Corrosion extents of steel bar in copper slag concrete after exposure to high temperature under chloride attack
-
摘要: 为探究高温及铜矿渣细骨料对混凝土中钢筋锈蚀模式的影响规律,对不同铜矿渣置换率的混凝土试件进行高温试验,然后采用干湿循环浸泡法对试件进行人工加速氯离子侵蚀试验,并利用电化学方法测量自然电位值以监测混凝土内部钢筋的锈蚀情况,最后测量混凝土内部氯离子含量及钢筋锈蚀率。结果表明:自然电位法可以较好地反映试件内部钢筋的实际锈蚀情况;高温破坏了混凝土抗氯离子侵蚀性能,从而导致混凝土试件中的钢筋锈蚀程度随经历温度的升高而增大;此外,高温下铜矿渣自身较大的膨胀变形及冷却后与水泥净浆间不协调收缩的综合作用进一步破坏了混凝土微结构,使钢筋锈蚀率随着铜矿渣置换率的提高而增大;最后建立了氯盐侵蚀下铜矿渣混凝土高温后内部钢筋锈蚀深度拟合公式。Abstract: In order to investigate the influence of high temperature and copper slag fine aggregate on corrosion mode of steel bar in concrete, high temperature test was carried out on concrete specimens with different copper slag replacing ratios, then the artificial accelerated chloride ion corrosion test was conducted on the specimens using dry-wet cycling immersion method, and the corrosion state of steel bars embedded in concrete was monitored by measuring the half-cell potential value using electrochemical method, the chloride ion content in concrete and corrosion rate of steel bar were also measured at last. The results show that the half-cell potential method well reflects the actual corrosion situation of steel bar in specimen. High temperature destroys the chloride ion penetration resistance performance of concrete, thus causing the corrosion degree of steel bar in concrete specimen increases with the increase of heating temperature. In addition, the combined effect of inherent larger expansion deformation of copper slag at high temperature and uncoordinated shrinkage between copper slag and cement paste after cooling furtherly destroys the microstructure of concrete, thus causing the corrosion rate of steel bar increases with the increase of copper slag replacing ratio. A fitting formula for corrosion depth of steel bar in copper slag concrete after exposure to high temperature under chloride attack was established at last.
-
Key words:
- copper slag concrete /
- high temperature /
- chloride attack /
- steel bar corrosion /
- half-cell potential
-
表 1 铜矿渣混凝土配合比
Table 1. Mix proportions of copper slag concrete
Sample Water to
binder ratio/%Replacing
ratio/wt%Mix proportions/(kg·m−3) Water Cement Fly ash Gravel Sand Copper slag Superplasticizer NC 40 0 200 300 200 860 845 0 9.0 20%Cu/NC 20 200 300 200 860 676 169 5.0 40%Cu/NC 40 200 300 200 860 507 338 4.0 表 2 铜矿渣的化学成分
Table 2. Chemical composition of copper slag
Chemical composition Content/wt% SiO2 33-35 Fe2O3 42-50 CaO 3-10 MgO 1-5 Al2O3 3-7 Cu 0.5-2 S 0-2 表 3 铜矿渣混凝土试件分组情况
Table 3. Test group of copper slag concrete specimens
Name Specimen Copper slag/wt% Heating temperature/℃ Corrosion time/day Number NC NC-20℃-60d 0 20 60 3 NC-100℃-60d 0 100 60 3 NC-200℃-60d 0 200 60 3 NC-300℃-60d 0 300 60 3 20%Cu/NC 20%Cu/NC-20℃-60d 20 20 60 3 20%Cu/NC-100℃-60d 20 100 60 3 20%Cu/NC-200℃-60d 20 200 60 3 20%Cu/NC-300℃-60d 20 300 60 3 40%Cu/NC 40%Cu/NC-20℃-60d 40 20 60 3 40%Cu/NC-100℃-60d 40 100 60 3 40%Cu/NC-200℃-60d 40 200 60 3 40%Cu/NC-300℃-60d 40 300 60 3 表 4 高温后铜矿渣混凝土试件外观特征
Table 4. Appearance characteristics of copper slag concrete specimens after exposure to high temperature
Heating temperature/℃ Appearance characteristics of specimens 20 Cement-grey, no cracks, dense surface 100 Cement-grey, no cracks, neat edge 200 Mud-grey, no cracks 300 Dark red, micro-cracks 表 5 钢筋锈蚀情况判断标准
Table 5. Criteria for judging corrosion state of steel bar
Steel bar corrosion state Half-cell potential/mV Uncorroded (10% risk of corrosion) >−90 Uncertain (50% risk of corrosion) −240-−90 Corroded (90% risk of corrosion) < −240 表 6 高温后铜矿渣混凝土试件中钢筋锈蚀情况
Table 6. Corrosion state of steel bar in copper slag concrete specimens after exposure to high temperature
Specimen Copper slag/wt% Heating temperature/℃ Corrosion rate/% d/mm dρ/mm δ/mm NC-20℃-60d 0 20 1.304 13.280 13.193 0.0434 NC-100℃-60d 0 100 1.432 13.300 13.204 0.0478 NC-200℃-60d 0 200 1.569 13.310 13.205 0.0524 NC-300℃-60d 0 300 2.088 13.280 13.141 0.0697 20%Cu/NC-20℃-60d 20 20 1.378 13.230 13.139 0.0457 20%Cu/NC-100℃-60d 20 100 1.576 13.210 13.106 0.0522 20%Cu/NC-200℃-60d 20 200 1.775 13.290 13.172 0.0592 20%Cu/NC-300℃-60d 20 300 2.312 13.380 13.224 0.0778 40%Cu/NC-20℃-60d 40 20 1.439 13.320 13.224 0.0481 40%Cu/NC-100℃-60d 40 100 1.674 13.360 13.248 0.0562 40%Cu/NC-200℃-60d 40 200 1.862 13.330 13.205 0.0623 40%Cu/NC-300℃-60d 40 300 2.505 13.330 13.162 0.0840 Notes: d—Diameter of steel bar before corrosion; dρ—Diameter of steel bar after corrosion; δ—Average corrosion depth of steel bar. -
[1] 智研咨询集团. 2019—2025年中国铜冶炼行业市场深度评估及未来发展趋势研究报告[R]. 北京: 2019.Zhiyan Consulting Group. Research report on market depth assessment and future development trend of China copper smelting industry from 2019 to 2025[R]. Beijing: 2019(in Chinese). [2] SONG J, FENG S, XIONG R, et al. Mechanical properties, pozzolanic activity and volume stability of copper slag-filled cementitious materials[J]. Materials Science,2019,26(2):218-224. doi: 10.5755/j01.ms.26.2.21447 [3] CHITHRA S, SENTHIL KUMAR S R R, CHINNARAJU K. The effect of colloidal nano-silica on workability, mechanical and durability properties of high performance concrete with copper slag as partial fine aggregate[J]. Construction and Building Materials,2016,113:794-804. doi: 10.1016/j.conbuildmat.2016.03.119 [4] 朱街禄, 宋军伟, 王露, 等. 铜矿渣在水泥混凝土应用的研究进展[J]. 硅酸盐通报, 2017, 36(11):3676-3682.ZHU Jielu, SONG Junwei, WANG Lu, et al. Research progress on copper slag in cement and concrete[J]. Bulletin of the Chinese Ceramic Society,2017,36(11):3676-3682(in Chinese). [5] LYE C Q, KOH S K, MANGABHAI R, et al. Use of copper slag and washed copper slag as sand in concrete: A state-of-the-art review[J]. Magazine of Concrete Research,2015,67(12):665-679. doi: 10.1680/macr.14.00214 [6] 史公初, 廖亚龙, 张宇, 等. 铜冶炼渣制备建筑材料及功能材料的研究进展[J]. 材料导报, 2020, 34(13):13044-13049. doi: 10.11896/cldb.19040073SHI Gongchu, LIAO Yalong, ZHANG Yu, et al. Research progress on preparation of building materials and functional materials with copper metallurgical slag[J]. Materials Review,2020,34(13):13044-13049(in Chinese). doi: 10.11896/cldb.19040073 [7] AFSHOON I, SHARIFI Y. Utilization of micro copper slag in SCC subjected to high temperature[J]. Journal of Building Engineering,2020,29:101128. doi: 10.1016/j.jobe.2019.101128 [8] 杜海云, 郭荣鑫, 马倩敏, 等. 铜渣胶凝材料高温力学性能的实验研究[J]. 硅酸盐通报, 2016, 35 (10):3258-3263.DU Haiyun, GUO Rongxin, MA Qianmin, et al. Mechanical properties of cementitious materials containing copper slag at high temperatures[J]. Bulletin of the Chinese Ceramic Society,2016,35 (10):3258-3263(in Chinese). [9] PREM P R, VERMA M, AMBILY P S. Sustainable cleaner production of concrete with high volume copper slag[J]. Journal of Cleaner Production,2018,193:43-58. doi: 10.1016/j.jclepro.2018.04.245 [10] GUPTA N, SIDDIQUE R. Durability characteristics of self-compacting concrete made with copper slag[J]. Construction and Building Materials,2020,247:118580. doi: 10.1016/j.conbuildmat.2020.118580 [11] KHARADE A S, KAPADIYA S V, CHAVAN R. An experimental investigation of properties of concrete with partial or full replacement of fine aggregates through copper slag[J]. International Journal of Engineering Research and Technology,2013,2(3):1-10. [12] WU W, ZHANG W, MA G. Optimum content of copper slag as a fine aggregate in high strength concrete[J]. Materials and Design,2010,31:2878-2883. doi: 10.1016/j.matdes.2009.12.037 [13] GONG W, UEDA T. Properties of self-compacting concrete containing copper slag aggregate after heating up to 400℃[J]. Structural Concrete,2018,19(6):1873-1880. doi: 10.1002/suco.201700234 [14] 中华人民共和国住房和城乡建设部. 混凝土结构试验方法标准: GB/T 50152—2012[S]. 北京: 中国建筑工业出版社, 2012.Ministry of Housing and Urban-Rural Development, People’s Republic of China. Standard methods for testing of concrete structures: GB/T 50152—2012[S]. Beijing: China Architecture & Building Press, 2012(in Chinese). [15] 徐沛. 通电、干湿及盐雾条件下钢筋混凝土锈胀细观试验研究[D]. 深圳: 深圳大学, 2017.XU Pei. Microscopic experimental study on rust expansion of reinforced concrete under impressed current, dry-wet cycling and salt fog conditions[D]. Shenzhen: Shenzhen University, 2017(in Chinese). [16] LUNDGREN K, TAHERSHAMSI M, ZANDI K, et al. Tests on anchorage of naturally corroded reinforcement in concrete[J]. Materials and Structures,2015,48:2009-2022. doi: 10.1617/s11527-014-0290-y [17] 李趁趁, 于爱民, 高丹盈, 等. 侵蚀环境下FRP条带加固锈蚀钢筋混凝土圆柱轴心受压试验[J]. 复合材料学报, 2020, 37(8):2015-2028.LI Chenchen, YU Aimin, GAO Danying, et al. Experimental study on axial compression of corroded reinforced concrete columns strengthened with FRP strips under erosion environment[J]. Acta Materiae Compositae Sinica,2020,37(8):2015-2028(in Chinese). [18] 柳俊哲, 邢锋, 张振文, 等. 混凝土中钢筋腐蚀的测定与评价方法[J]. 材料导报, 2008(10):80-83. doi: 10.3321/j.issn:1005-023X.2008.10.019LIU Junzhe, XING Feng, ZHANG Zhenwen, et al. Measuring method and evaluation method of steel corrosion of reinforced concrete[J]. Materials Review,2008(10):80-83(in Chinese). doi: 10.3321/j.issn:1005-023X.2008.10.019 [19] 高新亮, 付贵勤, 朱苗勇, 等. 低合金耐候钢在含氯离子环境中的腐蚀行为[J]. 北京科技大学学报, 2012, 34(11):1282-1287.GAO Xinliang, FU Guiqin, ZHU Miaoyong, et al. Corrosion behavior of low-alloy weathering steel in environment containing chloride ions[J]. Journal of University of Science and Technology Beijing,2012,34(11):1282-1287(in Chinese). [20] 徐港, 卫军, 王青. 锈蚀钢筋与混凝土粘结性能的梁式试验[J]. 应用基础与工程科学学报, 2009, 17(4):549-557. doi: 10.3969/j.issn.1005-0930.2009.04.007XU Gang, WEI Jun, WANG Qing. Beam test study on bond behavior of corroded reinforcing bar in concrete[J]. Jour-nal of Basic Science and Engineering,2009,17(4):549-557(in Chinese). doi: 10.3969/j.issn.1005-0930.2009.04.007 [21] 徐港, 费红芳, 刘德富, 等. 混凝土中钢筋锈蚀深度预测模型[J]. 建筑材料学报, 2011, 14(6):844-849. doi: 10.3969/j.issn.1007-9629.2011.06.024XU Gang, FEI Hongfang, LIU Defu, et al. Prediction model on the rebar corrosion depth in concrete[J]. Journal of Building Materials,2011,14(6):844-849(in Chinese). doi: 10.3969/j.issn.1007-9629.2011.06.024 [22] 中华人民共和国交通运输部. 水运工程混凝土试验检测技术规范: JTS/T 236—2019[S]. 北京: 人民交通出版社, 2019.Ministry of Transport of the People’s Republic of China. Technical specification for concrete testing of port and waterway engineering: JTS/T 236—2019[S]. Beijing: China Communications Press, 2019(in Chinese). [23] American Society for Testing and Materials. Standard test method for half-cell potentials of uncoated reinforcing steel in concrete: ASTM C876—91[S]. West Conshohocken: ASTM, 1999. [24] 韩涛, 靳秀芝, 王慧奇, 等. 高温对水泥石结构和性能的影响及激励分析[J]. 中北大学学报(自然科学版), 2015, 36 (3):378-383.HAN Tao, JIN Xiuzhi, WANG Huiqi, et al. Influence and mechanism analysis of high temperature on the structure and properties of hydrated cement pastes[J]. Journal of North University of China (Natural Science Edition),2015,36 (3):378-383(in Chinese). [25] 勾密峰, 管学茂, 张海波. 单硫型水化硫铝酸钙对氯离子的固化作用[J]. 建筑材料学报, 2012, 15 (6):863-866. doi: 10.3969/j.issn.1007-9629.2012.06.025GOU Mifeng, GUAN Xuemao, ZHANG Haibo. Chloride binding in monosulfoaluminate hydrate[J]. Journal of Building Materials,2012,15 (6):863-866(in Chinese). doi: 10.3969/j.issn.1007-9629.2012.06.025 [26] 韩学强, 詹树林, 徐强, 等. 干湿循环作用对混凝土抗氯离子渗透侵蚀性能的影响[J]. 复合材料学报, 2020, 37(1):198-204.HAN Xueqiang, ZHAN Shulin, XU Qiang, et al. Effect of dry-wet cycling on resistance of concrete to chloride ion permeation erosion[J]. Acta Materiae Compositae Sinica,2020,37(1):198-204(in Chinese). [27] YANG O, ZHANG B, YAN G, et al. Bond performance between slightly corroded steel bar and concrete after exposure to high temperature[J]. Journal of Structure Engineering,2018,144(11):04018209. doi: 10.1061/(ASCE)ST.1943-541X.0002217