Fabrication of In2O3/SnO2-coaxial-electrospinning fiber and investigation on its formaldehyde sensing properties
-
摘要: 两种半导体材料合成的复合材料由于电子亲合能和带隙宽度差形成了同型异质或异型异质结,利用异质结界面形成的费米能级效应可以提高界面载流子迁移率,从而有效改善气体传感器的气敏性能。本文采用自行设计开发的多层同轴静电纺丝装置,构筑了同轴异质复合纳米纤维In2O3/SnO2。所构筑的同轴异质复合纤维In2O3/SnO2外层较大的In2O3纳米颗粒附着在内层较小SnO2纳米颗粒表面,形成中空的分级纤维结构。同轴异质复合纤维In2O3/SnO2中由于存在大量的N-N同型异质结界面,电子迁移率增强,表面活性增强,吸附氧含量增加,对甲醛表现出良好的气敏性能。在250℃环境下,同轴复合纤维In2O3/SnO2气敏元件对50×10-6的甲醛响应为14.12,分别是SnO2、In2O3和混合异质In2O3/SnO2气敏元件对甲醛响应的3.22倍、3.84倍和1.51倍。同轴异质复合纤维In2O3/SnO2气敏元件对甲醛、乙醇、丙酮、甲苯和甲醇表现出良好的交叉选择性。利用同轴静电纺丝法构筑同轴异质复合纤维中提高半导体功能器件性能具有巨大的应用潜力和发展前景。Abstract: Homo heterojunction or hetero heterojunction will form at the surface of two kinds of different semiconductor due to the difference of electronic affinity and band gap width. The interface carrier mobility can be improved by means of Fermi level effect at interface of heterojunction, which improves the gas sensitivity perfor-mance of gas sensor. The coaxial heterocomposite In2O3/SnO2 nanofibers were fabricated by a self-designed multilayer coaxial electrospinning device. The bigger In2O3 nanoparticles on the outer layer of In2O3/SnO2 fibers grow on the surface of the SnO2 nanoparticles on the inner layer of In2O3/SnO2 fiber, which forms the hollow hierarchical fiber structure. N-N homo-heterojunctions interface between of In2O3 and SnO2 nanoparticles will enhance electron mobility, surface activity and the content of adsorption oxygen, which will improve the adsorption capacity of In2O3/SnO2 sensor to formaldehyde. The response of coaxial hetero-nanofiber In2O3/SnO2 sensor is 14.12×10-6 to 50 ×10-6 formaldehyde, are 3.22 times, 3.84 times and 1.51 times of that of SnO2, In2O3 and mixed hetero-nanofiber In2O3/SnO2 sensor at 250℃. The coaxial hetero-nanofiber In2O3/SnO2 sensor also shows excellent cross-selectivity to formaldehyde, ethanol, acetone, ammonia, toluene and methanol. The coaxial hetero composite synthesized by coaxial electrospinning has application potential and development prospect to improve semiconductor function device.
-
图 9 (a) In2O3/SnO2-T气敏元件对甲醛、乙醇、氨气、丙酮、甲苯和甲醇气体的交叉响应曲线;(b) SnO2、In2O3、In2O3/SnO2-T和In2O3/SnO2-H气敏元件工作温度曲线;(c) SnO2、In2O3、In2O3/SnO2-T和In2O3/SnO2-H气敏元件对甲醛的动态响应曲线;(d) SnO2、In2O3、In2O3/SnO2-T和In2O3/SnO2-H气敏元件的响应及恢复时间曲线
Figure 9. (a) Cross-response curves of In2O3/SnO2-T sensor to formaldehyde, ethanol, ammonia, acetone, toluene and methanol; (b) Sensitivities of SnO2, In2O3, In2O3/SnO2-T and In2O3/SnO2-H temperature curves; (c) Transient response curves of gas sensors based on the SnO2, In2O3, In2O3/SnO2-T and In2O3/SnO2-H to formaldehyde; (d) Response and recovery time of SnO2, In2O3, In2O3/SnO2-T and In2O3/SnO2-H sensors
图 10 (a) SnO2和In2O3的能带示意图;(b) SnO2/ In2O3异质结传感机制和能带示意图
Figure 10. (a) Schematic energy band diagram of SnO2 and In2O3; (b) Schematic energy band diagram and illustration of sensing mechanism for a SnO2/In2O3 heterojunction
EVAC—Vacuum level; EF—Fermi level; ECB—Conductive band; EVB—Valence band; Φ—Work function
表 1 同轴异质纳米纤维In2O3/SnO2-T的元素含量
Table 1. Elements content of In2O3/SnO2-T composite nanofibers
Element Mass fraction/wt% Atomic fraction/at% O 11.6 48.9 In 39.6 23.3 Sn 48.8 27.8 表 2 SnO2、In2O3、In2O3/SnO2-T和In2O3/SnO2-H的比表面积
Table 2. Specific surface areas of SnO2, In2O3, In2O3/SnO2-T and In2O3/SnO2-H nanofibers
Sample Specific surface areas/(m2·g−1) SnO2 37.9230 In2O3 33.4763 In2O3/SnO2−T 88.6171 In2O3/SnO2−H 63.8690 -
[1] NIU R, HE F, JIANG Y, et al. Cycle and harm of main pollu-tants in thermal system of gas turbiner[J]. IOP Conference Series: Earth and Environmental Science,2020,546(3):032028. [2] LIANG X S, YIN M J, LIU X Q, et al. Research progress of formaldehyde pollution in indoor air[J]. Chinese Journal of Public Health Management,2019,35(3):343-348. [3] LI H, LI Y, LI M, et al. Facile and ultrasensitive electroche-mical impedance sensing for formaldehyde based on silver ions doped in controllable and homogeneous silica microspheres[J]. Sensors and Actuators B: Chemical,2019,284:657-662. doi: 10.1016/j.snb.2019.01.021 [4] SONG K, PENG X, GUO W, et al. Health management decision of sensor system based on health reliability degree and grey group decision-making[J]. Sensors,2018,18(7):2316. doi: 10.3390/s18072316 [5] LIU F Y, FAN Y Y, JIANG L X, et al. Photo-electrometallurgy for semiconductor elements extraction taking tellurium as example[J]. The Chinese Journal of Nonferrous Metals,2018,28(2):397-405. [6] ZARGARI N, CHENG Z, PAES R. A guide to matching medium voltage drive topology to petrochemical applications[C]// Petroleum and Chemical Industry Technical Conference, 2017, 54(2): 1912-1920. [7] KOICHI S, NAN M, KEN W, et al. Effect of humid aging on the oxygen adsorption in SnO2 gas sensors[J]. Sensors,2018,18(1):254. doi: 10.3390/s18010254 [8] PINEAU N J, KELLER S D, AT GÜNTNER, et al. Palladium embedded in SnO2 enhances the sensitivity of flame-made chemoresistive gas sensors[J]. ECS Meeting Abstracts,2021,187(1):1453. doi: 10.1007/s00604-019-4080-7 [9] YANG W, WAN P, JIA M, et al. A novel electronic nose based on porous In2O3 microtubes sensor array for the discrimination of VOCs[J]. Biosensors & Bioelectronics,2015,64:547-553. [10] PENG L, XIAO Y, WANG X, et al. Realization of visible light photocatalysis by wide band gap pure SnO2 and study of In2O3 sensitization porous SnO2 photolysis catalyst[J]. ChemistrySelect,2019,4(29):8460-8469. doi: 10.1002/slct.201901977 [11] YAN S, LI Z, LI H, et al. Ultra-sensitive room-temperature H2S sensor using Ag-In2O3 nanorod composites[J]. Jour-nal of Materials Science,2018,53(24):16331-16344. doi: 10.1007/s10853-018-2789-z [12] GROMOV V F, IKIM M I, GERASIMOV G N, et al. Effect of the method for producing the ZnO-In2O3 composite on its sensor activity in hydrogen detection[J]. Russian Journal of Physical Chemistry B,2022,15(6):1084-1086. [13] HAN D M, ZHAI L L, GU F B, et al. Highly sensitive NO2 gas sensor of ppb-level detection based on In2O3 nanobricks at low temperature[J]. Sensors and Actuators B:Chemical,2018,262:655-663. doi: 10.1016/j.snb.2018.02.052 [14] ESPID E, TAGHIPOUR F. Development of highly sensitive ZnO/In2O3 composite gas sensor activated by UV-LED[J]. Sensors and Actuators B: Chemical,2017,241:828-839. [15] EOM K, YOO I H, KALANUR S S, et al. Photocatalytic degradation characteristics of heterojunction SnO2-CuxO nanopowders of methylene blue under UV light[J]. Korean Journal of Chemical Engineering,2021,38(3):617-623. doi: 10.1007/s11814-020-0700-5 [16] SUN L, WANG B, WANG Y. High-temperature gas sensor based on novel Pt single atoms@SnO2 nanorods@SiC nanosheets multi-heterojunctions[J]. ACS Applied Materials & Interfaces,2020,12(19):21808-21817. [17] SAMANTA C, GHATAK A, RAYCHAUDHURI A K, et al. ZnO/Si nanowires heterojunction array-based nitric oxide (NO) gas sensor with noise-limited detectivity approaching 10 ppb[J]. Nano-technology,2019,30(30):305501. doi: 10.1088/1361-6528/ab10f8 [18] ZHANG H, LI H R, CAI L N, et al. Performances of In-doped CuO-based heterojunction gas sensor[J]. Journal of Materials Science: Materials in Electronics,2020,31(2):910-919. doi: 10.1007/s10854-019-02599-w [19] LIU Y L, LI G, MI R. An environment-benign method for the synthesis of p-NiO/n-ZnO heterostructure with excellent performance for gas sensing and photocatalysis[J]. Sensors and Actuators B: Chemical,2014,191:537-544. [20] SEN S K, BARMAN U C, MANIR M S, et al. X-ray peak profile analysis of pure and Dy-doped α-MoO3 nanobelts using Debye-Scherrer, Williamson-Hall and Halder-Wagner methods[J]. Advances in Natural Sciences: Nanoscience and Nanotechnology,2020,11(2):025004. doi: 10.1088/2043-6254/ab8732 [21] DU H Y, WANG J, SUN Y H, et al. Investigation of gas sensing properties of SnO2/In2O3 composite hetero-nanofibers treated by oxygen plasma[J]. Sensors and Actuators B: Chemical,2015,206:753-763. doi: 10.1016/j.snb.2014.09.010 [22] SHEN S, ZHANG X, CHENG X, et al. Oxygen-vacancy-enriched porous α-MoO3 nanosheets for trimethylamine sensing[J]. ACS Applied Nano Materials,2019,2(12):8016-8026. doi: 10.1021/acsanm.9b02072 [23] WANG Z, GAO S, FEI T, et al. The construction of ZnO/SnO2 heterostructure on reduced graphene oxide for enhanced nitrogen dioxide sensitive performances at room temperature[J]. ACS Sensors,2019,4(8):2048-2057. doi: 10.1021/acssensors.9b00648 [24] FAN Y, SHI Y, XIANG Q, et al. A low temperature formaldehyde gas sensor based on hierarchical SnO/SnO2 nano-flowers assembled from ultrathin nanosheets: Synthesis, sensing performance and mechanism[J]. Sensors and Actuators B: Chemical,2019,294:106-115. [25] LI R, YUAN Z, MENG F, et al. The investigation and DFT calculation on the gas sensing properties of nanostructured SnO2[J]. Microelectronic Engineering,2021,236(16):111469. [26] KOŚCIELNIAK P, MAZUR J, HENEK J, et al. XPS and AFM studies of surface chemistry and morphology of In2O3 ultrathin films deposited by rheotaxial growth and vacuum oxidation[J]. Thin Solid Films,2011,520(3):927-931. doi: 10.1016/j.tsf.2011.04.184 [27] FENEBERG M, LIDIG C, LANGE K, et al. Ordinary and extraordinary dielectric functions of rutile SnO2 up to 20 eV[J]. Applied Physics Letters, 2014, 104(23): 231106. [28] ROCABADO D, ISHIMOTO T, KOYAMA M. The effect of SnO2(110) supports on the geometrical and electronic properties of platinum nanoparticles[J]. SN Applied Sciences,2019,1(11):1-15. [29] HUBMANN A H , DIETZ D, BRÖTZ J, et al. Interface behaviour and work function modification of self-assembled monolayers on Sn-doped In2O3[J]. Surfaces,2019,2(2):241-256. doi: 10.3390/surfaces2020019 [30] DING P, XU D, DONG N, et al. A high-sensitivity H2S gas sensor based on optimized ZnO-ZnS nano-heterojunction sensing material[J]. Chinese Chemical Letters,2020,31(8):2050-2054. doi: 10.1016/j.cclet.2019.11.024