and antioxidative behavior of novel halloysite nanotubes/silica hybrid supported antioxidant in styrene-butadiene rubber[J]. Applied Surface Science,2018,441:798-806. doi: 10.1016/j.apsusc.2018.02.086 [25] LUO K, YOU G, ZHANG S, et al. Antioxidation behavior of bonded primary-secondary antioxidant/styrene-butadiene rubber composite: Experimental and molecular simulation investigations[J]. Polymer,2020,188:122143. doi: 10.1016/j.polymer.2019.122143 [26] YAN H, ZHANG L, LIU L, et al. Investigation of the external conditions and material compositions affecting the formation mechanism and size distribution of tire wear particles[J]. Atmospheric Environment,2021,244:118018. doi: 10.1016/j.atmosenv.2020.118018 [27] FRÖHLICH J, NIEDERMEIER W, LUGINSLAND H D. The effect of filler-filler and filler-elastomer interaction on rubber reinforcement[J]. Composites Part A: Applied Science and Manufacturing,2005,36(4):449-460. doi: 10.1016/j.compositesa.2004.10.004