留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化石墨烯负载Ag3PO4@聚苯胺复合材料的制备及其光催化性能

王毅 吴梦亚 雷伟岩 武世然 王岳 岳玉琛 沈毅 李锋锋

王毅, 吴梦亚, 雷伟岩, 等. 氧化石墨烯负载Ag3PO4@聚苯胺复合材料的制备及其光催化性能[J]. 复合材料学报, 2022, 39(6): 2764-2773. doi: 10.13801/j.cnki.fhclxb.20210708.003
引用本文: 王毅, 吴梦亚, 雷伟岩, 等. 氧化石墨烯负载Ag3PO4@聚苯胺复合材料的制备及其光催化性能[J]. 复合材料学报, 2022, 39(6): 2764-2773. doi: 10.13801/j.cnki.fhclxb.20210708.003
WANG Yi, WU Mengya, LEI Weiyan, et al. Preparation of graphene oxide load Ag3PO4@polyaniline composite and its photocatalytic performance[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2764-2773. doi: 10.13801/j.cnki.fhclxb.20210708.003
Citation: WANG Yi, WU Mengya, LEI Weiyan, et al. Preparation of graphene oxide load Ag3PO4@polyaniline composite and its photocatalytic performance[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2764-2773. doi: 10.13801/j.cnki.fhclxb.20210708.003

氧化石墨烯负载Ag3PO4@聚苯胺复合材料的制备及其光催化性能

doi: 10.13801/j.cnki.fhclxb.20210708.003
基金项目: 国家自然科学基金(51772099;51572069)
详细信息
    通讯作者:

    沈毅,博士,教授,博士生导师,研究方向为光学材料  E-mail:tsshenyi@sina.com

  • 中图分类号: TB3333

Preparation of graphene oxide load Ag3PO4@polyaniline composite and its photocatalytic performance

  • 摘要: 为了解决Ag3PO4严重的光腐蚀问题,采用化学吸附法制备了核壳结构的聚苯胺(PANI)包覆磷酸银(Ag3PO4@PANI),并用氧化石墨烯(GO)作为Ag3PO4@PANI复合光催化剂的载体,通过PANI和GO的协同作用提升了载流子的分离效率。当GO与Ag3PO4@PANI质量比为4%时,催化剂在24 min内降解苯酚的去除率可达98.1%,18 min内对环丙沙星(CIP)的去除率可达90.3%,15 min内对四环素(TC)的去除率可达98.6%,在5 min内对各类染料的去除率为100%。经过6次重复反应,Ag3PO4@PANI/GO仍保持较好的稳定性。自由基捕获实验证实•h+和•O2是光催化降解的主要活性物种。实验结果表明,PANI与Ag3PO4之间形成了核壳结构,GO的引入提升了电子的传输速率,PANI和GO对Ag3PO4的协同作用促进了光生电子-空穴的分离,进而提升了Ag3PO4的稳定性和光催化活性。

     

  • 图  1  PANI、GO、Ag3PO4、Ag3PO4@PANI和Ag3PO4@PANI/GO的XRD图谱

    Figure  1.  XRD patterns of PANI, GO, Ag3PO4, Ag3PO4@PANI and Ag3PO4@PANI/GO

    图  2  Ag3PO4@PANI/4%GO的XPS图谱

    Figure  2.  XPS spectra of Ag3PO4@PANI/4%GO

    图  3  PANI、Ag3PO4、Ag3PO4@PANI和Ag3PO4@PANI/4%GO的FTIR (a) 和Raman图谱 (b)

    Figure  3.  FTIR (a) and Raman (b) spectra of PANI, Ag3PO4, Ag3PO4@PANI and Ag3PO4@PANI/4%GO

    图  4  纯Ag3PO4 (a)、Ag3PO4@PANI (b) 和Ag3PO4@PANI/GO (c) 的SEM图像;Ag3PO4@PANI (d) 和Ag3PO4@PANI/4%GO (e) 的TEM图像;Ag3PO4@PANI/4%GO的EDS能谱图 (f)

    Figure  4.  SEM images of Ag3PO4 (a), Ag3PO4@PANI (b) and Ag3PO4@PANI/GO (c); TEM images of Ag3PO4@PANI (d) and Ag3PO4@PANI/4%GO (e); EDS spectrum of Ag3PO4@PANI/4%GO (f)

    图  5  Ag3PO4@PANI/4%GO的线扫图

    Figure  5.  Line analyses of Ag3PO4@PANI/4%GO

    图  6  Ag3PO4和Ag3PO4@PANI/4%GO的N2吸附-解吸等温线

    Figure  6.  N2 adsorption-desorption isotherms of Ag3PO4 and Ag3PO4@PANI/4%GO

    图  7  PANI、Ag3PO4、Ag3PO4@PANI和Ag3PO4@PANI/4%GO的UV-Vis (a)、Kubelka-Munk图 (b)、PL图 (c)、EIS图 (d) 和光电流响应图 (e)

    Figure  7.  UV-Vis diffuse reflectance spectra (a), plot of (α)1/2 vs. (b), Photoluminescence spectrum (c), EIS of Nyquist plots (d) and photocurrent responses (e) of PANI, Ag3PO4, Ag3PO4@PANI and Ag3PO4@PANI/4%GO

    图  8  PANI、Ag3PO4、Ag3PO4@PANI和Ag3PO4@PANI/GO可见光下降解苯酚曲线 (a)、降解环丙沙星(CIP)曲线 (b);Ag3PO4@PANI/GO降解四环素(TC)、罗丹明B(RhB)、亚甲基蓝(MB)、亚甲基红(MR)和亚甲基橙 (MO)的曲线 (c);Ag3PO4@PANI/4%GO降解苯酚 (d)、CIP (e) 和TC (f) 的紫外-可见吸收光谱曲线

    Figure  8.  Under visible light curves of degradation of phenol (a), curves of degradation of ciprofloxacin (CIP) (b) of PANI, Ag3PO4, Ag3PO4@PANI and Ag3PO4@PANI/GO; Curves of degradation of tetracycline (TC), rhodamine B (RhB), methylene blue (MB), methylene red (MR) and methylene orange (MO) by Ag3PO4@PANI/GO (c); Degradation of phenol (d), CIP (e) and TC (f) by Ag3PO4@PANI/4%GO ultraviolet-visible absorption spectrum curves

    Ct—Concentration after time t of degradation; C0—Initial concentration

    图  9  Ag3PO4@PANI/4%GO 进行6次光催化循环降解苯酚的图谱 (a)、循环实验前后样品的XRD图谱 (b)

    Figure  9.  Reusability tests with Ag3PO4@PANI/4%GO using phenol (a) and XRD patterns before and after reusability tests (b)

    图  10  (a) Ag3PO4@PANI/4%GO的活性物种捕获实验;(b) Ag3PO4@PANI/4%GO、Ag3PO4和Ag3PO4@PANI的Mott–Schottky曲线

    Figure  10.  (a) Trapping experiments for active species of Ag3PO4@PANI/4%GO; (b) Mott–Schottky curves obtained for Ag3PO4@PANI/4%GO, Ag3PO4 and Ag3PO4@PANI

    AO—Ammonium oxalate; TBA—Tertiary butyl alcohol; PBQ—Benzoquinone; C—Interface capacitance

    图  11  Ag3PO4@PANI/GO光催化降解污染物的机制

    Figure  11.  Schematic illustration of electronehole separation over Ag3PO4@PANI/GO

    ECB—Conduction band potential; EVB—Valence band potential; LUMO—Lowest unoccupied molecular orbital; HOMO—Highest occupied molecular orbital

    表  1  Ag3PO4@聚苯胺(PANI)/氧化石墨烯(GO)复合材料的命名

    Table  1.   Naming of Ag3PO4@polyaniline (PANI)/graphene oxide (GO) composites

    Sample Mass ratio
    of GO/%
    Mass ratio of
    Ag3PO4@PANI/%
    Ag3PO4@PANI/2%GO 2 100
    Ag3PO4@PANI/4%GO 4 100
    Ag3PO4@PANI/6%GO 6 100
    Ag3PO4@PANI/8%GO 8 100
    Ag3PO4@PANI/10%GO 10 100
    下载: 导出CSV
  • [1] KERGARAVAT S V, HERNÁNDEZ S R, GAGNETEN A M. Second-, third-and fourth-generation quinolones: Ecotoxicity effects on daphnia and ceriodaphnia species[J]. Chemosphere,2021,262:127823. doi: 10.1016/j.chemosphere.2020.127823
    [2] DORIVAL-GARCÍA N, ZAFRA-GÓMEZ A, NAVALÓN A, et al. Removal and degradation characteristics of quinolone antibiotics in laboratory-scale activated sludge reactors under aerobic, nitrifying and anoxic conditions[J]. Jour-nal of Environmental Management,2013,120:75-83.
    [3] WANG H, LI J, HUO P, et al. Preparation of Ag2O/Ag2CO3/MWNTs composite photocatalysts for enhancement of ciprofloxacin degradation[J]. Applied Surface Science,2016,366:1-8. doi: 10.1016/j.apsusc.2015.12.229
    [4] LI N, ZHANG J, TIAN Y, et al. Precisely controlled fabrication of magnetic 3D γ-Fe2O3@ ZnO core-shell photocatalyst with enhanced activity: Ciprofloxacin degradation and mechanism insight[J]. Chemical Engineering Journal,2017,308:377-385. doi: 10.1016/j.cej.2016.09.093
    [5] BI Y, OUYANG S, UMEZAWA N, et al. Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties[J]. Journal of the American Chemical Society,2011,133(17):6490-6492. doi: 10.1021/ja2002132
    [6] HE Y, ZHANG L, TENG B, et al. New application of Z-scheme Ag3PO4/g-C3N4 composite in converting CO2 to fuel[J]. Environmental Science & Technology,2015,49(1):649-656.
    [7] YANG X, CUI H, LI Y, et al. Fabrication of Ag3PO4-graphene composites with highly efficient and stable visible light photocatalytic performance[J]. ACS Catalysis,2013,3(3):363-369. doi: 10.1021/cs3008126
    [8] WU A, TIAN C, CHANG W, et al. Morphology-controlled synthesis of Ag3PO4 nano/microcrystals and their antibacterial properties[J]. Materials Research Bulletin,2013,48(9):3043-3048. doi: 10.1016/j.materresbull.2013.04.054
    [9] WU S, LIN Y, YANG C, et al. Enhanced activation of peroxymonosulfte by LaFeO3 perovskite supported on Al2O3 for degradation of organic pollutants[J]. Chemosphere,2019,237:124478. doi: 10.1016/j.chemosphere.2019.124478
    [10] XU Y S, ZHANG W D. Morphology-controlled synthesis of Ag3PO4 microcrystals for high performance photocatalysis[J]. CrystEngComm,2013,15(27):5407-5411. doi: 10.1039/c3ce40172c
    [11] YU H, DONG Q, JIAO Z, et al. Ion exchange synthesis of PAN/Ag3PO4 core-shell nanofibers with enhanced photocatalytic properties[J]. Journal of Materials Chemistry A,2014,2(6):1668-1671. doi: 10.1039/C3TA14447J
    [12] KHASEVANI S G, MOHAGHEGH N, GHOLAMI M R. Kinetic study of navy blue photocatalytic degradation over Ag3PO4/BiPO4@MIL-88B (Fe)@gC3N4 core@shell nanocomposite under visible light irradiation[J]. New Journal of Chemistry,2017,41(18):10390-10396. doi: 10.1039/C7NJ01968H
    [13] DENG J, LIU L, NIU T, et al. Synthesis and characterization of highly efficient and stable Pr6O11/Ag3PO4/Pt ternary hybrid structure[J]. Applied Surface Science,2017,403:531-539. doi: 10.1016/j.apsusc.2017.01.257
    [14] KIANI M, BAGHERZADEH M, KAVEH R, et al. Novel Pt- Ag3PO4/CdS/chitosan nanocomposite with enhanced photocatalytic and biological activities[J]. Nanomaterials,2020,10(11):2320. doi: 10.3390/nano10112320
    [15] PEI S, CHENG H M. The reduction of graphene oxide[J]. Carbon,2012,50(9):3210-3228. doi: 10.1016/j.carbon.2011.11.010
    [16] NACIRI Y, HSINI A, AJMAL Z, et al. Recent progress on the enhancement of photocatalytic properties of BiPO4 using π–conjugated materials[J]. Advances in Colloid and Interface Science,2020:102160.
    [17] CHEN S, HUANG D, ZENG G, et al. In-situ synthesis of facet-dependent BiVO4/Ag3PO4/PANI photocatalyst with enhanced visible-light-induced photocatalytic degradation performance: Synergism of interfacial coupling and hole-transfer[J]. Chemical Engineering Journal,2020,382:122840. doi: 10.1016/j.cej.2019.122840
    [18] TAO R, YANG S, SHAO C, et al. Reusable and flexible g-C3N4/Ag3PO4/polyacrylonitrile heterojunction nanofibers for photocatalytic dye degradation and oxygen evolution[J]. ACS Applied Nano Materials,2019,2(5):3081-3090. doi: 10.1021/acsanm.9b00428
    [19] LIU L, HU P, LI Y, et al. P3HT-coated Ag3PO4 core-shell structure for enhanced photocatalysis under visible light irradiation[J]. Applied Surface Science,2019,466:928-936. doi: 10.1016/j.apsusc.2018.10.112
    [20] SUN X, LIU Z, GUO J, et al. Novel stable enhanced visible light photocatalytic system based on a Ag3PO4@polypyrrole core-shell Z-scheme with in-situ generated metallic Ag ohmic contacts[J]. Journal of Physics and Chemistry of Solids,2020,146:109572. doi: 10.1016/j.jpcs.2020.109572
    [21] LIU L, DING L, LIU Y, et al. A stable Ag3PO4@PANI core@shell hybrid: Enrichment photocatalytic degradation with π-π conjugation[J]. Applied Catalysis B: Environmental,2017,201:92-104. doi: 10.1016/j.apcatb.2016.08.005
    [22] WANG Y, WU M, LEI W, et al. Preparation of 3D grid structure rGH/α-Ag3VO4/GOQDs and its catalytic performance under visible light[J]. Journal of Alloys and Compounds, 2022, 895: 162410-162415.
    [23] ISHIKAWA A, TAKATA T, KONDO J N, et al. Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ≤650 nm)[J]. Journal of the American Chemical Society,2002,124(45):13547-13553. doi: 10.1021/ja0269643
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  1120
  • HTML全文浏览量:  587
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-04
  • 修回日期:  2021-06-24
  • 录用日期:  2021-06-27
  • 网络出版日期:  2021-07-08
  • 刊出日期:  2022-06-01

目录

    /

    返回文章
    返回