Mechanical performance of graphene/polymethyl-methacrylate nano-composites under tension loads: A coarse-grained molecular dynamic simulation
-
摘要: 高强度是复合材料设计追求的重要目标,自然界中的珍珠层具有优异的力学性能,受其复杂的层次结构的启发,设计了一种石墨烯交错排布增强聚甲基丙烯酸甲酯的纳米复合材料。利用粗粒化分子动力学模拟,系统地研究了拉伸载荷作用下石墨烯的二维几何形状、层数、空间排布对纳米复合材料整体力学性能的影响。结果表明,不同几何形状的石墨烯对复合材料的增强效果有很大的差异,其中,矩形与锯齿形接近,都强于梯形石墨烯;存在最佳的石墨烯层数使复合材料的整体拉伸力学性能最强;减少石墨烯层间距离或增加重叠距离,都可提升其力学性能。总之,现有的研究结果揭示了各个因素的影响规律及微观机制,为设计具有目标性能的纳米复合材料提供了理论指导。
-
关键词:
- 粗粒化分子动力学 /
- 石墨烯/聚甲基丙烯酸甲酯纳米复合材料 /
- 拉伸 /
- 几何形状 /
- 力学性能
Abstract: Strength is a important factor to consider when designing high-performance composite materials. Inspired by the excellent mechanical properties and complex hierarchical structure of nacre, a nanocomposite was designed, in which the graphene layers were interlaced in the polymethyl methacrylate matrix. Coarse-grained molecular dynamics simulations were used to investigate the effect of various geometrical variations on the mechanical properties under tension loads, including the two-dimensional geometric shapes of graphene, the number of graphene layers, the interlayer distance of the graphene sheets and the overlap length of the graphene sheets. The simulation results show that the strengthening effects of different geometries of graphenes on composites are very different, among which, the rectangle and sawtooth shapes are close to each other and are stronger than the trapezoidal graphene. There is an optimal number of graphene layers to make the composite have the strongest overall mechanical properties. The mechanical properties of graphene can be improved by reducing the interlayer distance of the graphene sheets or increasing the overlap length of the graphene sheets. Overall, this paper systematically studies the influencing factors of graphene-reinforced polymer composites and reveals the influence rules and microscopic mechanisms of each factor. This study provides a useful guidance for the design of nanocompo-sites with targeted properties. -
表 1 粗粒化石墨烯势函数及参数[41]
Table 1. Functional form and parameters of the force filed for the coarse-grained graphene[41]
Potential Function Parameter Bond ${V_{{\rm{bond}}}} = {k_{\rm{b}}}{(1 - {{\rm{e}}^{ - \partial (d - {d_0})}})^2}$ ${k_{\rm{b}}} = 194.61\;{\rm{kcal}} \cdot {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}};\;\;{d_0} = 0.28\;{\rm{nm}};\;\;\partial = 0.155\;{\rm{n}}{{\rm{m}}^{ - 1}}$ Angle ${V_{ {\rm{angle} }} } = {k_{\rm{\theta } } }{(\theta - {\theta _0})^2}$ ${k_{\rm{\theta }}} = 409.40\;{\rm{kcal}} \cdot {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}};\;\;{\theta _0} = 120^\circ $ Dihedral ${V_{{\rm{dihedral}}}} = {k_\Phi }(1 - \cos (2\phi ))$ ${k_\Phi } = 4.15\;{\rm{kcal}} \cdot {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}$ Non-bonded ${V_{ {\rm{nb} } } } = 4\varepsilon \left[ { { {\left( {\dfrac{\sigma }{r} } \right)}^6} - { {\left( {\dfrac{\sigma }{r} } \right)}^{12} } } \right],\;\;r < {r_{ {\rm{cut} } } }$ $\varepsilon = 0.82\;{\rm{kcal}} \cdot {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}};\;\;{r_{{\rm{cut}}}} = 1.2\;{\rm{nm;}}\;\;\sigma = {\rm{0}}{\rm{.346\;nm}}$ Notes: Vbond, Vangle, Vdihedral and Vnb—Sum over the energies of all the bonds, angles, dihedrals, and pair-wise non-bonded interactions of the system respectively; d, θ and ϕ—Bond stretching, bond angle bending and dihedral angle torsion; kb and ∂—Depth and a parameter related to the width of the potential well of the bond respectively; d0—Equilibrium distance of the bond; kθ—Spring constant of the angle interaction; θ0—Equilibrium angle; kΦ—Spring constant of the dihedral interaction; r—Distance between two atoms; ε—Depth of the Lennard-Jones potential well for non-bonded interactions; σ—Lennard-Jones parameter associated with the equilibrium distance between two non-bonded beads; rcut—Cutoff distance of the non-bonded interactions. 表 2 粗粒化聚甲基丙烯酸甲酯(PMMA)势函数及参数[42]
Table 2. Functional form and parameters of the force filed for the coarse-grained polymethyl methacrylate (PMMA)[42]
Potential Function Parameters Bond ${V_{{\rm{bond}}}} = \dfrac{{{k_{\rm{d}}}}}{2}{(d - d{}_0)^2}$ ${k_{\rm{d}}} = 19461\;{\rm{kcal}} \cdot {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}} \cdot {\rm{n}}{{\rm{m}}^{ - 2}};\;\;{d_0} = 0.402\;{\rm{nm}}$ Angle ${V_{{\rm{angle}}}} = \dfrac{{{k_{\rm{\theta }}}}}{2}{(\theta - {\theta _0})^2}$ ${k_{\rm{\theta }}} = 794.89\;{\rm{kcal}} \cdot {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}} \cdot {\rm{ra}}{{\rm{d}}^{{\rm{ - 2}}}};\;\;{\theta _0} = 89.6^\circ $ Dihedral ${V_{{\rm{dihedral}}}} = \dfrac{{{k_\Phi }}}{2}(1 - \cos (2\phi ))$ ${k_\Phi } = 42.05\;{\rm{kcal}} \cdot {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}$ Non-bonded ${V_{{\rm{nb}}}} = {D_0}\left[ {{{\left( {\dfrac{{{r_0}}}{r}} \right)}^{12}} - 2{{\left( {\dfrac{{{r_0}}}{r}} \right)}^6}} \right]$ ${D_0} = 1.34\;{\rm{kcal}} \cdot {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}{\rm{;}}\;\;{r_0} = 0.653\;{\rm{nm}}$ Notes: kd—Spring constant of the bond length; D0 and r0—Associated with the equilibrium well depth and the equilibrium distance of the non-bonded interactions. -
[1] RITCHIE R O. The conflicts between strength and toughness[J]. Nature Materials,2011,10(11):817-822. doi: 10.1038/nmat3115 [2] ESPINOSA H D, JUSTER A L, LATOURTE F J, et al. Tablet-level origin of toughening in abalone shells and translation to synthetic composite materials[J]. Nature Communications,2011,2(1):1-9. [3] RHO J Y, KUHN-SPEARING L, ZIOUPOS P. Mechanical properties and the hierarchical structure of bone[J]. Medical Engineering & Physics,1998,20(2):92-102. [4] SONG J, CHEN C, ZHU S, et al. Processing bulk natural wood into a high-performance structural material[J]. Nature,2018,554(7691):224-228. doi: 10.1038/nature25476 [5] BENZAIT Z, TRABZON L. A review of recent research on materials used in polymer-matrix composites for body armor application[J]. Journal of Composite Materials,2018,52(23):3241-3263. doi: 10.1177/0021998318764002 [6] 吕志杰, 邓莉莉, 田清波, 等. 仿生结构复合陶瓷刀具材料力学性能及显微结构[J]. 稀有金属材料与工程, 2018, 47(12):3848-3852.LV Zhijie, DENG Lili, TIAN Qingbo, et al. Microstructure and mechanical properties of biomimetic composite ceramic tool materials[J]. Rare Metal Materials and Engineering,2018,47(12):3848-3852(in Chinese). [7] 孙娜, 吴俊涛, 江雷. 贝壳珍珠层及其仿生材料的研究进展[J]. 高等学校化学学报, 2011, 32(10):2231-2239.SUN Na, WU Juntao, JIANG Lei. Research progress of nacre and biomimetic synthesis of nacre-like materials[J]. Chemical Journal of Chinese Universities-Chinese,2011,32(10):2231-2239(in Chinese). [8] SUN X, HUANG C, WANG L, et al. Recent progress in graphene/polymer nanocomposites[J]. Advanced Mater-ials,2020,33:2001105. [9] WAN S, PENG J, JIANG L, et al. Bioinspired graphene-based nanocomposites and their application in flexible energy devices[J]. Advanced Materials,2016,28(36):7862-7898. doi: 10.1002/adma.201601934 [10] WANG Y, XIA S, LI H, et al. Unprecedentedly tough, folding-endurance, and multifunctional graphene-based artificial nacre with predesigned 3D nanofiber network as matrix[J]. Advanced Functional Materials,2019,29(38):1903876. doi: 10.1002/adfm.201903876 [11] MAO L B, GAO H L, YAO H B, et al. Synthetic nacre by predesigned matrix-directed mineralization[J]. Science,2016,354(6308):107-110. doi: 10.1126/science.aaf8991 [12] MEYERS M A, LIN A Y M, CHEN P Y, et al. Mechanical strength of abalone nacre: Role of the soft organic layer[J]. Journal of the Mechanical Behavior of Biomedical Mater-ials,2008,1(1):76-85. doi: 10.1016/j.jmbbm.2007.03.001 [13] SHEN X, ZHENG Q, KIM J K. Rational design of two-dimensional nanofillers for polymer nanocomposites toward multifunctional applications[J]. Progress in Materials Science,2021,115:100708. doi: 10.1016/j.pmatsci.2020.100708 [14] YAO H B, GE J, MAO L B, et al. 25th anniversary article: Artificial carbonate nanocrystals and layered structural nanocomposites inspired by nacre: Synthesis, fabrication and applications[J]. Advanced Materials,2014,26(1):163-188. doi: 10.1002/adma.201303470 [15] 张学骜, 王建方, 吴文健, 等. 贝壳珍珠层生物矿化及其对仿生材料的启示[J]. 无机材料学报, 2006, 21(2):257-266. doi: 10.3321/j.issn:1000-324X.2006.02.001ZHANG Xueao, WANG Jianfang, WU Wenjian, et al. Advances in biomineralization of nacreous layer and its inspiration for biomimetic materials[J]. Journal of Inorganic Materials,2006,21(2):257-266(in Chinese). doi: 10.3321/j.issn:1000-324X.2006.02.001 [16] WANG R Z, SUO Z, EVANS A G, et al. Deformation mechanisms in nacre[J]. Journal of Materials Research,2001,16(9):2485-2493. doi: 10.1557/JMR.2001.0340 [17] 柏嵩, 沈小平. 石墨烯基无机纳米复合材料[J]. 化学进展, 2010, 22(11):2106-2118.BAI Song, SHEN Xiaoping. Graphene-based inorganic nanocomposites[J]. Progress in Chemistry,2010,22(11):2106-2118(in Chinese). [18] STANKOVICH S, DIKIN D A, DOMMETT G H B, et al. Graphene-based composite materials[J]. Nature,2006,442(7100):282-286. doi: 10.1038/nature04969 [19] KUMAR A, SHARMA K, DIXIT A R. A review on the mechanical properties of polymer composites reinforced by carbon nanotubes and graphene[J]. Carbon Letters,2020,31(9):149-165. [20] 张力, 吴俊涛, 江雷. 石墨烯及其聚合物纳米复合材料[J]. 化学进展, 2014, 26(4):560-571.ZHANG Li, WU Juntao, JIANG Lei. Graphene and its polymer nanocomposites[J]. Progress in Chemistry,2014,26(4):560-571(in Chinese). [21] SALEEM A, ZHANG Y, GONG H, et al. Enhanced thermal conductivity and mechanical properties of a GNP reinforced Si3N4 composite[J]. Rsc Advances,2019,9(68):39986-39992. doi: 10.1039/C9RA09286B [22] SINGH J, WANI M F. Fretting wear of spark plasma sintered Ti3SiC2/GNP ceramic composite against Si3N4[J]. Ceramics International,2021,47(4):5648-5655. doi: 10.1016/j.ceramint.2020.10.150 [23] MONTAZERI A, MOBARGHEI A. Nanotribological behavior analysis of graphene/metal nanocomposites via MD simulations: New concepts and underlying mechanisms[J]. Journal of Physics and Chemistry of Solids,2018,115:49-58. doi: 10.1016/j.jpcs.2017.12.012 [24] TANG W, ZHANG J, WU J, et al. Mechanical properties and enhancement mechanisms of titanium-graphene nanocomposites[J]. Acta Mechanica Sinica,2020,36(4):855-865. doi: 10.1007/s10409-020-00968-x [25] 周登山. 功能化石墨烯/聚合物体系的分子间相互作用力的分子动力学模拟研究[D]. 青岛: 中国石油大学(华东), 2010.ZHOU Dengshan. Molecular dynamics simulation investigation of intermolecular interactions for functionalized graphene sheets/polymers system[D]. Qingdao: China University of Petroleum (East China), 2010(in Chinese). [26] FANG M, WANG K, LU H, et al. Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites[J]. Journal of Materials Chemistry,2009,19(38):7098-7105. doi: 10.1039/b908220d [27] WAN Y J, TANG L C, GONG L X, et al. Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties[J]. Carbon,2014,69:467-480. doi: 10.1016/j.carbon.2013.12.050 [28] ZAMAN I, KUAN H C, MENG Q, et al. A facile approach to chemically modified graphene and its polymer nanocomposites[J]. Advanced Functional Materials,2012,22(13):2735-2743. doi: 10.1002/adfm.201103041 [29] CHENG Q, WU M, LI M, et al. Ultratough artificial nacre based on conjugated cross-linked graphene oxide[J]. Angewandte Chemie-International Edition,2013,52(13):3750-3755. doi: 10.1002/anie.201210166 [30] CUI W, LI M, LIU J, et al. A strong integrated strength and toughness artificial nacre based on dopamine cross-linked graphene oxide[J]. ACS Nano,2014,8(9):9511-9517. doi: 10.1021/nn503755c [31] WAN S, PENG J, LI Y, et al. Use of synergistic interactions to fabricate strong, tough, and conductive artificial nacre based on graphene oxide and chitosan[J]. ACS Nano,2015,9(10):9830-9836. doi: 10.1021/acsnano.5b02902 [32] LIU N, ZENG X, PIDAPARTI R, et al. Tough and strong bioinspired nanocomposites with interfacial cross-links[J]. Nanoscale,2016,8(43):18531-18540. doi: 10.1039/C6NR06379A [33] XIA W, SONG J, MENG Z, et al. Designing multi-layer graphene-based assemblies for enhanced toughness in nacre-inspired nanocomposites[J]. Molecular Systems Design & Engineering,2016,1(1):40-47. [34] LIU N, PIDAPARTI R, WANG X. Mechanical performance of graphene-based artificial nacres under impact loads: A coarse-grained molecular dynamic study[J]. Polymers,2017,9(4):134-145. [35] DING P, WU J, ZHANG J, et al. Role of geometric shapes on the load transfer in graphene-PMMA nanocomposites[J]. Computational Materials Science,2020,184:109863. doi: 10.1016/j.commatsci.2020.109863 [36] GUO Z, SONG L, CHAI G B, et al. Multiscale finite element analyses on mechanical properties of graphene-reinforced composites[J]. Mechanics of Advanced Materials and Structures,2019,26(20):1735-1742. doi: 10.1080/15376494.2018.1447176 [37] HONARVAR F M, POURABBAS B, HOSSEINI M S, et al. Molecular dynamics simulation: The effect of graphene on the mechanical properties of epoxy based photoresist: SU8[J]. Scientia Iranica,2018,25(3):1879-1890. [38] SANTHAPURAM R R, MULLER S E, NAIR A K. Nanoscale bending properties of bio-inspired Ni-graphene nanocomposites[J]. Composite Structures,2019,220:798-808. doi: 10.1016/j.compstruct.2019.03.093 [39] WANG F, LIU K, LI D, et al. Fracture toughness of biological composites with multilevel structural hierarchy[J]. Journal of Applied Mechanics-Transactions of the Asme,2020,87(7):071004. doi: 10.1115/1.4046845 [40] PELITI L. Self-avoiding walks[J]. Physics Reports-Review Section of Physics Letters,1984,103(1-4):225-231. [41] RUIZ L, XIA W, MENG Z, et al. A coarse-grained model for the mechanical behavior of multi-layer graphene[J]. Carbon,2015,82:103-115. doi: 10.1016/j.carbon.2014.10.040 [42] ARASH B, PARK H S, RABCZUK T. Mechanical properties of carbon nanotube reinforced polymer nanocomposites: A coarse-grained model[J]. Composites Part B: Engineering,2015,80:92-100. doi: 10.1016/j.compositesb.2015.05.038 [43] LORENTZ H A. Ueber die anwendung des satzes vom virial in der kinetischen theorie der gase[J]. Annalen Der Physik,1881,248(1):127-136. doi: 10.1002/andp.18812480110 [44] PLIMPTON S. Fast parallel algorithms for short-range molecular-dynamics[J]. Journal of Computational Physics,1995,117(1):1-19. doi: 10.1006/jcph.1995.1039 [45] STUKOWSKI A. Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool[J]. Modelling and Simulation in Materials Science and Engineering,2010,18(1):015012. doi: 10.1088/0965-0393/18/1/015012 [46] GAO H J, JI B H, JAGER I L, et al. Materials become insensitive to flaws at nanoscale: Lessons from nature[J]. Proceedings of the National Academy of Sciences of the United States of America,2003,100(10):5597-5600. doi: 10.1073/pnas.0631609100 [47] JI B H, GAO H J. Mechanical properties of nanostructure of biological materials[J]. Journal of the Mechanics and Physics of Solids,2004,52(9):1963-1990. doi: 10.1016/j.jmps.2004.03.006 [48] HU K, GUPTA M K, KULKARNI D D, et al. Ultra-robust graphene oxide-silk fibroin nanocomposite membranes[J]. Advanced Materials,2013,25(16):2301-2307. doi: 10.1002/adma.201300179 [49] LIN F, XIANG Y, SHEN H S. Temperature dependent mechanical properties of graphene reinforced polymer nanocomposites-A molecular dynamics simulation[J]. Compo-sites Part B: Engineering,2017,111:261-269. doi: 10.1016/j.compositesb.2016.12.004 [50] LIU F, HU N, NING H, et al. Molecular dynamics simulation on interfacial mechanical properties of polymer nanocomposites with wrinkled graphene[J]. Computational Materials Science,2015,108:160-167. doi: 10.1016/j.commatsci.2015.06.023