留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯/聚甲基丙烯酸甲酯纳米复合材料的拉伸性能:粗粒化分子动力学模拟

侯国珍 陈小明 丁鹏 马河川 张洁 邵金友 吴建洋

侯国珍, 陈小明, 丁鹏, 等. 石墨烯/聚甲基丙烯酸甲酯纳米复合材料的拉伸性能:粗粒化分子动力学模拟[J]. 复合材料学报, 2022, 39(6): 2962-2973. doi: 10.13801/j.cnki.fhclxb.20210707.004
引用本文: 侯国珍, 陈小明, 丁鹏, 等. 石墨烯/聚甲基丙烯酸甲酯纳米复合材料的拉伸性能:粗粒化分子动力学模拟[J]. 复合材料学报, 2022, 39(6): 2962-2973. doi: 10.13801/j.cnki.fhclxb.20210707.004
HOU Guozhen, CHEN Xiaoming, DING Peng, et al. Mechanical performance of graphene/polymethyl-methacrylate nano-composites under tension loads: A coarse-grained molecular dynamic simulation[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2962-2973. doi: 10.13801/j.cnki.fhclxb.20210707.004
Citation: HOU Guozhen, CHEN Xiaoming, DING Peng, et al. Mechanical performance of graphene/polymethyl-methacrylate nano-composites under tension loads: A coarse-grained molecular dynamic simulation[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2962-2973. doi: 10.13801/j.cnki.fhclxb.20210707.004

石墨烯/聚甲基丙烯酸甲酯纳米复合材料的拉伸性能:粗粒化分子动力学模拟

doi: 10.13801/j.cnki.fhclxb.20210707.004
基金项目: 国家自然科学基金(51705411)
详细信息
    通讯作者:

    陈小明,博士,教授,博士生导师,研究方向为多功能微纳复合材料 E-mail:xiaomingchen@xjtu.edu.cn

  • 中图分类号: TB332

Mechanical performance of graphene/polymethyl-methacrylate nano-composites under tension loads: A coarse-grained molecular dynamic simulation

  • 摘要: 高强度是复合材料设计追求的重要目标,自然界中的珍珠层具有优异的力学性能,受其复杂的层次结构的启发,设计了一种石墨烯交错排布增强聚甲基丙烯酸甲酯的纳米复合材料。利用粗粒化分子动力学模拟,系统地研究了拉伸载荷作用下石墨烯的二维几何形状、层数、空间排布对纳米复合材料整体力学性能的影响。结果表明,不同几何形状的石墨烯对复合材料的增强效果有很大的差异,其中,矩形与锯齿形接近,都强于梯形石墨烯;存在最佳的石墨烯层数使复合材料的整体拉伸力学性能最强;减少石墨烯层间距离或增加重叠距离,都可提升其力学性能。总之,现有的研究结果揭示了各个因素的影响规律及微观机制,为设计具有目标性能的纳米复合材料提供了理论指导。

     

  • 图  1  石墨烯/PMMA纳米复合材料分子动力学(MD)模型示意图

    Figure  1.  Schematic diagram of molecular dynamics (MD) model of graphene/PMMA nanocomposites

    H—Distance between graphene layers; N—Number of graphene layers; LOL—Graphene overlap distance; α—Angle of model, 75°

    图  2  不同石墨烯几何形状的石墨烯/PMMA纳米复合材料与纯PMMA的拉伸应力-应变曲线(a)和杨氏模量与极限强度(b)

    Figure  2.  Tensile stress-strain curves (a) and Young's modulus and ultimate strength (b) of graphene/PMMA nanocomposites with different graphene geometries and pure PMMA

    图  3  不同石墨烯几何形状的石墨烯/PMMA纳米复合材料的拉伸变形过程((b)和(c)内的插图分别为xy平面应变为0.2和0.24的快照)

    Figure  3.  Tensile deformation processes of graphene/PMMA nanocomposites with different graphene geometries (Illustrations in (b) and (c) are snapshots of the xy plane when the strains are 0.2 and 0.24)

    ε—Strain

    图  4  PMMA链与石墨烯的相互作用能变化曲线及聚合物链的构型变化

    Figure  4.  Variation of the interaction energy between PMMA chain and graphene and the configurational changes of polymer chains

    图  5  不同石墨烯层数的石墨烯/PMMA纳米复合材料的应力-应变曲线 (a)、杨氏模量与极限强度 (b)和z方向的密度分布 (c)

    Figure  5.  Tensile stress-strain curves (a), Young's modulus and ultimate strength (b) and the mass density distribution in the z direction(c) of graphene/PMMA nanocomposites with different number of graphene layers

    图  6  不同石墨烯层数的石墨烯/PMMA纳米复合材料的拉伸变形过程

    Figure  6.  Tensile deformation processes of graphene/PMMA nanocomposites with different number of graphene layers

    图  7  不同石墨烯层间距离的石墨烯/PMMA纳米复合材料的应力-应变曲线 (a) 和杨氏模量与极限强度 (b)

    Figure  7.  Tensile stress-strain curves (a) and Young's modulus and ultimate strength (b) of graphene/PMMA nanocomposites with different interlayer distances between graphene layers

    图  8  不同石墨烯层间距离的石墨烯/PMMA纳米复合材料的拉伸变形过程

    Figure  8.  Tensile deformation processes of graphene/PMMA nanocomposites with different interlayer distances between graphene layers

    图  9  不同石墨烯重叠距离的石墨烯/PMMA纳米复合材料的应力-应变曲线 (a)、杨氏模量和极限强度 (b)

    Figure  9.  Tensile stress-strain curves (a) and Young's modulus and ultimate strength (b) of graphene/PMMA nanocomposites with different overlap distances between graphene layers

    图  10  不同石墨烯重叠距离的石墨烯/PMMA纳米复合材料的拉伸变形过程

    Figure  10.  Tensile deformation processes of graphene/PMMA nanocomposites with different overlap distances between graphene layers

    图  11  石墨烯/PMMA纳米复合材料杨氏模量与石墨烯质量分数的关系

    Figure  11.  Variation of the Young’s modulus with the mass fraction of graphene of graphene/PMMA nanocomposites

    表  1  粗粒化石墨烯势函数及参数[41]

    Table  1.   Functional form and parameters of the force filed for the coarse-grained graphene[41]

    PotentialFunctionParameter
    Bond ${V_{{\rm{bond}}}} = {k_{\rm{b}}}{(1 - {{\rm{e}}^{ - \partial (d - {d_0})}})^2}$ ${k_{\rm{b}}} = 194.61\;{\rm{kcal}} \cdot {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}};\;\;{d_0} = 0.28\;{\rm{nm}};\;\;\partial = 0.155\;{\rm{n}}{{\rm{m}}^{ - 1}}$
    Angle ${V_{ {\rm{angle} }} } = {k_{\rm{\theta } } }{(\theta - {\theta _0})^2}$ ${k_{\rm{\theta }}} = 409.40\;{\rm{kcal}} \cdot {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}};\;\;{\theta _0} = 120^\circ $
    Dihedral ${V_{{\rm{dihedral}}}} = {k_\Phi }(1 - \cos (2\phi ))$ ${k_\Phi } = 4.15\;{\rm{kcal}} \cdot {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}$
    Non-bonded ${V_{ {\rm{nb} } } } = 4\varepsilon \left[ { { {\left( {\dfrac{\sigma }{r} } \right)}^6} - { {\left( {\dfrac{\sigma }{r} } \right)}^{12} } } \right],\;\;r < {r_{ {\rm{cut} } } }$ $\varepsilon = 0.82\;{\rm{kcal}} \cdot {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}};\;\;{r_{{\rm{cut}}}} = 1.2\;{\rm{nm;}}\;\;\sigma = {\rm{0}}{\rm{.346\;nm}}$
    Notes: Vbond, Vangle, Vdihedral and Vnb—Sum over the energies of all the bonds, angles, dihedrals, and pair-wise non-bonded interactions of the system respectively; d, θ and ϕ—Bond stretching, bond angle bending and dihedral angle torsion; kb and —Depth and a parameter related to the width of the potential well of the bond respectively; d0—Equilibrium distance of the bond; kθ—Spring constant of the angle interaction; θ0—Equilibrium angle; kΦ—Spring constant of the dihedral interaction; r—Distance between two atoms; ε—Depth of the Lennard-Jones potential well for non-bonded interactions; σ—Lennard-Jones parameter associated with the equilibrium distance between two non-bonded beads; rcut—Cutoff distance of the non-bonded interactions.
    下载: 导出CSV

    表  2  粗粒化聚甲基丙烯酸甲酯(PMMA)势函数及参数[42]

    Table  2.   Functional form and parameters of the force filed for the coarse-grained polymethyl methacrylate (PMMA)[42]

    PotentialFunctionParameters
    Bond ${V_{{\rm{bond}}}} = \dfrac{{{k_{\rm{d}}}}}{2}{(d - d{}_0)^2}$ ${k_{\rm{d}}} = 19461\;{\rm{kcal}} \cdot {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}} \cdot {\rm{n}}{{\rm{m}}^{ - 2}};\;\;{d_0} = 0.402\;{\rm{nm}}$
    Angle ${V_{{\rm{angle}}}} = \dfrac{{{k_{\rm{\theta }}}}}{2}{(\theta - {\theta _0})^2}$ ${k_{\rm{\theta }}} = 794.89\;{\rm{kcal}} \cdot {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}} \cdot {\rm{ra}}{{\rm{d}}^{{\rm{ - 2}}}};\;\;{\theta _0} = 89.6^\circ $
    Dihedral ${V_{{\rm{dihedral}}}} = \dfrac{{{k_\Phi }}}{2}(1 - \cos (2\phi ))$ ${k_\Phi } = 42.05\;{\rm{kcal}} \cdot {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}$
    Non-bonded ${V_{{\rm{nb}}}} = {D_0}\left[ {{{\left( {\dfrac{{{r_0}}}{r}} \right)}^{12}} - 2{{\left( {\dfrac{{{r_0}}}{r}} \right)}^6}} \right]$ ${D_0} = 1.34\;{\rm{kcal}} \cdot {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}{\rm{;}}\;\;{r_0} = 0.653\;{\rm{nm}}$
    Notes: kd—Spring constant of the bond length; D0 and r0—Associated with the equilibrium well depth and the equilibrium distance of the non-bonded interactions.
    下载: 导出CSV
  • [1] RITCHIE R O. The conflicts between strength and toughness[J]. Nature Materials,2011,10(11):817-822. doi: 10.1038/nmat3115
    [2] ESPINOSA H D, JUSTER A L, LATOURTE F J, et al. Tablet-level origin of toughening in abalone shells and translation to synthetic composite materials[J]. Nature Communications,2011,2(1):1-9.
    [3] RHO J Y, KUHN-SPEARING L, ZIOUPOS P. Mechanical properties and the hierarchical structure of bone[J]. Medical Engineering & Physics,1998,20(2):92-102.
    [4] SONG J, CHEN C, ZHU S, et al. Processing bulk natural wood into a high-performance structural material[J]. Nature,2018,554(7691):224-228. doi: 10.1038/nature25476
    [5] BENZAIT Z, TRABZON L. A review of recent research on materials used in polymer-matrix composites for body armor application[J]. Journal of Composite Materials,2018,52(23):3241-3263. doi: 10.1177/0021998318764002
    [6] 吕志杰, 邓莉莉, 田清波, 等. 仿生结构复合陶瓷刀具材料力学性能及显微结构[J]. 稀有金属材料与工程, 2018, 47(12):3848-3852.

    LV Zhijie, DENG Lili, TIAN Qingbo, et al. Microstructure and mechanical properties of biomimetic composite ceramic tool materials[J]. Rare Metal Materials and Engineering,2018,47(12):3848-3852(in Chinese).
    [7] 孙娜, 吴俊涛, 江雷. 贝壳珍珠层及其仿生材料的研究进展[J]. 高等学校化学学报, 2011, 32(10):2231-2239.

    SUN Na, WU Juntao, JIANG Lei. Research progress of nacre and biomimetic synthesis of nacre-like materials[J]. Chemical Journal of Chinese Universities-Chinese,2011,32(10):2231-2239(in Chinese).
    [8] SUN X, HUANG C, WANG L, et al. Recent progress in graphene/polymer nanocomposites[J]. Advanced Mater-ials,2020,33:2001105.
    [9] WAN S, PENG J, JIANG L, et al. Bioinspired graphene-based nanocomposites and their application in flexible energy devices[J]. Advanced Materials,2016,28(36):7862-7898. doi: 10.1002/adma.201601934
    [10] WANG Y, XIA S, LI H, et al. Unprecedentedly tough, folding-endurance, and multifunctional graphene-based artificial nacre with predesigned 3D nanofiber network as matrix[J]. Advanced Functional Materials,2019,29(38):1903876. doi: 10.1002/adfm.201903876
    [11] MAO L B, GAO H L, YAO H B, et al. Synthetic nacre by predesigned matrix-directed mineralization[J]. Science,2016,354(6308):107-110. doi: 10.1126/science.aaf8991
    [12] MEYERS M A, LIN A Y M, CHEN P Y, et al. Mechanical strength of abalone nacre: Role of the soft organic layer[J]. Journal of the Mechanical Behavior of Biomedical Mater-ials,2008,1(1):76-85. doi: 10.1016/j.jmbbm.2007.03.001
    [13] SHEN X, ZHENG Q, KIM J K. Rational design of two-dimensional nanofillers for polymer nanocomposites toward multifunctional applications[J]. Progress in Materials Science,2021,115:100708. doi: 10.1016/j.pmatsci.2020.100708
    [14] YAO H B, GE J, MAO L B, et al. 25th anniversary article: Artificial carbonate nanocrystals and layered structural nanocomposites inspired by nacre: Synthesis, fabrication and applications[J]. Advanced Materials,2014,26(1):163-188. doi: 10.1002/adma.201303470
    [15] 张学骜, 王建方, 吴文健, 等. 贝壳珍珠层生物矿化及其对仿生材料的启示[J]. 无机材料学报, 2006, 21(2):257-266. doi: 10.3321/j.issn:1000-324X.2006.02.001

    ZHANG Xueao, WANG Jianfang, WU Wenjian, et al. Advances in biomineralization of nacreous layer and its inspiration for biomimetic materials[J]. Journal of Inorganic Materials,2006,21(2):257-266(in Chinese). doi: 10.3321/j.issn:1000-324X.2006.02.001
    [16] WANG R Z, SUO Z, EVANS A G, et al. Deformation mechanisms in nacre[J]. Journal of Materials Research,2001,16(9):2485-2493. doi: 10.1557/JMR.2001.0340
    [17] 柏嵩, 沈小平. 石墨烯基无机纳米复合材料[J]. 化学进展, 2010, 22(11):2106-2118.

    BAI Song, SHEN Xiaoping. Graphene-based inorganic nanocomposites[J]. Progress in Chemistry,2010,22(11):2106-2118(in Chinese).
    [18] STANKOVICH S, DIKIN D A, DOMMETT G H B, et al. Graphene-based composite materials[J]. Nature,2006,442(7100):282-286. doi: 10.1038/nature04969
    [19] KUMAR A, SHARMA K, DIXIT A R. A review on the mechanical properties of polymer composites reinforced by carbon nanotubes and graphene[J]. Carbon Letters,2020,31(9):149-165.
    [20] 张力, 吴俊涛, 江雷. 石墨烯及其聚合物纳米复合材料[J]. 化学进展, 2014, 26(4):560-571.

    ZHANG Li, WU Juntao, JIANG Lei. Graphene and its polymer nanocomposites[J]. Progress in Chemistry,2014,26(4):560-571(in Chinese).
    [21] SALEEM A, ZHANG Y, GONG H, et al. Enhanced thermal conductivity and mechanical properties of a GNP reinforced Si3N4 composite[J]. Rsc Advances,2019,9(68):39986-39992. doi: 10.1039/C9RA09286B
    [22] SINGH J, WANI M F. Fretting wear of spark plasma sintered Ti3SiC2/GNP ceramic composite against Si3N4[J]. Ceramics International,2021,47(4):5648-5655. doi: 10.1016/j.ceramint.2020.10.150
    [23] MONTAZERI A, MOBARGHEI A. Nanotribological behavior analysis of graphene/metal nanocomposites via MD simulations: New concepts and underlying mechanisms[J]. Journal of Physics and Chemistry of Solids,2018,115:49-58. doi: 10.1016/j.jpcs.2017.12.012
    [24] TANG W, ZHANG J, WU J, et al. Mechanical properties and enhancement mechanisms of titanium-graphene nanocomposites[J]. Acta Mechanica Sinica,2020,36(4):855-865. doi: 10.1007/s10409-020-00968-x
    [25] 周登山. 功能化石墨烯/聚合物体系的分子间相互作用力的分子动力学模拟研究[D]. 青岛: 中国石油大学(华东), 2010.

    ZHOU Dengshan. Molecular dynamics simulation investigation of intermolecular interactions for functionalized graphene sheets/polymers system[D]. Qingdao: China University of Petroleum (East China), 2010(in Chinese).
    [26] FANG M, WANG K, LU H, et al. Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites[J]. Journal of Materials Chemistry,2009,19(38):7098-7105. doi: 10.1039/b908220d
    [27] WAN Y J, TANG L C, GONG L X, et al. Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties[J]. Carbon,2014,69:467-480. doi: 10.1016/j.carbon.2013.12.050
    [28] ZAMAN I, KUAN H C, MENG Q, et al. A facile approach to chemically modified graphene and its polymer nanocomposites[J]. Advanced Functional Materials,2012,22(13):2735-2743. doi: 10.1002/adfm.201103041
    [29] CHENG Q, WU M, LI M, et al. Ultratough artificial nacre based on conjugated cross-linked graphene oxide[J]. Angewandte Chemie-International Edition,2013,52(13):3750-3755. doi: 10.1002/anie.201210166
    [30] CUI W, LI M, LIU J, et al. A strong integrated strength and toughness artificial nacre based on dopamine cross-linked graphene oxide[J]. ACS Nano,2014,8(9):9511-9517. doi: 10.1021/nn503755c
    [31] WAN S, PENG J, LI Y, et al. Use of synergistic interactions to fabricate strong, tough, and conductive artificial nacre based on graphene oxide and chitosan[J]. ACS Nano,2015,9(10):9830-9836. doi: 10.1021/acsnano.5b02902
    [32] LIU N, ZENG X, PIDAPARTI R, et al. Tough and strong bioinspired nanocomposites with interfacial cross-links[J]. Nanoscale,2016,8(43):18531-18540. doi: 10.1039/C6NR06379A
    [33] XIA W, SONG J, MENG Z, et al. Designing multi-layer graphene-based assemblies for enhanced toughness in nacre-inspired nanocomposites[J]. Molecular Systems Design & Engineering,2016,1(1):40-47.
    [34] LIU N, PIDAPARTI R, WANG X. Mechanical performance of graphene-based artificial nacres under impact loads: A coarse-grained molecular dynamic study[J]. Polymers,2017,9(4):134-145.
    [35] DING P, WU J, ZHANG J, et al. Role of geometric shapes on the load transfer in graphene-PMMA nanocomposites[J]. Computational Materials Science,2020,184:109863. doi: 10.1016/j.commatsci.2020.109863
    [36] GUO Z, SONG L, CHAI G B, et al. Multiscale finite element analyses on mechanical properties of graphene-reinforced composites[J]. Mechanics of Advanced Materials and Structures,2019,26(20):1735-1742. doi: 10.1080/15376494.2018.1447176
    [37] HONARVAR F M, POURABBAS B, HOSSEINI M S, et al. Molecular dynamics simulation: The effect of graphene on the mechanical properties of epoxy based photoresist: SU8[J]. Scientia Iranica,2018,25(3):1879-1890.
    [38] SANTHAPURAM R R, MULLER S E, NAIR A K. Nanoscale bending properties of bio-inspired Ni-graphene nanocomposites[J]. Composite Structures,2019,220:798-808. doi: 10.1016/j.compstruct.2019.03.093
    [39] WANG F, LIU K, LI D, et al. Fracture toughness of biological composites with multilevel structural hierarchy[J]. Journal of Applied Mechanics-Transactions of the Asme,2020,87(7):071004. doi: 10.1115/1.4046845
    [40] PELITI L. Self-avoiding walks[J]. Physics Reports-Review Section of Physics Letters,1984,103(1-4):225-231.
    [41] RUIZ L, XIA W, MENG Z, et al. A coarse-grained model for the mechanical behavior of multi-layer graphene[J]. Carbon,2015,82:103-115. doi: 10.1016/j.carbon.2014.10.040
    [42] ARASH B, PARK H S, RABCZUK T. Mechanical properties of carbon nanotube reinforced polymer nanocomposites: A coarse-grained model[J]. Composites Part B: Engineering,2015,80:92-100. doi: 10.1016/j.compositesb.2015.05.038
    [43] LORENTZ H A. Ueber die anwendung des satzes vom virial in der kinetischen theorie der gase[J]. Annalen Der Physik,1881,248(1):127-136. doi: 10.1002/andp.18812480110
    [44] PLIMPTON S. Fast parallel algorithms for short-range molecular-dynamics[J]. Journal of Computational Physics,1995,117(1):1-19. doi: 10.1006/jcph.1995.1039
    [45] STUKOWSKI A. Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool[J]. Modelling and Simulation in Materials Science and Engineering,2010,18(1):015012. doi: 10.1088/0965-0393/18/1/015012
    [46] GAO H J, JI B H, JAGER I L, et al. Materials become insensitive to flaws at nanoscale: Lessons from nature[J]. Proceedings of the National Academy of Sciences of the United States of America,2003,100(10):5597-5600. doi: 10.1073/pnas.0631609100
    [47] JI B H, GAO H J. Mechanical properties of nanostructure of biological materials[J]. Journal of the Mechanics and Physics of Solids,2004,52(9):1963-1990. doi: 10.1016/j.jmps.2004.03.006
    [48] HU K, GUPTA M K, KULKARNI D D, et al. Ultra-robust graphene oxide-silk fibroin nanocomposite membranes[J]. Advanced Materials,2013,25(16):2301-2307. doi: 10.1002/adma.201300179
    [49] LIN F, XIANG Y, SHEN H S. Temperature dependent mechanical properties of graphene reinforced polymer nanocomposites-A molecular dynamics simulation[J]. Compo-sites Part B: Engineering,2017,111:261-269. doi: 10.1016/j.compositesb.2016.12.004
    [50] LIU F, HU N, NING H, et al. Molecular dynamics simulation on interfacial mechanical properties of polymer nanocomposites with wrinkled graphene[J]. Computational Materials Science,2015,108:160-167. doi: 10.1016/j.commatsci.2015.06.023
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  1312
  • HTML全文浏览量:  413
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-18
  • 修回日期:  2021-06-27
  • 录用日期:  2021-06-29
  • 网络出版日期:  2021-07-07
  • 刊出日期:  2022-06-01

目录

    /

    返回文章
    返回