Preparation and photoelectrochemical properties of WO3/Bi2MoO6 composite films
-
摘要: WO3材料在光电催化方面的应用备受关注,但其光生电子空穴有效分离能力差,对太阳光的利用率较低等问题,限制了其光电催化性能。为了解决这个问题,先用水热法在导电玻璃(FTO)上制备WO3纳米薄膜,然后使用溶剂热法在WO3纳米薄膜上制备不同反应时长(7 h、9 h和11 h)的WO3/Bi2MoO6复合薄膜。通过XRD和SEM测试,证明了WO3/Bi2MoO6复合薄膜的成功制备。对WO3/Bi2MoO6复合薄膜样品进行吸收光谱测试、光电流测试、光电催化测试和交流阻抗测试。结果表明:WO3/Bi2MoO6复合薄膜样品相较于单一WO3纳米薄膜,具有更好的光吸收特性、更优秀的光电流特性和显著提升的光电催化活性。且水热反应9 h的WO3/Bi2MoO6复合薄膜样品具有最高的光电流密度和最优的光电催化效率。分析认为,WO3/Bi2MoO6复合薄膜可能构成了异质结结构,降低了复合薄膜内部的电子阻抗,并且增加了有效的光电化学反应位点;同时通过提高太阳光利用率使光谱的响应范围得到拓展。因此光电化学性能显著提高。Abstract: The application of WO3 materials has been attracted much attention in photoelectric catalysis, but its poor photo-generated electron hole separation ability and low utilization rate of sunlight have limited its photoelectric catalytic property. To solve this problem, WO3 nano-films were prepared on the conductive glass (FTO) by hydrothermal method, and WO3/Bi2MoO6 composite films with different reaction time (7 h, 9 h and 11 h) were synthesized on WO3 nano-films by solvothermal method. XRD and SEM tests proved the successful preparation of WO3/Bi2MoO6 composite films. The WO3/Bi2MoO6 composite film samples were subjected to absorption spectrum test, photocurrent test, photoelectric catalytic test and alternating current impedance test. The results show that the WO3/Bi2MoO6 composite film samples have better light absorption characteristics, more outstanding photocurrent characteristics and significantly improved photoelectrocatalysis activity compared with pure WO3 nano-films. And the WO3/Bi2MoO6 composite film samples with the hydrothermal reaction for 9 h have the highest photocurrent density and the best photoelectrocatalysis efficiency. The analysis suggests that the WO3/Bi2MoO6 composite film may constitute a heterojunction structure, which reduces the electronic impedance inside the composite film and increases the effective photoelectrochemical reaction sites; Meanwhile, the response range of the spectrum is expanded by increasing the utilization rate of sunlight. So the photoelectrochemical property can be significantly improved.
-
Key words:
- WO3 /
- Bi2MoO6 /
- laminated film /
- photoelectrochemistry /
- photoelectrocatalysis /
- photocurrent
-
图 2 WO3纳米片薄膜与WO3/Bi2MoO6复合薄膜表面和截面的SEM图像:WO3纳米片薄膜的表面 (a) 和截面(e);WO3/Bi2MoO6-(7、9、11 h)复合薄膜的表面 ((b)~(d)) 和截面 ((f)~(h))
Figure 2. SEM images of surface and cross section of WO3 nanosheet films and WO3/Bi2MoO6 composite films: Surface (a) and cross section (e) of WO3 nanosheets film; Surface ((b)-(d)) and cross section ((f)-(h)) of WO3/Bi2MoO6-(7, 9, 11 h) composite films
图 4 WO3纳米片薄膜与WO3/Bi2MoO6复合薄膜的光电流 (a) 和光电催化结果 (b)
Figure 4. Photocurrent (a) and photoelectrocatalytic results (b) of WO3 nanosheets and WO3/Bi2MoO6 composite films
C—Concentration of methylene blue at different catalytic degradation times; C0—Initial concentration of methylene blue; C/C0—Catalytic degradation efficiency
-
[1] ARUTANTI O, OGI T, NANDIYANTO A, et al. Controllable crystallite and particle sizes of WO3 particles prepared by a spray-pyrolysis method and their photocatalytic activity[J]. Aiche Journal,2014,60(1):41-49. doi: 10.1002/aic.14233 [2] ZHU Z, YING Y, LI J. Synthesis of flower-like WO3/Bi2WO6 heterojunction and enhanced photocatalytic degradation for Rhodamine B[J]. Micro & Nano Letters,2015,10(9):460-464. [3] ZENG Q Y, YU L L, GAO Y W, et al. A self-sustaining monolithic photoelectrocatalytic/ photovoltaic system based on a WO3/BiVO4 photoanode and Si PVC for efficiently producing clean energy from refractory organics degradation[J]. Applied Catalysis B: Environmental,2018,238:309-317. doi: 10.1016/j.apcatb.2018.07.005 [4] XIANG Q, MENG G F, ZHAO H B, et al. Au nanoparticle modified WO3 nanorods with their enhanced properties for photocatalysis and gas sensing[J]. Journal of Physical Chemistry C, 2013, 114(5): 2049-2055. [5] CONG S, TIAN Y, LI Q, et al. Single-crystalline tungsten oxide quantum dots for fast pseudocapacitor and electrochromic applications[J]. Advanced Materials,2014,26(25):4260-4267. doi: 10.1002/adma.201400447 [6] KALANTAR-ZADEH K, VIJAYARAGHAVAN A, HAM M H, et al. Synthesis of atomically thin WO3 sheets from hydrated tungsten trioxide[J]. Chemistry of Materials,2010,22(19):5660-5666. doi: 10.1021/cm1019603 [7] TACCA A, MEDA L, MARRA G, et al. Photoanodes based on nanostructured WO3 for water splitting[J]. ChemPhysChem,2012,13(12):3025-3034. doi: 10.1002/cphc.201200069 [8] HOSSNIEI M G, SEFIDI P Y, AYDIN Z, et al. Toward enhancing the photoelectrochemical water splitting efficiency of organic acid doped polyaniline-WO3 photoanode by photo-assisted electrochemically reduced graphene oxide[J]. Electrochimica Acta,2020,333:135475. [9] ZHANG L, HAO X, LI Y, et al. Performance of WO3/g-C3N4 heterojunction composite boosting with NiS for photocatalytic hydrogen evolution[J]. Applied Surface Science,2020,499:143862. [10] SHARMA S, BASU S. Highly reusable visible light active hierarchical porous WO3/SiO2 monolith in centimeter length scale for enhanced photocatalytic degradation of toxic pollutants[J]. Separation and Purification Technology,2020,231(115916):1-10. [11] JIN T, DIAO P, WU Q, et al. WO3 nanoneedles/α-Fe2O3/cobalt phosphate composite photoanode for efficient photoelectrochemical water splitting[J]. Applied Catalysis B: Environmental,2014,148:304-310. [12] JIN T, DIAO P, XU D, et al. High-aspect-ratio WO3 nano-needles modified with nickel-borate for efficient photoelectrochemical water oxidation[J]. Electrochimica Acta,2013,114:271-277. doi: 10.1016/j.electacta.2013.09.172 [13] AN X, YU J C, YU W, et al. WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing[J]. Journal of Materials Chemistry,2012,22(17):8525-8531. doi: 10.1039/c2jm16709c [14] LI H, DENG Q, LIU J, et al. Synthesis characterization and enhanced visible light photocatalytic activity of Bi2MoO6/Zn–Al layered double hydroxide hierarchical heterostructures[J]. Catalysis Science & Technology,2014,4(4):1028-1037. [15] MA Y, JIA Y, JIAO Z, et al. Hierarchical Bi2MoO6 nanosheet-built frameworks with excellent photocatalytic properties[J]. Chemical Communications,2015,51(30):6655-6658. doi: 10.1039/C5CC00634A [16] WANG L, WANG R, ZHOU Y, et al. Three-dimensional Bi2MoO6/TiO2 array heterojunction photoanode modified with cobalt phosphate cocatalyst for high-efficient photoelectrochemical water oxidation[J]. Catalysis Today,2019,335:262-268. doi: 10.1016/j.cattod.2018.11.054 [17] ZHANG Z, ZHAO C, LIN S, et al. Oxygen vacancy modified Bi2MoO6/WO3 electrode with enhanced photoelectrocatalytic degradation activity toward RhB[J]. Fuel,2021,285(119171):1-11. [18] BI J H, WU L, LI Z H,et al. Simple solvothermal routes to synthesize nanocrystalline Bi2MoO6 photocatalysts with different morphologies[J]. Acta Materialia,2007,55(14):4699-4705. doi: 10.1016/j.actamat.2007.04.034 [19] YU J, YAN Z, GAO X, et al. Enhancement of photo-to-current efficiency over two-dimensional Bi2MoO6 nanoplate thin-film photoelectrode[J]. Electrochemical and Solid-State Letters,2008,11(11):B197-B200. doi: 10.1149/1.2968955 [20] LONG M, CAI W, KISCH H. Photoelectrochemical properties of nanocrystalline Aurivillius phase Bi2MoO6 film under visible light irradiation[J]. Chemical Physics Letters,2008,461(1-3):102-105. doi: 10.1016/j.cplett.2008.06.081 [21] SUN J, ZHANG Y, TIAN X, et al. Fabrication of Bi2 MoO6 photocatalytic fibers via wet spinning and enhanced photocatalytic activity[J]. IOP Conference Series Materials Science and Engineering,2020,735:012013. doi: 10.1088/1757-899X/735/1/012013 [22] ZHANG Q, ZHAO Z K, SHEN Z R, et al. One-step hydrothermal method to synthesize Bi/Bi2MoO6 composite for photoelectric catalyst[J]. Functional Materials Letters,2017,10(05):1750053. doi: 10.1142/S1793604717500539 [23] MA Y, JIA Y L, WANG L N,et al. Exfoliated thin Bi2MoO6 nanosheets supported on WO3 electrode for enhanced photoelectrochemical water splitting[J]. Applied Surface Science,2016,390:399-405. doi: 10.1016/j.apsusc.2016.08.116 [24] LI S, HU S, JIANG W, et al. In situ construction of WO3 nano-particles decorated Bi2MoO6 microspheres for boosting photocatalytic degradation of refractory pollutants[J]. Journal of Colloid and Interface Science,2019,556:335-344. doi: 10.1016/j.jcis.2019.08.077 [25] ZHANG H S, YU D, WANG W, et al. Multiple heterojunction system of Bi2MoO6/WO3/Ag3PO4 with enhanced visible-light photocatalytic performance towards dye degradation[J]. Advanced Powder Technology,2019,30(9):1910-1919. doi: 10.1016/j.apt.2019.06.010 [26] TIAN G H, CHEN Y J, ZHOU W, et al. Facile solvothermal synthesis of hierarchical flower-like Bi2MoO6 hollow spheres as high performance visible-light driven photocatalysts[J]. Journal of Materials Chemistry,2011,21(3):887-892. [27] PHURUANGRAT A, PUTDUM S, DUMRONGROJTHANATH P, et al. Hydrothermal synthesis of Bi2MoO6 visible-light-driven photocatalyst[J]. Journal of Nanomaterials,2015,2015(2):1-6. [28] WANG Q, LU Q, WEI M, et al. ZnO/γ-Bi2MoO6 heterostructured nanotubes: electrospinning fabrication and highly enhanced photoelectrocatalytic properties under visible-light irradiation[J]. Journal of Sol-Gel Science and Technology,2018,85(1):84-92. doi: 10.1007/s10971-017-4519-4