留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于广义混合有限元的压电复合材料层合板的数值分析

王聿航 卿光辉

王聿航, 卿光辉. 基于广义混合有限元的压电复合材料层合板的数值分析[J]. 复合材料学报, 2022, 39(6): 2987-2996. doi: 10.13801/j.cnki.fhclxb.20210707.003
引用本文: 王聿航, 卿光辉. 基于广义混合有限元的压电复合材料层合板的数值分析[J]. 复合材料学报, 2022, 39(6): 2987-2996. doi: 10.13801/j.cnki.fhclxb.20210707.003
WANG Yuhang, QING Guanghui. Analysis of piezoelectric composite laminates based on generalized mixed finite element[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2987-2996. doi: 10.13801/j.cnki.fhclxb.20210707.003
Citation: WANG Yuhang, QING Guanghui. Analysis of piezoelectric composite laminates based on generalized mixed finite element[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2987-2996. doi: 10.13801/j.cnki.fhclxb.20210707.003

基于广义混合有限元的压电复合材料层合板的数值分析

doi: 10.13801/j.cnki.fhclxb.20210707.003
基金项目: 国家自然科学基金(11502286)
详细信息
    通讯作者:

    卿光辉,博士,教授,硕士生导师,研究方向为广义混合有限元理论与方法、复合材料结构设计与修理  E-mail:ghqing@cauc.edu.cn

  • 中图分类号: O343.8

Analysis of piezoelectric composite laminates based on generalized mixed finite element

  • 摘要: 将纯弹性体的广义混合有限元法引入到压电材料的静力学分析中。由于采用了8节点六面体非协调实体单元对整体结构进行离散求解,摒弃了板壳理论中的诸多人为假设。非协调项的加入使该方法比同类协调元显示出更好的数值性能。本文方法将应力边界条件和位移边界条件同时考虑,并且求解过程中将层间应力和平面内应力分开处理,按每层的本构关系求解平面内应力,这样求得的层间应力和平面内应力都更加接近精确解。通过几个有代表性的层合板的数值算例说明了本文方法的精度,相较于传统的解析法和数值法,本文方法在适用性和有效性方面都具有优势。

     

  • 图  1  锆钛酸铅压电陶瓷(PZT-4)压电层合板几何模型

    Figure  1.  Geometric model of lead zirconate titanate ceramic (PZT-4) piezoelectric laminates

    图  2  PZT-4压电层合板模型网格划分

    Figure  2.  Model meshing of PZT-4 piezoelectric laminates

    图  3  PZT-4压电层合板纵向位移u沿z轴的分布

    Figure  3.  Distribution of longitudinal displacement u of PZT-4 piezoelectric laminates along the z axis

    图  7  工况1下PZT-4压电层合板平面内应力$ {\sigma }_{xy} $沿z轴的分布

    Figure  7.  Distribution of in-plane stress $ {\sigma }_{xy} $ of PZT-4 piezoelectric laminates along the z axis under condition 1

    图  4  PZT-4压电层合板横向位移w沿z轴的分布

    Figure  4.  Distribution of the transverse displacement w of PZT-4 piezoelectric laminates along the z axis

    图  5  PZT-4压电层合板层间应力$ {\sigma }_{z} $沿z轴的分布

    Figure  5.  Distribution of interlaminar stress $ {\sigma }_{z} $ in PZT-4 piezoelectric laminates along the z axis

    图  6  PZT-4压电层合板平面内应力$ {\sigma }_{x} $沿z轴的分布

    Figure  6.  Distribution of in-plane stress $ {\sigma }_{x} $ of PZT-4 piezoelectric laminates along the z axis

    图  8  PZT-4压电层合板层间应力$ {\sigma }_{xz} $沿z轴的分布

    Figure  8.  Distribution of interlaminar stress $ {\sigma }_{xz} $ of PZT-4 piezoelectric laminates along the z axis

    图  10  工况2下PZT-4压电层合板平面内应力$ {\sigma }_{xy} $沿z轴的分布

    Figure  10.  Distribution of in-plane stress $ {\sigma }_{xy} $ of PZT-4 piezoelectric laminates along the z axis under condition 2

    图  9  PZT-4压电层合板电势φ沿z轴的分布

    Figure  9.  Distribution of the potential φ of PZT-4 piezoelectric laminates along the z axis

    图  11  聚偏氟乙烯(PVDF)压电层合板几何模型

    Figure  11.  Geometric model of polyvinylidene fluoride (PVDF) piezoelectric laminates

    L—Length; H—Height

    图  12  PVDF压电层合板模型网格划分

    Figure  12.  Model meshing of PVDF piezoelectric laminates

    图  13  $S\text{=10}{\text{、}}V_{\text{0}}\text{=100}$ PVDF压电层合板平面内应力${\tilde \sigma _x}$${\tilde \sigma _y}$沿z轴的分布

    Figure  13.  Distribution of in-plane stress ${\tilde \sigma _x}$, ${\tilde \sigma _y}$ of PVDF piezoelectric laminates along the z axis when $ S\text{=10}{\text{,}}\;V_{\text{0}}\text{=100} $

    图  14  $S\text{=10}{\text{、}}V_{\text{0}}\text{=0}$ PVDF压电层合板平面内应力${\tilde \sigma _x}$${\tilde \sigma _y}$沿z轴的分布

    Figure  14.  Distribution of in-plane stress ${\tilde \sigma _x}$, ${\tilde \sigma _y}$ of PVDF piezoelectric laminates along the z axis when $ S\text{=10}{\text{,}}\;V_{\text{0}}\text{=0} $

    表  1  工况1下PZT-4压电层合板的各个物理参数值

    Table  1.   Each physical parameter value of PZT-4 piezoelectric laminates under working condition 1

    Reference solution$ {}u\left({0,}\dfrac{L}{{2}}{,0}\right) $$ {\Bigr/1}{{0}}^{{-11}}\text{m} $$ \text{}w\left(\dfrac L{{2}}{,}\dfrac L{{2}}{,0}\right) $$ {\Bigr/}{1}{{0}}^{{-11}}\text{m} $$ {\phi }\left(\dfrac{L}{{2}}{,}\dfrac{L}{{2}}{,0}\right) $$ {\Bigr/}{1}{{0}}^{{-2}}\text{V} $$ {\sigma }_{xz}\left({0,}\dfrac{L}{{2}}{,0}\right)\Bigr/{\rm{Pa}} $$ {\sigma }_{x}\left(\dfrac{L}{{2}}{,}\dfrac{L}{{2}}{,0}\right)\Bigr/{\rm{Pa}} $$ {\sigma }_{z}\left(\dfrac{L}{{2}}{,}\dfrac{L}{{2}}{,0}\right) \Bigr/{\rm{Pa}}$
    Exact[23] 20.392 30.027 0.611 6.5643 0.498
    LW1[24] 29.851 0.6032 0.7099 7.0132 0.579
    Present 20.287 29.82 0.6065 0.691 6.46 0.497
    Error/% 0.5 0.6 0.7 1.5 0.13
    Notes: u—Longitudinal displacement; $w $—Transverse displacement; $\phi $—Electric potential; σz, σxz—Interlaminar stress; σx—In-plane stress.
    下载: 导出CSV

    表  2  工况2下PZT-4压电层合板的各个物理参数值

    Table  2.   Each physical parameter value of PZT-4 piezoelectric laminates under working condition 2

    Reference solution$w \left( {\dfrac{L}{2},\dfrac{L}{2},0} \right) \rm{\Bigr/1}{\rm{0} }^{\rm{-11} }\rm{m}$$\phi\left( {\dfrac{L}{2},\dfrac{L}{2},0} \right) \rm{\Bigr/1}{\rm{0}}^{\rm{-2}}\rm{V} $$ {\sigma _{xz}} \left( {0,\dfrac{L}{2},0} \right) \rm{\Bigr/1}{\rm{0}}^{\rm{-3}}\rm{Pa} $$ {\sigma _{z}} \left( {\dfrac{L}{2},\dfrac{L}{2},0} \right) \rm{\Bigr/1}{\rm{0}}^{\rm{-3}}\rm{Pa} $
    Exact[23] −1.471 0.4476 −23.87 −14.612
    LW3[24] −1.4707 0.4477 −22.70 −13.541
    Present −1.493 0.4475 −24.5 −15.469
    Error/% 1.47 0.7 0.64 5.6
    下载: 导出CSV

    表  3  PVDF压电层合板的挠度和应力

    Table  3.   Deflection and stress of PVDF piezoelectric laminates

    LoadL/HReference
    solution
    $\tilde w\left(\dfrac{L}{\text{2}}\text{,}\dfrac{L}{\text{2}}\text{,0}\right) $${\tilde \sigma _x}\left(\dfrac{L}{\text{2}}\text{,}\dfrac{L}{\text{2}}\text{,}\dfrac{h}{\text{2}}\right) $${\tilde \sigma _y}\left(\dfrac{L}{\text{2}}\text{,}\dfrac{L}{\text{2}}\text{,}\dfrac{h}{\text{6}}\right) $${\tilde \tau _{xy}}\left(\text{0,0,}\dfrac{h}{\text{2}}\right) $${\tilde \tau _{xz}} \left(\text{0,}\dfrac{L}{\text{2}}\text{,0}\right) $${\tilde \tau _{yz}}\left(\dfrac{L}{\text{2}}\text{,0,0}\right) $
    ${p_0} = 1.0$${V_0} = 1.0$ 10 Present 0.766 0.589 0.285 −0.0277 0.359 0.113
    Literature[27] 0.764 0.502 0.290 −0.0269 0.371 0.137
    Literature[5] 0.668 0.520
    Literature[25] 0.774 0.589 0.284 −0.0287 0.358 0.123
    100 Present 0.445 0.540 0.180 −0.020 0.395 0.076
    Literature[27] 0.434 0.539 0.181 −0.0212 0.390 0.076
    Literature[5] 0.433 0.545
    Literature[25] 0.471 0.538 0.181 −0.021 0.394 0.083
    ${p_0} = 1.0$${V_0} = 100$ 10 Present −2.0 −2.94 −2.16 0.210 −0.593 0.348
    Literature[27] −2.0 −2.73 −2.45 0.149 −0.710 0.450
    Literature[5] −1.91 −2.78
    Literature[25] −2.35 −3.12 −2.34 0.181 −0.683 0.336
    100 Present 0.424 0.489 0.084 −0.0192 0.384 0.081
    Literature[27] 0.412 0.505 0.159 −0.0198 0.378 0.080
    Literature[5] 0.411 0.510
    Literature[25] 0.447 0.504 −0.158 −0.019 0.382 0.086
    Notes: $\tilde w $—Dimensionless transverse displacement; ${\tilde \sigma _x}$, $ {\tilde \sigma _y}$, $ {\tilde \tau _{xy}}$—Dimensionless in-plane stress; ${\tilde \tau _{xz}}$, ${\tilde \tau _{yz}}$—Dimensionless interlaminar stress; $ p_0$—Peak mechanical load; V0—Peak electric potential.
    下载: 导出CSV
  • [1] QING G H, MAO J, LIU Y. Generalized mixed finite element method for 3D elasticity problems[J]. Acta Mechanica Sinica,2018,34(2):1-10.
    [2] BENJEDDOU A. Advances in piezoelectric finite element modeling of adaptive structural elements: A survey[J]. Computers & Structures,2000,76(1-3):347-363.
    [3] REDDY J N. On laminated composite plates with integrated sensors and actuators[J]. Engineering Structures,1999,21(7):568-593. doi: 10.1016/S0141-0296(97)00212-5
    [4] DETWILER D T, SHEN M H H, VENKAYYA V B. Finite element analysis of laminated composite structures containing distributed piezoelectric actuators and sensors[J]. Finite Elements in Analysis & Design,1995,20(2):87-100.
    [5] SHEIKH A H, TOPDAR P, HALDER S. An appropriate FE model for through thickness variation of displacement and potential in thin moderately thick smart laminates[J]. Composite Structures,2001,51:401-409. doi: 10.1016/S0263-8223(00)00156-2
    [6] CARRERA E, BOSCOLO M. Classical and mixed finite elements for static and dynamic analysis of piezoelectric plates[J]. International Journal for Numerical Methods in Engineering,2010,70(10):1135-1181.
    [7] CARRERA E, BUETTNER A, NALI P. Mixed elements for the analysis of anisotropic multilayered piezoelectric plates[J]. Journal of Intelligent Material Systems & Structures,2010,21(7):701-717.
    [8] VIDAL P, GALLIMARD L, POLIT O. Modeling of piezoelectric plates with variables separation for static analysis[J]. Smart Materials and Structures,2016,25(5):055043.
    [9] PLAGIANAKOS T S, PAPADOPOULOS E G. Higher-order 2-D/3-D layerwise mechanics and finite elements for composite and sandwich composite plates with piezoelectric layers[J]. Aerospaceence & Technology,2015,40:150-163.
    [10] KORAYEM M H, HOMAYOONI A. The size-dependent analysis of multilayer micro-cantilever plate with piezoelectric layer incorporated voltage effect based on a modified couple stress theory[J]. European Journal of Mechanics-A/Solids,2017,61:59-72.
    [11] KPEKY, FESSAL, ABED-MERAIM, et al. Linear and quadratic solid-shell finite elements SHB8PSE and SHB20E for the modeling of piezoelectric sandwich structures[J]. Mechanics of Advanced Materials and Structures,2018,25(1-8):559-578.
    [12] MOLEIRO F, SOARES C, SOARES C, et al. Layerwise mixed models for analysis of multilayered piezoelectric composite plates using least-squares formulation[J]. Composite Structures,2015,119:134-149.
    [13] ZENKOUR A M, ALGHANMI R A. Stress analysis of a functionally graded plate integrated with piezoelectric faces via a four-unknown shear deformation theory[J]. Results in Physics,2018,12:268-277.
    [14] RAMEGOWDA P C, D ISHIHARA, NIHO T, et al. A novel coupling algorithm for the electric field-structure interaction using a transformation method between solid and shell elements in a thin piezoelectric bimorph plate analysis[J]. Finite Elements in Analysis and Design,2019,159:33-49.
    [15] LI W, SHEN H J. A layerwise finite element formulation of laminated composite cylindrical shells with piezoelectric layers[J]. Journal of Mechanical Science & Technology,2018,32(2):731-741.
    [16] KAPURIA S, AHMED A. A coupled efficient layerwise finite element model for free vibration analysis of smart piezo-bonded laminated shells featuring delaminations and transducer debonding[J]. International Journal of Mechanical Sciences,2021,194:106195. doi: 10.1016/j.ijmecsci.2020.106195
    [17] 刘艳红, 李锐. 含参数辛元与热弹性复合材料层合板分析[J]. 复合材料学报, 2019, 36(5):1306-1312.

    LIU Yanhong, LI Rui. Parametered symplectic element and analysis of thermoelastic composite laminates[J]. Acta Materiae Composite Sinica,2019,36(5):1306-1312(in Chinese).
    [18] 赵直钦. 三类弹性体非协调辛有限元的理论研究[D]. 天津: 中国民航大学, 2020.

    ZHAO Zhiqin. Theoretical study on noncompatiable symplectic finite element of three elastomers[D]. Tianjin: Civil Aviation University of China, 2020(in Chinese).
    [19] PIAN T, WU C C. Hybrid and incompatible finite element methods[M]. New York: Chapman & Hall/CRC, 2006.
    [20] FELIPPA C A. Parametrized multifield variational principles in elasticity: I. Mixed functionals[J]. Communications in Applied Numerical Methods,2010,5(2):79-88.
    [21] FELIPPA C A. Parametrized multifield variational principles in elasticity: II. Hybrid functionals and the free formulation[J]. Communications in Numerical Methods in Engineering,2010,5(2):89-98.
    [22] 沈观林, 胡更开, 刘彬. 复合材料力学[M]. 2版. 北京: 清华大学出版社, 2013.

    SHEN Guanlin, HU Gengkai, LIU Bin. Mechanics of composite materials[M]. 2th ed. Beijing: Tsinghua University Press, 2013(in Chinese).
    [23] HEYLIGER P. Static behavior of laminated elastic/piezoelectric plates[J]. AIAA Journal,1994,32(12):2481-2484. doi: 10.2514/3.12321
    [24] CARRERA E, VALVANO S, KULIKOV G M. Multilayered plate elements with node-dependent kinematics for electro-mechanical problems[J]. International Journal of Smart and Nano Materials,2018,9(4):279-317. doi: 10.1080/19475411.2017.1376722
    [25] RAY M C, BHATTACHARYA R, SAMANTA B. Exact solutions for static analysis of intelligent structures[J]. AIAA Journal,2012,31(9):1684-1691.
    [26] PAGANO N J, HATFIELD H J. Elastic behavior of multilayered bidirectional composites[J]. AIAA Journal,1972,10(7):931-933. doi: 10.2514/3.50249
    [27] CEN S, SOH A K, LONG Y Q, et al. A new 4-node quadrilateral FE model with variable electrical degrees of freedom for the analysis of piezoelectric laminated composite plates[J]. Composite Structures,2002,58(4):583-599. doi: 10.1016/S0263-8223(02)00167-8
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  1185
  • HTML全文浏览量:  477
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-11
  • 修回日期:  2021-06-21
  • 录用日期:  2021-06-30
  • 网络出版日期:  2021-07-07
  • 刊出日期:  2022-06-01

目录

    /

    返回文章
    返回