Progressive damage and optimization of CFRP anti-collision beams in low-speed collision
-
摘要: 为预测和控制低速碰撞中碳纤维增强树脂复合材料(CFRP)防撞梁损伤程度,建立了含CFRP防撞梁的有限元显式动力学碰撞模型,防撞梁层内采用实体复合材料模拟其力学特性,采用Cohesive单元模拟CFRP层间相互作用。发展了基于Tsai-Wu张量理论的VUSDFLD子程序用于判定碰撞过程中复合材料单元6个方向损伤,失效单元按照突降退化模型进行刚度折减,利用Johnson-Cook本构模型模拟铝合金强化层碰撞损伤,其失效单元采用线性连续退化模型进行刚度折减。通过[±45°/45°/0°/0°/90°/−45°/0°/0°/90°]s和[±45°/45°/0°/0°/0°/−45°/90°/−45°/0°/0°/90°]s两种CFRP防撞梁铺层结构碰撞结果与含铝合金强化层CFRP防撞梁碰撞结果对比可知,在层内单元数相同的情况下,CFRP防撞梁增设4层复合材料铺层后,失效单元数量降低明显;碰撞过程中含铝合金强化层的多材料混合防撞梁结构在质量基本不变的情况下,失效单元数显著降低。结果表明,所开发的VUSDFLD子程序能够用于复合材料防撞梁的显式动力学碰撞损伤模拟,基于碰撞损伤的计算结果为CFRP防撞梁的结构设计提供参考。
-
关键词:
- CFRP /
- 显式动力学 /
- Tsai-Wu失效准则 /
- 铝合金材料 /
- 碰撞损伤
Abstract: In order to predict and control the damage degree of carbon fiber reinforced polymer (CFRP) anti-collision beams in low speed collision, a finite element explicit dynamic collision model of CFRP anti-collision beams was established. Mechanical properties of CFRP anti-collision beams were simulated by solid composite materials, and the interlayer interaction of CFRP was simulated by cohesive element. A VUSDFLD subroutine based on Tsai-Wu tensor theory was developed to determine the damage of composite elements in six directions during the collision process. The stiffness of the failure elements was reduced according to the sudden degradation model. The Johnson-Cook constitutive model was used to simulate the impact damage of reinforced aluminum alloy layers. The stiffness reduction of the failure element was carried out by linear continuous degradation model. The collision results of two CFRP laminates ([±45°/45°/0°/0°/90°/45°/0°/0°/90°]s and [±45°/45°/0°/0°/0°/45°/90°/45°/0°/0°/90°]s) were compared with the collision results of CFRP anti-collision beam containing aluminum alloy reinforced layer. It can be seen that when the number of elements in the layer is the same, the number of failure elements decreases obviously by adding four layers of composite laminates to CFRP anti-collision beam. The number of failure elements of the multi-material hybrid anti-collision beam structure with reinforced aluminum alloy layer is significantly reduced under the condition that the mass of the beam is basically unchanged. The results show that the developed VUSDFLD subroutine can be used for the explicit dynamic collision damage simulation of composite anti-collision beams, and the results based on the collision damage simulation can provide a reference for the structural design of CFRP anti-collision beams.-
Key words:
- CFRP /
- explicit dynamics /
- Tsai-Wu failure criterion /
- aluminum alloy material /
- impact damage
-
图 2 内聚力单元双线性本构关系
${\sigma }_{\mathrm{C}\mathrm{m}\mathrm{a}\mathrm{x}}$—Maximum traction; $ {\delta }_{0} $—Displacement at the beginning of the damage; $ {\delta }_{\mathrm{m}\mathrm{a}\mathrm{x}} $—Displacement at break; D—Degradation parameter of the cohesion unit
Figure 2. Bilinear constitutive relationship of cohesion unit
表 1 碳纤维/环氧复合材料防撞梁材料参数
Table 1. Material parameters of carbon fiber/epoxy composite anti-collision beam
Elastic modulus/GPa Poisson’s ratio Density/(kg·$ {\mathrm{m}}^{-3} $) Strength/MPa $ {E}_{1} $=114 $ {\gamma }_{12} $=$ {\gamma }_{13} $=0.3 $ \rho $=1780 $ {X}_{\mathrm{T}} $=2688 $ {Z}_{\mathrm{T}} $=55.5 $ {E}_{2} $=$ {E}_{3} $=8.61 $ {\gamma }_{23} $=0.45 $ {X}_{\mathrm{C}} $=1458 $ {Z}_{\mathrm{C}} $=175 $ {G}_{12} $=$ {G}_{13} $=4.16 $ {Y}_{\mathrm{T}} $=69.5 $ {S}_{12} $=$ {S}_{13} $=136 $ {G}_{23} $=3.0 $ {Y}_{\mathrm{C}} $=236 $ {S}_{23} $=95.6 表 2 碳纤维增强树脂复合材料(CFRP)性能退化方式
Table 2. Performance degradation methods of carbon fiber reinforced polymer (CFRP)
Breaking mode Breaking rule Stiffness reduction 1 direction stretch $ {\sigma }_{1}>{X}_{\mathrm{T}} $ $ E=0.01\mathrm{\%}E $ $ G=0.01\mathrm{\%}G $ $ v =1\mathrm{\%}v $ 1 direction compression $ -{\sigma }_{1}>{X}_{\mathrm{C}} $ $ E=0.01\mathrm{\%}E $ $ G=0.01\mathrm{\%}G $ $ v =1\mathrm{\%}v $ 2 direction stretch $ {\sigma }_{2}>{Y}_{\mathrm{T}} $ $ {E}_{2}=1\%{E}_{2} $ $ {G}_{12}=20\%{G}_{12} $ $ {G}_{13}=20\%{G}_{13} $ 2 direction compression $ -{\sigma }_{2}>{Y}_{\mathrm{C}} $ $ {E}_{2}=1\%{E}_{2} $ $ {G}_{12}=20\%{G}_{12} $ $ {G}_{13}=20\%{G}_{13} $ 3 direction stretch $ {\sigma }_{3}>{Z}_{\mathrm{T}} $ $ {E}_{3}=1\%{E}_{3} $ $ {G}_{12}=20\%{G}_{12} $ $ {G}_{13}=20\%{G}_{13} $ 3 direction compression $ {-\sigma }_{3}>{Z}_{\mathrm{C}} $ $ {E}_{3}=1\%{E}_{3} $ $ {G}_{12}=20\%{G}_{12} $ $ {G}_{13}=20\%{G}_{13} $ 1-2 in-plane shear $ \left|{\tau }_{12}\right|>{S}_{12} $ $ {E}_{2}=1\%{E}_{2} $ $ {G}_{12}=1\%{G}_{12} $ 1-3 in-plane shear $ \left|{\tau }_{13}\right|>{S}_{13} $ $ {E}_{3}=1\%{E}_{3} $ $ {G}_{13}=1\%{G}_{13} $ 2-3 in-plane shear $ \left|{\tau }_{23}\right|>{S}_{23} $ $ {E}_{2}=1\%{E}_{2}{E}_{3}=1\%{E}_{3} $ $ G=1\mathrm{\%}G $ Notes: E includes $ {E}_{1} $, $ {E}_{2} $ and $ {E}_{3} $; G includes $ {G}_{12} $, $ {G}_{13} $ and $ {G}_{23} $; $ v $ includes $ {v }_{1} $, $ {v }_{2} $ and $ { v }_{3} $. 表 3 黏结层Cohesive单元材料参数
Table 3. Material parameters of the cohesive element of the bonding layer
Parameter $ {K}_{1}/(\mathrm{N}·{\mathrm{m}\mathrm{m}}^{-3}) $ $ {K}_{2}/(\mathrm{N}·{\mathrm{m}\mathrm{m}}^{-3}) $ $ {K}_{3}/(\mathrm{N}·{\mathrm{m}\mathrm{m}}^{-3}) $ $ N/\mathrm{M}\mathrm{P}\mathrm{a} $ $ S/\mathrm{M}\mathrm{P}\mathrm{a} $ $ T/\mathrm{M}\mathrm{P}\mathrm{a} $ $ {G}_{1\mathrm{c}}/(\mathrm{N}·{\mathrm{m}\mathrm{m}}^{-1}) $ $ {G}_{2\mathrm{c}}/(\mathrm{N}·{\mathrm{m}\mathrm{m}}^{-1}) $ $ {G}_{3\mathrm{c}}/(\mathrm{N}·{\mathrm{m}\mathrm{m}}^{-1}) $ Value 24000 24000 24000 60 70 70 3.84 3.84 1.88 Notes: K—Stiffness coefficients in different directions; N, S, T—Intensity in different directions; $ {G}_{\mathrm{c}} $—Fracture energies in different directions. 表 4 6061-T6铝合金材料参数
Table 4. 6061-T6 aluminum alloy material parameters
Parameter Value Parameter Value Parameter Value Density$ \rho $/(t·$ {\mathrm{m}\mathrm{m}}^{-3} $) 2.7×10−9 Material parameter c 0.2215 Damage parameter $ {D}_{2} $ 1.45 Elastic modulus $ E/\mathrm{M}\mathrm{P}\mathrm{a} $ 7×104 Material parameter n 0.34 Damage parameter $ {D}_{3} $ −0.47 Poisson’s ratio $ \gamma $ 0.33 Material parameter m 1 Damage parameter $ {D}_{4} $ 0.011 Material parameter $ A/\mathrm{M}\mathrm{P}\mathrm{a} $ 265 Reference strain rate $ {\dot{\epsilon }}_{0}/\mathrm{S} $ 1.34 Damage parameter $ {D}_{5} $ 1.6 Material parameter B$ /\mathrm{M}\mathrm{P}\mathrm{a} $ 426 Damage parameter $ {D}_{1} $ −0.77 Reference strain rate $ {\dot{\epsilon }}_{0}/\mathrm{S} $ 1 表 5 6个CFRP试件的数据
Table 5. Data of 6 experimental CFRP specimens
Number Maximum load/kN Residual strength/MPa 1 56.92 419 2 54.39 400 3 57.22 421 4 55.87 406 5 61.04 441 6 54.19 399 表 6 20层CFRP防撞梁复合材料层失效单元数统计
Table 6. Statistics on the number of failure units of 20 composite material layers of CFRP anti-collision beam
Concrete layer number FV1 FV2 FV3 FV4 FV5 FV6 Total Angle/(°) 1 0 187 213 0 5 202 607 45 2 0 147 227 0 5 178 557 −45 3 0 129 164 0 7 187 487 45 4 0 184 54 7 2 106 353 0 5 0 178 52 7 2 108 347 0 6 0 0 236 42 57 41 376 90 7 0 102 198 0 0 151 451 −45 8 0 181 91 13 5 108 398 0 9 0 184 102 14 4 90 394 0 10 0 0 122 44 56 119 341 90 11 0 0 134 45 54 133 366 90 12 0 136 103 10 6 97 352 0 13 0 129 97 10 6 105 347 0 14 0 138 236 0 11 193 578 −45 15 0 0 171 38 47 141 397 90 16 0 86 103 8 10 109 316 0 17 0 90 104 8 8 109 319 0 18 0 85 116 0 8 207 416 45 19 0 68 183 0 13 235 499 −45 20 0 112 159 0 15 218 504 45 表 7 24层CFRP防撞梁复合材料层失效单元数统计
Table 7. Statistics on the number of failure units of 24 layers of composite material of CFRP anti-collision beam
Concrete layer number FV1 FV2 FV3 FV4 FV5 FV6 Total Angle/(°) 1 0 171 221 0 0 175 567 45 2 0 176 197 0 1 197 571 −45 3 0 145 171 0 2 177 495 45 4 0 226 65 9 6 20 326 0 5 0 207 51 8 8 21 295 0 6 0 185 36 9 4 20 254 0 7 0 152 143 0 2 87 384 −45 8 0 0 143 14 0 58 215 90 9 0 125 134 0 3 58 320 −45 10 0 184 42 5 7 25 263 0 11 0 178 52 3 7 28 268 0 12 0 0 106 15 0 112 233 90 13 0 0 15 13 0 155 183. 90 14 0 374 138 6 3 11 532 0 15 0 149 99 5 8 28 289 0 16 0 80 28 0 2 100 210 −45 17 0 0 12 6 0 153 171 90 18 0 66 20 0 0 123 209 −45 19 0 170 21 3 11 35 240 0 20 0 181 34 2 12 32 261 0 21 0 225 58 2 11 32 328 0 22 0 77 33 0 3 205 318 45 23 0 79 24 0 0 192 295 −45 24 0 90 53 0 3 213 359 45 表 8 铝合金层和CFRP层失效单元数统计
Table 8. Statistics of the number of failure units of the aluminum alloy layer and the CFRP layer
Concrete layer number FV1 FV2 FV3 FV4 FV5 FV6 Total Angle/(°) 1 0 0 0 0 0 0 0(SDEG) Aluminum alloy 2 0 0 0 0 0 0 0(SDEG) Aluminum alloy 3 0 0 0 0 0 0 0(SDEG) Aluminum alloy 4 0 103 5 4 2 23 137 0 5 0 17 1 4 2 20 44 0 6 0 1 1 4 2 20 28 0 7 0 36 26 0 0 30 92 −45 8 0 0 0 0 0 62 62 90 9 0 43 33 0 0 70 146 −45 10 0 71 41 0 4 17 133 0 11 0 80 0 1 5 17 103 0 12 0 0 0 0 0 173 173 90 13 0 0 0 0 0 176 176 90 14 0 0 0 0 0 0 0(SDEG) Aluminum alloy 15 0 134 4 1 6 16 161 0 16 0 51 10 0 0 139 200 −45 17 0 0 5 0 0 198 203 90 18 0 55 13 0 0 140 208 −45 19 0 224 126 0 6 20 376 0 20 0 226 129 0 5 21 381 0 21 0 262 133 0 8 20 423 0 22 0 58 30 0 3 155 246 45 23 0 61 78 0 0 164 303 −45 24 0 73 47 0 3 197 320 45 Note: SDEG—Scalar stiffness degradation, when SDEG>1, the material fails. -
[1] WANG Kangkang, ZHAO Libin, HONG Haiming, et al. A strain-rate-dependent damage model for evaluating the low velocity impact induced damage of composite laminates[J]. Composite Structures,2018,201:995-1003. doi: 10.1016/j.compstruct.2018.06.046 [2] CAMINERO M A, GARCÍA-MORENO I, RODRÍGUEZ G P. Damage resistance of carbon fibre reinforced epoxy laminates subjected to low velocity impact: Effects of laminate thickness and ply-stacking sequence[J]. Polymer Testing,2017,63:530-541. doi: 10.1016/j.polymertesting.2017.09.016 [3] AL-HAJAJ Z, SY B L, BOUGHERARA H, et al. Impact properties of a new hybrid composite material made from woven carbon fibres plus flax fibres in an epoxy matrix[J]. Composite Structures,2019,208:346-356. [4] PAPA I, BOCCARUSSO L, LANGELLA A, et al. Carbon/glass hybrid composite laminates in vinylester resin: Bending and low velocity impact tests[J]. Composite Structures,2020,232:111571. [5] HE B, WANG B, WANG Z, et al. Mechanical properties of hybrid composites reinforced by carbon fiber and high-strength and high-modulus polyimide fiber[J]. Polymer,2020,204:122830. [6] ZHOU J, LIAO B, SHI Y, et al. Low-velocity impact behavior and residual tensile strength of CFRP laminates[J]. Composites,2019,161:300-313. [7] PUSHPARAJA M, BALAGANESAN G, VELMURUGAN R, et al. Energy absorption characteristics of carbon/epoxy nano filler dispersed composites subjected to localized impact loading[J]. Procedia Engineering,2017,173(Complete):175-181. [8] SAMAL S, MARVALOVA B, PETRIKOVA I, et al. Impact and post impact behavior of fabric reinforced geopolymer composite[J]. Construction & Building Materials,2016,127(nov. 30):111-124. [9] CAMINERO M A, GARCÍA-MORENO I, RODRIGUEZ G P, et al. Experimental study of the influence of thickness and ply-stacking sequence on the compression after impact strength of carbon fibre reinforced epoxy laminates[J]. Polymer Testing,2018,66:360-370. [10] SALVETTI M, SBARUFATTI C, GILIOLI A, et al. On the mechanical response of CFRP composite with embedded optical fibre when subjected to low velocity impact and CAI tests[J]. Composite Structures,2017,179:21-34. [11] FOTOUHI M, JALALVAND M, WISNOM M R. High performance quasi-isotropic thin-ply carbon glass hybrid composites with pseudo-ductile behaviour in all fibre orientations[J]. Composites Science and Technology,2017,152:101-110. [12] 王莉, 熊舒, 肇研, 等. T800级碳纤维复合材料抗冲击性能[J]. 航空材料学报, 2018, 38(5):147-151.WANG Li, XIONG Shu, ZHAO Yan, et al. Impact resistance of T800 grade carbon fiber composites[J]. Journal of Aeronautical Materials,2018,38(5):147-151(in Chinese). [13] 任明伟, 洪治国, 周玉敬, 等. 复合材料防撞梁低速碰撞优化设计[J]. 复合材料学报, 2022, 39(2): 854-862.REN Mingwei, HONG Zhiguo, ZHOU Yujing, et al. Low-speed collision optimization design of composite anti-collision beams[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 854-862(in Chinese). [14] 陈静, 唐傲天, 田凯, 等. 碳纤维复合材料防撞梁轻量化设计[J]. 汽车工程, 2020, 42(3):390-395.CHEN Jing, TANG Aotian, TIAN Kai, et al. Lightweight design of carbon fiber composite anti-collision beam[J]. Automotive Engineering,2020,42(3):390-395(in Chinese). [15] 张超, 方鑫, 刘建春. 复合材料层板冰雹高速冲击损伤预测及失效机理分析[J/OL]. 北京航空航天大学学报: 1-14[2021-05-20]. https://doi.org/10.13700/j.bh.1001-5965.2020.0636.ZHANG Chao, FANG Xin, LIU Jianchun. High-speed impact damage prediction and failure mechanism analysis of composite laminates with hail[J/OL]. Journal of Beijing University of Aeronautics and Astronautics: 1-14[2021-05-20]. https://doi.org/10.13700/j.bh.1001-5965.2020.0636 (in Chinese). [16] 周俊杰, 王生楠. 复合材料层合板低速冲击渐进损伤模型[J]. 西北工业大学学报, 2021, 39(1):37-45. doi: 10.3969/j.issn.1000-2758.2021.01.005ZHOU Junjie, WANG Shengnan. Progressive damage model of composite laminates under low-velocity impact[J]. Journal of Northwestern Polytechnical University,2021,39(1):37-45(in Chinese). doi: 10.3969/j.issn.1000-2758.2021.01.005 [17] 拓宏亮, 马晓平, 卢智先. 基于连续介质损伤力学的复合材料层合板低速冲击损伤模型[J]. 复合材料学报, 2018, 35(7):202-212.TUO Hongliang, MA Xiaoping, LU Zhixian. Low-velocity impact damage model of composite laminates based on continuum damage mechanics[J]. Acta Materiae Compo-sitae Sinica,2018,35(7):202-212(in Chinese). [18] 孔祥宏, 王志瑾. 基于Abaqus的有限元渐进损伤强度分析[J]. 计算机应用与软件, 2012, 29(10):236-240.KONG Xianghong, WANG Zhijin. Finite element progressive damage analysis based on Abaqus[J]. Computer Applications and Software,2012,29(10):236-240(in Chinese). [19] 王涛, 侯玉亮, 铁瑛, 等. 基于ECPL模型的平纹机织复合材料低速冲击多尺度模拟[J]. 振动与冲击, 2020, 39(20):295-304.WANG Tao, HOU Yuliang, TIE Ying, et al. Multi-scale simulation of low-velocity impact of plain woven composites based on ECPL model[J]. Journal of Vibration and Shock,2020,39(20):295-304(in Chinese). [20] 周琳. 金属材料新的动态本构模型[D]. 合肥: 中国科学技术大学, 2019.ZHOU Lin. New dynamic constitutive model of metal materials[D]. Hefei: University of Science and Technology of China, 2019(in Chinese). [21] 崔俊杰, 郭章新, 朱明, 等. 表面带金属层的复合材料层合板低速冲击数值模拟[J]. 材料导报, 2021, 35(4):4150-4158.CUI Junjie, GUO Zhangxin, ZHU Ming, et al. Numerical simulation of low-velocity impact of composite laminates with metal layers on the surface[J]. Materials Reports,2021,35(4):4150-4158(in Chinese). [22] 孔祥宏, 王志瑾. 复合材料层压板压缩剩余强度分析[J]. 飞机设计, 2014, 34(6):42-47, 52.KONG Xianghong, WANG Zhijin. Analysis of compression residual strength of composite laminates[J]. Aircraft Design,2014,34(6):42-47, 52(in Chinese). [23] 肖金涛, 张帅, 徐锐良, 等. 碳纤维复合材料防撞梁与铝合金吸能盒低速碰撞轻量化设计优化[J]. 河南科技大学学报(自然科学版), 2021, 42(3):25-32, 33.XIAO Jintao, ZHANG Shuai, XU Ruiliang, et al. Low-speed collision lightweight design optimization of carbon fiber composite anti-collision beam and aluminum alloy energy-absorbing box[J]. Journal of Henan University of Science and Technology: Natural Science,2021,42(3):25-32, 33(in Chinese).