留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

圆柱壳三次非均匀有理B样条曲线变角度铺放轨迹设计及屈曲特性

曹忠亮 林国军 董明军 韩振华 曹清林

曹忠亮, 林国军, 董明军, 等. 圆柱壳三次非均匀有理B样条曲线变角度铺放轨迹设计及屈曲特性[J]. 复合材料学报, 2022, 39(6): 3020-3028. doi: 10.13801/j.cnki.fhclxb.20210622.003
引用本文: 曹忠亮, 林国军, 董明军, 等. 圆柱壳三次非均匀有理B样条曲线变角度铺放轨迹设计及屈曲特性[J]. 复合材料学报, 2022, 39(6): 3020-3028. doi: 10.13801/j.cnki.fhclxb.20210622.003
CAO Zhongliang, LIN Guojun, DONG Mingjun, et al. Variable angle placement trajectory design of non-uniform rational B-splines curve and buckling property of cylindrical shell[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 3020-3028. doi: 10.13801/j.cnki.fhclxb.20210622.003
Citation: CAO Zhongliang, LIN Guojun, DONG Mingjun, et al. Variable angle placement trajectory design of non-uniform rational B-splines curve and buckling property of cylindrical shell[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 3020-3028. doi: 10.13801/j.cnki.fhclxb.20210622.003

圆柱壳三次非均匀有理B样条曲线变角度铺放轨迹设计及屈曲特性

doi: 10.13801/j.cnki.fhclxb.20210622.003
基金项目: 国家自然科学基金(51705266)
详细信息
    通讯作者:

    曹忠亮,博士,副教授,硕士生导师,研究方向为复合材料铺放成型工艺、变角度轨迹规划 E-mail:caoliang-8302@163.com

  • 中图分类号: TB330.1

Variable angle placement trajectory design of non-uniform rational B-splines curve and buckling property of cylindrical shell

  • 摘要: 基于三次非均匀有理B样条(NURBS)曲线,开展纤维变角度圆柱壳设计及其屈曲特性研究。首先,以三次NURBS曲线定义纤维变角度铺放参考轨迹,确定了变角度铺层的表示方式。其次,以纤维变角度铺层±<25(0.4)(0.8)75>和±<65(0.4)(0.8)10>为例,展示了三次NURBS曲线轴向平移铺层和周向平移铺层在圆柱壳上的纤维角度分布情况。然后,用纤维变角度铺层代替定刚度圆柱壳中的±45°铺层,对变刚度圆柱壳进行线性屈曲分析,对轴向平移圆柱壳、周向平移圆柱壳和定刚度圆柱壳进行对比。最后,在曲率半径约束下,研究权因子对圆柱壳屈曲性能的影响。结果表明:周向平移圆柱壳有着更好的屈曲性能;在曲率半径约束下,通过确定起始角、终止角和控制点参数得到屈曲性能优异的变刚度圆柱壳,而改变权因子能使变刚度圆柱壳的屈曲载荷再次提高。

     

  • 图  1  三次非均匀有理B样条(NURBS)曲线

    Figure  1.  Cubic non-uniform rational B-splines (NURBS) curve

    β1—Position parameter of P1; α0—Angle of P0; P1, P2, P3, P0—Control point; h—Distance between P1 and P2 along the x-axis; β2—Position parameter of P2; α1—Angle of P3

    图  2  NURBS曲线随权因子ω变化(ω1<ω2<ω3)

    Figure  2.  NURBS curve varies with weight factor ω (ω1<ω2<ω3)

    图  3  圆柱壳展开面

    Figure  3.  Development surface of cylindrical shell

    L—Length; H—Hight

    图  4  圆柱壳三维示意图

    Figure  4.  Three-dimensional diagram of cylindrical shell

    θ—Angle between the plane formed by the current calculation point and z-axis and the oxz plane; C—Circumference; r—Radius

    图  5  复合材料圆柱壳±<25(0.4)(0.8)75>铺层示意图

    Figure  5.  Diagram of composite cylindrical shell ±<25(0.4)(0.8)75> layer

    图  6  复合材料圆柱壳±<65(0.4)(0.8)10>铺层示意图

    Figure  6.  Diagram of composite cylindrical shell ±<65(0.4)(0.8)10> layer

    图  7  变刚度圆柱壳模型载荷及边界条件

    Figure  7.  Loading and boundary conditions of variable stiffness cylindrical shell

    Mz—Torque load for rotation around the z-axis; F—Axial compression load along the z-axis; URz—Degrees of freedom to rotate around the z-axis; Uz—Degree of freedom to translate along the z-axis

    图  8  含±<25(0.6)(0.8)75>铺层的变刚度(VS)圆柱壳分析模型

    Figure  8.  Variable stiffness (VS) cylindrical shell analysis model with ±<25(0.6)(0.8)75> layer

    图  9  圆柱壳的一阶屈曲模态(R≥650 mm)

    Figure  9.  The first order buckling mode of cylindrical shell (R≥650 mm)

    表  1  圆柱壳的铺层结构

    Table  1.   Laminate structure of cylindrical shell

    NameLayer structure
    CS [±45/0/90]2s
    VSC φ/0/90]2s
    VSA φ/0/90]2s
    Notes: CS—Constant stiffness; VSC—Variable stiffness circumferential translation; VSA—Variable stiffness axial translation.
    下载: 导出CSV

    表  3  定刚度(CS)圆柱壳线性屈曲分析结果

    Table  3.   Linear buckling results of constant stiffness (CS) cylindrical shel

    Load typeBuckling load coefficient
    Axial compression load1515
    Torque load83892
    下载: 导出CSV

    表  4  扭矩载荷下的变刚度(VS)圆柱壳线性屈曲分析结果

    Table  4.   Linear buckling results of variable stiffness (VS) cylindrical shell under torque load

    Variable stiffness layerCurvature radius R/mmBuckling load coefficient of VSCBuckling load coefficient of VSA
    <25(0.1)(0.8)75> ≥700 97430 75501
    <25(0.2)(0.8)75> 97895 75407
    <25(0.3)(0.8)75> 98324 75414
    <25(0.4)(0.8)75> 98748 75524
    <25(0.4)(0.9)75> 95811 78504
    <25(0.5)(0.8)75> 99179 75763
    <25(0.5)(0.9)75> 96501 78160
    <25(0.6)(0.8)75> 99621 76165
    <25(0.6)(0.9)75> 97188 77939
    <25(0.7)(0.9)75> 97868 77888
    <25(0.8)(0.9)75> 98533 78058
    下载: 导出CSV

    表  5  轴压载荷下的VS圆柱壳线性屈曲分析结果

    Table  5.   Linear buckling results of VS cylindrical shell under axial compression load

    Variable stiffness layerCurvature radius R/mmBuckling load coefficient of VSCBuckling load coefficient of VSA
    <65(0.1)(0.2)10> ≥700 1558 1316.8
    <65(0.1)(0.3)10> 1565.2 1343.5
    <65(0.1)(0.4)10> 1571.9 1363.1
    <65(0.1)(0.5)10> 1577.4 1375.9
    <65(0.2)(0.3)10> 1598.9 1354.9
    <65(0.2)(0.4)10> 1598.7 1367.8
    <65(0.2)(0.5)10> 1596.6 1374
    <65(0.2)(0.6)10> 1591.9 1375.4
    <65(0.2)(0.9)10> 1553.4 1367.7
    <65(0.3)(0.4)10> 1642.7 1378.1
    <65(0.3)(0.5)10> 1631.6 1380.6
    <65(0.3)(0.6)10> 1617.8 1379.1
    <65(0.3)(0.7)10> 1601.8 1375.1
    <65(0.4)(0.6)10> 1671.6 1390.9
    <65(0.4)(0.7)10> 1647.4 1386
    <65(0.4)(0.8)10> 1623 1380.1
    下载: 导出CSV

    表  2  T300碳纤维增强环氧树脂复合材料参数

    Table  2.   Parameters of T300 carbon fiber reinforced epoxy composite materials

    E1/MPaE2/MPav12G12/MPaG13/MPaG23/MPa
    12100086000.3510051003100
    Notes: E1, E2—Elastic modulus; G12, G13, G23—Shear modulus of elasticity; v12—Poisson's ratio.
    下载: 导出CSV
  • [1] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. doi: 10.3321/j.issn:1000-3851.2007.01.001

    DU Shanyi. Advanced composite material and aerospace engineering[J]. Acta Materiae Compositae Sinica,2007,24(1):1-12(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.01.001
    [2] 韩振宇, 李玥华, 富宏亚, 等. 热塑性复合材料纤维铺放工艺的研究进展[J]. 材料工程, 2012(2):91-96. doi: 10.3969/j.issn.1001-4381.2012.02.020

    HAN Zhenyu, LI Yuehua, FU Hongya, et al. Thermoplastic composites fiber placement process research[J]. Journal of Materials Engineering,2012(2):91-96(in Chinese). doi: 10.3969/j.issn.1001-4381.2012.02.020
    [3] 赵欣, 朱健健, 李梦, 等. 复合材料应用研究与产业发展建议[J]. 材料导报, 2016, 30(S1):525-530.

    ZHAO Xin, ZHU Jianjian, LI Meng, et al. Research on composites application and industrial development suggestion[J]. Materials Reports,2016,30(S1):525-530(in Chinese).
    [4] 陈绍杰. 大型飞机与复合材料[J]. 航空制造技术, 2008(15):32-37. doi: 10.3969/j.issn.1671-833X.2008.15.003

    CHEN Shaojie. Large aircraft and composite[J]. Aeronautical Manufacturing Technology,2008(15):32-37(in Chinese). doi: 10.3969/j.issn.1671-833X.2008.15.003
    [5] 张小辉, 朱玉祥, 张少秋, 等. 先进复合材料自动铺丝技术研究进展[J]. 航空制造技术, 2018, 61(7):54-58.

    ZHANG Xiaohui, ZHU Yuxiang, ZHANG Shaoqiu, et al. Research progress on automated fiber placement technol-ogy[J]. Aeronautical Manufacturing Technology,2018,61(7):54-58(in Chinese).
    [6] GÜRDAL Z, OLMEDO R. In-plane response of laminates with spatially varying fiber orientations: variable stiffness concept[J]. AIAA Journal,1993,31(4):751-758. doi: 10.2514/3.11613
    [7] GÜRDAL Z, TATTING B, WU K. Tow-placement technol-ogy and fabrication issues for laminated composite structures[C]//Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Austin, Texas: AIAA, 2005: 1-18.
    [8] WU Z, WEAVER P M, RAJU G, et al. Buckling analysis and optimisation of variable angle tow composite plates[J]. Thin-Walled Structures,2012,60:163-172. doi: 10.1016/j.tws.2012.07.008
    [9] ALHAJAHMAD A, ABDALLA M M, GÜRDAL Z. Design tailor-ing for pressure pillowing using tow-placed steered fibers[J]. Journal of Aircraft,2008,45(2):630-640. doi: 10.2514/1.32676
    [10] ALHAJAHMAD A, ABDALLA M M, GÜRDAL Z. Optimal design of tow-placed fuselage panels for maximum strength with buckling considerations[J]. Journal of Aircraft,2010,47(3):775-782. doi: 10.2514/1.40357
    [11] MAROUENE A, BOUKHILI R, CHEN J, et al. Effects of gaps and overlaps on the buckling behavior of an optimally designed variable-stiffness composite laminates-A numerical and experimental study[J]. Composite Structures,2016,140:556-566. doi: 10.1016/j.compstruct.2016.01.012
    [12] BLOM A W, STICKLER P B, GÜRDAL Z. Optimization of a composite cylinder under bending by tailoring stiffness properties in circumferential direction[J]. Composites Part B: Engineering,2010,41(2):157-165. doi: 10.1016/j.compositesb.2009.10.004
    [13] ROUHI M, GHAYOOR H, HOA S V, et al. Multi-objective design optimization of variable stiffness composite cylinders[J]. Composites Part B: Engineering,2015,69(69):249-255.
    [14] ROUHI M, GHAYOOR H, HOA S V, et al. Effect of structural parameters on design of variable-stiffness composite cylinders made by fiber steering[J]. Composite Structures,2014,118:472-481. doi: 10.1016/j.compstruct.2014.08.021
    [15] ROUHI M, GHAYOOR H, FORTIN-SIMPSON J, et al. Design, manufacturing, and testing of a variable stiffness composite cylinder[J]. Composite Structures,2018,184:146-152. doi: 10.1016/j.compstruct.2017.09.090
    [16] KHANI A, ABDALLA M M, GÜRDAL Z. Circumferential stiffness tailoring of general cross section cylinders for maximum buckling load with strength constraints[J]. Composite Structures,2012,94(9):2851-2860. doi: 10.1016/j.compstruct.2012.04.018
    [17] 吴尘瑾, 祖磊, 李书欣, 等. 变刚度复合材料层合板的纤维铺放路径设计及屈曲分析[J]. 玻璃钢/复合材料, 2018(4):5-10.

    WU Chenjin, ZU Lei, LI Shuxin, et al. Desigh of fiber placement path and buckling analysis of variable-stiffness composite laminates[J]. Fiber Reinforcement Fiber/Compo-sites,2018(4):5-10(in Chinese).
    [18] 闫光, 韩小进, 阎楚良, 等. 复合材料圆柱壳轴压屈曲性能分析[J]. 复合材料学报, 2014, 31(3):781-787.

    YAN Guang, HAN Xiaojin, YAN Chuliang, et al. Buckling analysis of composite cylindrical shell under axial compression load[J]. Acta Materiae Compositae Sinica,2014,31(3):781-787(in Chinese).
    [19] 孙士平, 张冰, 邓同强, 等. 复合载荷作用变刚度复合材料回转壳屈曲优化[J]. 复合材料学报, 2019, 36(4):1052-1061.

    SUN Shiping, ZHANG Bing, DENG Tongqiang, et al. Buckling optimization of variable stiffness composite rotary shell under combined loads[J]. Acta Materiae Compositae Sinica,2019,36(4):1052-1061(in Chinese).
    [20] 吴双华, 尹冠生, 陈童, 等. 变刚度圆柱壳屈曲分析及铺丝路径优化[J]. 复合材料科学与工程, 2020(3):37-43. doi: 10.3969/j.issn.1003-0999.2020.03.006

    WU Shuanghua, YIN Guansheng, CHEN Tong, et al. Buckling analysis of variable stiffness cylindrical shell and optimization of laying path[J]. Composites Science and Engineering,2020(3):37-43(in Chinese). doi: 10.3969/j.issn.1003-0999.2020.03.006
    [21] 邓同强. 变刚度复合材料层合板壳的分析与优化[D]. 南昌: 南昌航空大学, 2017.

    DENG Tongqiang. Analysis and optimization of laminated composite shells with variable stiffness[D]. Nanchang: Nanchang Hangkong University, 2017(in Chinese).
    [22] 赵志远. 基于机器人的热塑性复合材料铺放装备及工艺仿真研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    ZHAO Zhiyuan. Research on robot-based placement equipment and process simulation of thermoplastic composite[D]. Harbin: Harbin Institute of Technology, 2020(in Chinese).
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  920
  • HTML全文浏览量:  398
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-19
  • 修回日期:  2021-06-15
  • 录用日期:  2021-06-16
  • 网络出版日期:  2021-06-22
  • 刊出日期:  2022-06-01

目录

    /

    返回文章
    返回