Single-shear test of CFRP plate-engineered cementitious composites-concrete composite interface
-
摘要: 为解决碳纤维增强树脂复合材料(CFRP)片材加固混凝土结构时CFRP片材易过早剥离及工程水泥基复合材料(ECC)加固混凝土结构极限承载力提高不足等问题,采用CFRP片材-ECC-混凝土复合界面,以同时发挥CFRP片材高抗拉强度和ECC多缝开裂及耐久性较好的优势。设计21个单面剪切试件并进行单面剪切试验,研究不同ECC厚度和混凝土/ECC强度对复合界面承载力、应变分布及粘结滑移曲线等影响规律。试验结果表明:设置ECC层的单面剪切试件破坏模式均为CFRP片材和ECC界面间的剥离破坏,有效延缓了CFRP片材的剥离,并可以有效地传递界面剪应力。与无ECC层的试件相比,设置ECC层试件的极限承载力增加了27.3%~59.6%。基于陆新征等提出的极限承载力计算模型,提出了考虑ECC厚度的复合界面单面剪切试件的极限承载力预测模型,计算值与试验值相吻合。采用不同粘结滑移模型对试验数据进行分析,对比结果表明:Ferracuti等提出的模型考虑的影响因素较全面且模型的拟合结果较好。Abstract: To solve the problems of CFRP plate being easy to peel off from concrete of concrete structure strengthened with carbon fiber reinforced polymer (CFRP) plate and the limited increase of bearing capacity of concrete structure strengthened with engineered cementitious composites (ECC), the CFRP plate-ECC-concrete composite interface was proposed to take full advantage of both the high tensile strength of CFRP plate and good durability of ECC with multiple cracking. 21 single-shear specimens with different ECC thickness and concrete/ECC strength were designed and tested. The distribution of interface load-carrying capacity, strain distribution and bond-slip curve of specimens were obtained. The results show that the failure pattern of all specimens with ECC layer is the debonding failure which occurs in the interface between the CFRP plate and ECC. It demonstrates that the ECC layer can obviously delay the debonding of CFRP plate, meanwhile, transfer the interfacial shear stress effectively. Compare with the specimens without ECC layer, the ultimate load-carrying capacity of specimens with ECC layer increases by 27.3%-59.6%. Based on the LU Xinzheng et al’ ultimate load-carrying capacity calculation model, a prediction model of the load-carrying capacity of single-shear specimens considering the thickness of ECC was proposed, and the calculated value is consistent with the experimental results. Different bond-slip models were adopted to analyse the test results and the comparison shows that: Ferracuti et al’ model considers more comprehensive factors and fits better with the test results than other models.
-
Key words:
- composite interface /
- CFRP plate /
- ECC /
- ultimate load-carrying capacity /
- bond-slip constitutive model
-
图 9 CFRP片材-ECC-混凝土复合界面应力分布示意图
Figure 9. Schematic diagram of interface stress distribution between CFRP plate-ECC-concrete composite
P—External force applied; εf—Strain of CFRP plate; σf(x), σc(x)—Stresses of CFRP plate and ECC, respectively; xi—Bonding position for strain gauges of CFRP plate; τ(x)—Interfacial shear stress
图 11 CFRP片材-ECC-混凝土试件粘结-滑移数据拟合曲线
Figure 11. Bond-slip data fitting curves of CFRP plate-ECC-concrete specimens
τ—Corresponding shear stress when the slip is S(Sp); τmax, $\bar \tau$—Peak shear stress; $S_0 $, $\bar S $—Slip corresponding to τmax; Sp—Slip; Su, Sf—Maximum slip; fc, ft—Compressive strength, tensile strength of concrete; βw, Gf—Size influence coefficient and fracture energy; Ef, tf—Elastic modulus and thickness of CFRP plate; bf, bc—Width of CFRP plate and concrete; Ga, ta—Shear modulus and thickness of the adhesive; n—Coefficient
表 1 工程水泥基复合材料(ECC)配合比
Table 1. Proportion of engineered cementitious composites (ECC)
ECC Cement Fly ash Silica fume Quartz sand Water PVA Water reducer Thickener C30 1 3.0 0.3 0.4 1.37 2.00% 0.2% 0.08% C50 1 2.0 0.3 0.4 0.92 2.00% 0.2% 0.05% Notes: Fly ash, silica fume, quartz sand, water—Relative mass ratios to cement; PVA, water reducer, thickener—Relative volume ratios to ECC; PVA—Polyvinyl alcohol. 表 2 聚乙烯醇(PVA)纤维的材料性能
Table 2. Material properties of polyvinyl alcohol (PVA) fibers
Diameter/μm Length/mm Tensile strength/MPa Young’s modulus/GPa Density/(g·cm−3) 40 12 1560 41 1.3 表 3 混凝土配合比
Table 3. Proportion of concrete
kg/m3 Concrete Water Cement Fly ash Sand Gravel C30 165 281 70 678 1206 C50 165 376 95 565 1199 表 4 CFRP片材-ECC-混凝土试件设计
Table 4. Design of CFRP plate-ECC-concrete specimens
Specimen Concrete/ECC strength/MPa ECC thickness/mm C30-E10 30 10 C30-E20 30 20 C30-E30 30 30 C50-E10 50 10 C50-E20 50 20 C50-E30 50 30 C30 30 – 表 5 CFRP片材-ECC-混凝土试验结果汇总
Table 5. Summary of test results of CFRP plate-ECC-concrete specimens
Specimen Ultimate load/kN Average/kN Theoretical/kN E/T YANG yongxin et al[14] Neubauer et al[15] LU xinzheng et al[16] C30-1 9.2 C30-2 9.6 9.9 – – 12.5 20.8 15.4 C30-3 10.8 C30-E10-1 12.3 0.88 C30-E10-2 12.4 12.6 13.9 0.89 27.9 42.3 28.2 C30-E10-3 13.0 0.94 C30-E20-1 14.8 0.89 C30-E20-2 14.6 14.8 16.6 0.88 27.9 42.3 28.2 C30-E20-3 14.9 0.90 C30-E30-1 15.3 0.86 C30-E30-2 15.8 15.8 18.3 0.84 27.9 42.3 28.2 C30-E30-3 16.2 0.89 C50-E10-1 15.9 1.14 C50-E10-2 16.8 16.4 13.9 1.20 30.3 45.2 29.2 C50-E10-3 16.4 1.17 C50-E20-1 20.4 1.22 C50-E20-2 21.5 20.5 16.6 1.19 30.3 45.2 29.2 C50-E20-3 19.6 1.18 C50-E30-1 22.3 1.21 C50-E30-2 20.5 20.9 18.3 1.12 30.3 45.2 29.2 C50-E30-3 20.0 1.09 Notes: E—Experimental value; T—Theoretical value. -
[1] 李向民, 张富文, 许清风. 粘贴不同FRP布加固预制空心板的试验研究和计算分析[J]. 土木工程学报, 2014, 47(2):71-81.LI Xiangmin, ZHANG Fuwen, XU Qingfeng. Experimental study and computational analysis on PC hollow-core slabs strengthened with different FRP strips[J]. China Civil Engineering Journal,2014,47(2):71-81(in Chinese). [2] 施嘉伟, 朱虹, 吴智深, 等. FRP片材-混凝土界面应变率效应试验研究[J]. 土木工程学报, 2012, 45(12):99-107.SHI Jiawei, ZHU Hong, WU Zhishen, et al. Experimental study of the strain rate effect of FRP sheet-concrete interface[J]. China Civil Engineering Journal,2012,45(12):99-107(in Chinese). [3] WU T, SUN Y J, LIU X. Comparative study of the flexural behavior of steel fiber-reinforced lightweight aggregate concrete beams reinforced and prestressed with CFRP tendons[J]. Engineering Structures,2021,233:111901. doi: 10.1016/j.engstruct.2021.111901 [4] 江佳斐, 隋凯. 纤维网格增强超高韧性水泥复合材料加固混凝土圆柱受压性能试验[J]. 复合材料学报, 2019, 36(8):1957-1967.JIANG Jiafei, SUI Kai. Experimental study of compression performance of concrete cylinder strengthened by textile reinforced engineering cement composites[J]. Acta Materiae Compositae Sinica,2019,36(8):1957-1967(in Chinese). [5] 樊健生, 刘入瑞, 张君. 采用混杂纤维ECC的叠合板组合梁负弯矩受力性能试验研究[J]. 土木工程学报, 2021, 54(4):57-67.FAN Jiansheng, LIU Rurui, ZHANG Jun. Experimental research on mechanical behavior of composite beams with precast slabs and hybrid fiber ECC under negative momen[J]. China Civil Engineering Journal,2021,54(4):57-67(in Chinese). [6] 葛文杰, 虞佳敏, 高培琦. 碳纤维布加固玄武岩纤维复材筋工程用水泥基复合材料混凝土梁的受弯性能[J]. 工业建筑, 2020, 50(2):163-168.GE Wenjie, YU Jiamin, GAO Peiqi. Experimental research on the flexural behavior of FRP reinforced ECC-concrete composite beams strengthened with carbon fiber sheet[J]. Industrial Construction,2020,50(2):163-168(in Chinese). [7] WU C, LI V. CFRP-ECC hybrid for strengthening of the concrete structures[J]. Composite Structures,2017,178:372-382. doi: 10.1016/j.compstruct.2017.07.034 [8] 李趁趁, 于爱民, 高丹盈, 等. 侵蚀环境下FRP条带加固锈蚀钢筋混凝土圆柱轴心受压试验[J]. 复合材料学报, 2020, 37(8):2015-2028.LI Chenchen, YU Aimin, GAO Danying, et al. Experimental study on axial compression of corroded reinforced concretecolumns strengthened with FRP strips under erosion environment[J]. Acta Materiae Compositae Sinica,2020,37(8):2015-2028(in Chinese). [9] 谷倩, 董格. 喷射FRP加固震损钢筋混凝土柱抗震性能试验[J]. 复合材料学报, 2016, 33(5):1009-1019.GU Qian, DONG Ge. Test of seismic performance of earthquake damaged reinforced concrete columns strengthened with sprayed FRP[J]. Acta Materiae Compositae Sinica,2016,33(5):1009-1019(in Chinese). [10] ASLAM H M U, KHAN Q Z, SAMI A, et al. Axial compressive behavior of damaged steel and GFRP bars reinforced concrete columns retrofitted with CFRP laminates[J]. Composite Structures,2021,258:113206. doi: 10.1016/j.compstruct.2020.113206 [11] NIE X F, ZHANG S S, YU T. Strengths of RC beams with a fibre-reinforced polymer (FRP)-strengthened web opening[J]. Composite Structures,2021,258:113380. doi: 10.1016/j.compstruct.2020.113380 [12] CORRADI M, VEMURY C M, EDMONDSON V, et al. Local FRP reinforcement of existing timber beams[J]. Compo-site Structures,2021,258:113363. doi: 10.1016/j.compstruct.2020.113363 [13] SUI L, LUO M, YU K, et al. Effect of engineered cementitious composite on the bond behavior between fiber-reinforced polymer and concrete[J]. Composite Structures,2018,184:775-788. doi: 10.1016/j.compstruct.2017.10.050 [14] 杨勇新, 岳清瑞, 胡云昌. 碳纤维布与混凝土粘结性能的试验研究[J]. 建筑结构学报, 2001(3):36-42. doi: 10.3321/j.issn:1000-6869.2001.03.007YANG Yongxin, YUE Qingrui, HU Yunchang. Experimental study on bond performance between carbon fiber sheets and concrete[J]. Journal of Building Structures,2001(3):36-42(in Chinese). doi: 10.3321/j.issn:1000-6869.2001.03.007 [15] NEUBAUER U, ROSTASY F S. Debonding mechanism and model for CFRP-plates as external reinforcement for concrete members[C]//International Conference Composites in Construction. Oporto, 2001. [16] LU X Z, YE L, TENG J, et al. Meso-scale finite element model for FRP sheets/plates bonded to concrete[J]. Engineering Structures,2005,27:564-575. doi: 10.1016/j.engstruct.2004.11.015 [17] ZHANG P, WU G, ZHU H, et al. Mechanical performance of the wet-bond interface between FRP plates and cast-in-place concrete[J]. Journal of Composites for Construction,2014,18(6):04014016. [18] FERRACUTI B, SAVOIA M, MAZZOTTI C. Interface law for FRP-concrete delamination[J]. Composite Structures,2007,80:523-531. doi: 10.1016/j.compstruct.2006.07.001 [19] DAI J G, UEDA T. Local bond stress slip relations for frp sheets-concrete interfaces[J]. Fibre-Reinforced Polymer Reinforcement for Concrete Structures,2003,2:143-152. [20] LU X Z, JIANG J J, TENG J G, et al. Finite element simulation of debonding in FRP-to-concrete bonded joints[J]. Construction and Building Materials,2006,20:412-424. doi: 10.1016/j.conbuildmat.2005.01.033 [21] 陆新征. FRP-混凝土界面行为研究[D]. 北京: 清华大学, 2005.LU Xinzheng. Studies on FRP-concrete interface[D]. Beijing: Tsinghua University, 2005(in Chinese).