留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超高分子量聚乙烯纤维平纹织物-单向布混合堆叠板的防弹机制

袁子舜 陆振乾 许玥 徐望

袁子舜, 陆振乾, 许玥, 等. 超高分子量聚乙烯纤维平纹织物-单向布混合堆叠板的防弹机制[J]. 复合材料学报, 2022, 39(6): 2707-2715. doi: 10.13801/j.cnki.fhclxb.20210625.001
引用本文: 袁子舜, 陆振乾, 许玥, 等. 超高分子量聚乙烯纤维平纹织物-单向布混合堆叠板的防弹机制[J]. 复合材料学报, 2022, 39(6): 2707-2715. doi: 10.13801/j.cnki.fhclxb.20210625.001
YUAN Zishun, LU Zhenqian, XU Yue, et al. Ballistic mechanism of the hybrid panels with UHMWPE woven fabrics and UD laminates[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2707-2715. doi: 10.13801/j.cnki.fhclxb.20210625.001
Citation: YUAN Zishun, LU Zhenqian, XU Yue, et al. Ballistic mechanism of the hybrid panels with UHMWPE woven fabrics and UD laminates[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2707-2715. doi: 10.13801/j.cnki.fhclxb.20210625.001

超高分子量聚乙烯纤维平纹织物-单向布混合堆叠板的防弹机制

doi: 10.13801/j.cnki.fhclxb.20210625.001
基金项目: 国家自然科学基金(51478408)
详细信息
    通讯作者:

    陆振乾,博士,副教授,硕士生导师,研究方向为纺织复合材料 E-mail:luzhenqian2003@126.com

  • 中图分类号: TB332

Ballistic mechanism of the hybrid panels with UHMWPE woven fabrics and UD laminates

  • 摘要: 柔性防弹衣具有隐蔽性好、穿着舒适的优点,而采用平纹与单向(UD)布杂化结构具有更好的防护效果。本文采用三层超高分子量聚乙烯(UHMWPE)纤维平纹织物(A)和两层Dyneema® SB51 UD布(B)组成AAABB和BBAAA两种混合靶板,通过弹道实验比较两种排列方式的防弹性能差异。结果表明,将平纹织物在前UD布在后能大幅提升整块板的防弹性能,能量吸收比后者高约20%。进一步采用有限元模拟来阐明其防弹机制,模拟结果表明将平纹织物放在面层不易被切断,使得平纹织物层发生更大的形变,也使后面的UD布发生大面积形变,吸收大量能量。而UD布放在前面层易产生的切力破坏,失去对后面层的作用。而平纹织物在后层容易发生滑移,且形变纵深过大,不利于防弹保护。该研究结果阐明了平纹织物和UD布不同顺序堆叠时的防弹机制,为进一步优化设计该类柔性防弹衣提供了坚实的理论基础。

     

  • 图  1  两组超高分子量聚乙烯(UHMWPE)纤维平纹织物-单向(UD)布杂化结构示意图

    Figure  1.  Schematic diagram of two groups of hybrid structures with ultrahigh molecular weight polyethylene (UHMWPE) yarns woven fabrics and unidirectional (UD) laminates

    A—Woven fabrics; B—UD laminates

    图  2  纱线模型尺寸、方向定义与网格划分

    Figure  2.  Size of yarn model, definition of yarn directions, and mesh development

    图  3  平纹织物模型尺寸、边缘条件设置和主区域和副区域定义

    Figure  3.  Size of plain woven fabric model, setting of boundary condition, and definition of primary and secondary areas

    图  4  UD布模型尺寸和边缘条件设置

    Figure  4.  Dimension of UD laminate model and setting of boundary condition

    图  5  子弹模型尺寸

    Figure  5.  Dimension of the projectile

    图  6  单层UHMWPE纤维平纹织物能量吸收和第一根纱线断裂的实验和模拟数据对比

    Figure  6.  Energy absorption and time of first failed yarn of single UHMWPE fiber woven fabric from experiments and modelling

    图  7  单层Dyneema@ SB51 UD布能量吸收和穿透时间的实验和模拟数据对比

    Figure  7.  Energy absorption and penetration time of single Dyneema@ SB51 UD fabric from experiments and modelling

    图  8  AAABB和BBAAA型混合板的能量吸收

    Figure  8.  Energy absorption of AAABB and BBAAA hybrid panels

    图  9  两组UHMWPE纤维平纹织物-UD布混合板每层的内能吸收

    Figure  9.  Energy absorption of internal energy of each layer in the two hybrid panels with UHMWPE yarn woven fabrics and UD laminates

    图  10  两组UHMWPE纤维平纹织物-UD布混合板前两层主区域和副区域的内能吸收

    Figure  10.  Internal energy of primary area and secondary area of the first two layers in the two hybrid panels with UHMWPE yarn woven fabrics and UD laminates

    图  11  在1×10−6 s时AAABB中第一层与BBAAA中第一层所受拉应力分散图

    Figure  11.  Contours of tensile stress distributions on the first layer of AAABB and BBAAA at 1×10−6 s

    图  12  两组UHMWPE纤维平纹织物-UD布混合板后两层主区域和副区域的内能吸收

    Figure  12.  Internal energy of primary and secondary areas of the first two layers in the two hybrid panels with UHMWPE yarn woven fabrics and UD laminates

    图  13  两组UHMWPE纤维平纹织物-UD布混合板中每层平纹织物层的内能吸收

    Figure  13.  Internal energy of each layer in the two hybrid panels with UHMWPE yarn woven fabrics and UD laminates

    图  14  两组UHMWPE纤维平纹织物-UD布混合板中的平纹织物Mises应力分散图

    Figure  14.  Contours of Mises stress distributions of woven fabrics in the two hybrid panels with UHMWPE yarn woven fabrics and UD laminates

    表  1  UHMWPE纱线模型弹性性质

    Table  1.   Elastic properties of UHMWPE yarn in modelling

    E1/MPaE2/MPaE3/MPaν12ν13ν23G12/MPaG13/MPaG23/MPa
    88000 1210 1210 0.2 0.2 0.4 370 370 1500
    Notes: E1, E2, E3—Young’s modulus in the 1, 2, 3-directions of the UHMWPE yarn model, respectively; ν12—Poisson’s ratio that characterizes the transverse strain in the 2-direction, when the yarn model is stressed in the 1-direction; ν13—Poisson’s ratio that characterizes the transverse strain in the 3-direction, when the yarn model is stressed in the 1-direction; ν23—Poisson’s ratio that characterizes the transverse strain in the 3-direction, when the yarn model is stressed in the 2-direction; G12, G13, G23—Shear modulus in 12, 13, 23-directions of the yarn model.
    下载: 导出CSV

    表  2  UD布模型弹性性质

    Table  2.   Elastic properties of a UD ply

    E1/MPaE2/MPaE3/MPaν12ν13ν23G12/MPaG13/MPaG23/MPa
    110000360036000.070.070.07420420420
    下载: 导出CSV

    表  3  粘结层的弹性性质

    Table  3.   Elastic properties of the adhesive ply

    E/Enn/MPaG1/Ess/MPaG2/Ett/MPa
    850850850
    Notes: E/Enn—Nominal traction in the normal direction; G1/Ess and G2/Ett—Nominal tractions in the two local shear directions.
    下载: 导出CSV
  • [1] CHEESEMAN B A, BOGETTI T A. Ballistic impact into fabric and compliant composite laminates[J]. Composite Structures,2003,61(1-2):161-173. doi: 10.1016/S0263-8223(03)00029-1
    [2] 顾伯洪. 织物弹道贯穿性能分析计算[J]. 复合材料学报, 2002, 19(6):92-96. doi: 10.3321/j.issn:1000-3851.2002.06.017

    GU Bohong. Analytical modelling of woven fabric under ballistic perforation[J]. Acta Materiae Compositae Sinica,2002,19(6):92-96(in Chinese). doi: 10.3321/j.issn:1000-3851.2002.06.017
    [3] 朱德举, 彭恋. SiC-超高分子量聚乙烯仿生柔性叠层结构防弹性能关键影响因素的仿真与试验[J]. 复合材料学报, 2020, 37(11):2928-2940.

    ZHU Deju, PENG Lian. Simulation and experiment of key influencing factors on ballistic performance of SiC-ultra-high molecular weight polyethylene biomimetic flexible laminated structure[J]. Acta Materiae Compositae Sinica,2020,37(11):2928-2940(in Chinese).
    [4] GU B. Analytical modeling for the ballistic perforation of planar plain-woven fabric target by projectile[J]. Compo-sites Part B: Engineering,2003,34(4):361-371. doi: 10.1016/S1359-8368(02)00137-3
    [5] 何业茂, 焦亚男, 周庆, 等. 弹道防护用先进复合材料弹道响应的研究进展[J]. 复合材料学报, 2021, 38(5):1331-1348.

    HE Yemao, JIAO Ya'nan, ZHOU Qing, et al. Research progress on ballistic response of advanced composite for ballistic protection[J]. Acta Materiae Compositae Sinica,2021,38(5):1331-1348(in Chinese).
    [6] 陈晓钢. 纺织基防弹防穿刺材料的研究回顾[J]. 纺织学报, 2019, 40(6):158-164.

    CHEN Xiaogang. Trend of research in textile-based protective materials against ballistic and stabbing[J]. Journal of Textile Research,2019,40(6):158-164(in Chinese).
    [7] 周熠, 陈晓钢, 张尚勇, 等. 超高分子量聚乙烯平纹织物在柔性防弹服中的应用[J]. 纺织学报, 2016, 37(4):60-64.

    ZHOU Yi, CHEN Xiaogang, ZHANG Shangyong, et al. Application of ultra-high molecular-weight polyethylene plain weave on soft body armour[J]. Journal of Textile Research,2016,37(4):60-64(in Chinese).
    [8] TABIEI A, NILAKANTAN G. Ballistic impact of dry woven fabric composites: A Review[J]. Applied Mechanics Reviews,2008,61(1):1-13.
    [9] NILAKANTAN G, GILLESPIE J W. Ballistic impact modeling of woven fabrics considering yarn strength, friction, projectile impact location, and fabric boundary condition effects[J]. Composite Structures,2012,94(12):3624-3634. doi: 10.1016/j.compstruct.2012.05.030
    [10] CHEN X, ZHU F, WELL G. An analytical model for ballistic impact on textile based body armour[J]. Composites Part B: Engineering,2013,45(1):1508-1514. doi: 10.1016/j.compositesb.2012.08.005
    [11] YANG Y, CHEN X. Study of energy absorption and failure modes of constituent layers in body armour panels[J]. Composites Part B: Engineering,2016,98:250-259. doi: 10.1016/j.compositesb.2016.04.071
    [12] YANG Y, CHEN X. Determination of materials for hybrid design of 3D soft body armour panels[J]. Applied Compo-site Materials,2018,25(4):861-875. doi: 10.1007/s10443-018-9716-y
    [13] CHEN X, ZHOU Y, WELL G. Numerical and experimental investigations into ballistic performance of hybrid fabric panels[J]. Composites Part B: Engineering,2014,58:35-42. doi: 10.1016/j.compositesb.2013.10.019
    [14] BAJYA M, MAJUMDAR A, BUTOLA B, et al. Ballistic performance and failure modes of woven and unidirectional fabric based soft armour panels[J]. Composite Structures,2021,255:112941. doi: 10.1016/j.compstruct.2020.112941
    [15] GUO Z, CHEN W. A merit parameter to determine the stacking order of heterogeneous diphasic soft armor systems[J]. Composite Structures,2020,241:112086. doi: 10.1016/j.compstruct.2020.112086
    [16] WANG Y, CHEN X, YOUNG R, et al. An experimental study of the effect of ply orientation on ballistic impact perfor-mance of multi-ply fabric panels[J]. Textile Research Jour-nal,2016,86(1):34-43. doi: 10.1177/0040517514566110
    [17] LU Z, YUAN Z, CHEN X, et al. Evaluation of ballistic performance of STF impregnated fabrics under high velocity impact[J]. Composite Structures,2019,227:111208. doi: 10.1016/j.compstruct.2019.111208
    [18] YUAN Z, CHEN X, ZENG H, et al. Identification of the elastic constant values for numerical simulation of high velocity impact on dyneema® woven fabrics using orthogonal experiments[J]. Composite Structures,2018,204:178-191. doi: 10.1016/j.compstruct.2018.07.024
    [19] WANG Y, CHEN X, YOUNG R, et al. A numerical and experimental analysis of the influence of crimp on ballistic impact response of woven fabrics[J]. Composite Structures,2016,140:44-52. doi: 10.1016/j.compstruct.2015.12.055
    [20] HUANG W, WANG Y, XIA Y. Statistical dynamic tensile strength of UHMWPE-fibers[J]. Polymer,2004,45(11):3729-3734. doi: 10.1016/j.polymer.2004.03.062
    [21] PISANOVA E, ZHANDAROV S, MÄDER E. How can adhesion be determined from micromechanical tests?[J]. Composites Part A: Applied Science and Manufacturing,2001,32(3):425-434.
    [22] GRUJICIC M, ARAKERE G, HE T, et al. A ballistic material model for cross-plied unidirectional ultra-high molecular-weight polyethylene fiber-reinforced armor-grade compo-sites[J]. Materials Science & Engineering A,2008,498(1-2):231-241.
    [23] YUAN Z, WANG K, QIU J, et al. A numerical study on the mechanisms of Dyneema® quasi-isotropic woven panels under ballistic impact[J]. Composite Structures,2020,236:111855. doi: 10.1016/j.compstruct.2020.111855
    [24] MIN S, CHU Y, CHEN X. Numerical study on mechanisms of angle-plied panels for ballistic protection[J]. Materials & Design,2016,90:896-905.
    [25] VAN DINGENEN J L J. High performance dyneema fibres in composites[J]. Materials & Design,1989,10(2):101-104.
    [26] ONG CW, BOEY CW, HIXSON R S, et al. Advanced layered personnel armor[J]. International Journal of Impact Engineering,2011,38(5):369-383. doi: 10.1016/j.ijimpeng.2010.12.003
    [27] ATTWOOD J P, FLECK N A, WADLEY H N G, et al. The compressive response of ultra-high molecular weight polyethylene fibres and composites[J]. International Journal of Solids and Structures,2015,71:141-155. doi: 10.1016/j.ijsolstr.2015.06.015
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  1089
  • HTML全文浏览量:  524
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-12
  • 修回日期:  2021-05-30
  • 录用日期:  2021-06-09
  • 网络出版日期:  2021-06-25
  • 刊出日期:  2022-06-01

目录

    /

    返回文章
    返回