留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铝合金-CFRP液氮温度下弯曲强度的强化研究

程飞 胡云森

程飞, 胡云森. 铝合金-CFRP液氮温度下弯曲强度的强化研究[J]. 复合材料学报, 2022, 39(6): 3009-3019. doi: 10.13801/j.cnki.fhclxb.20210616.003
引用本文: 程飞, 胡云森. 铝合金-CFRP液氮温度下弯曲强度的强化研究[J]. 复合材料学报, 2022, 39(6): 3009-3019. doi: 10.13801/j.cnki.fhclxb.20210616.003
CHENG Fei, HU Yunsen. Flexural strength enhancement study of aluminum-CFRP at liquid nitrogen temperature[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 3009-3019. doi: 10.13801/j.cnki.fhclxb.20210616.003
Citation: CHENG Fei, HU Yunsen. Flexural strength enhancement study of aluminum-CFRP at liquid nitrogen temperature[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 3009-3019. doi: 10.13801/j.cnki.fhclxb.20210616.003

铝合金-CFRP液氮温度下弯曲强度的强化研究

doi: 10.13801/j.cnki.fhclxb.20210616.003
基金项目: 西南科技大学科研基金(20zx7141)
详细信息
    通讯作者:

    程飞,副教授,硕士生导师,研究方向为碳纤维复合材料、相变储能材料 E-mail:feicheng@swust.edu.cn

  • 中图分类号: TB332

Flexural strength enhancement study of aluminum-CFRP at liquid nitrogen temperature

  • 摘要: 随着铝合金-碳纤维增强树脂复合材料(CFRP)逐渐应用到火箭推进器,其低温环境下的粘结性能强化已引起广泛关注。针对环氧接头潜在的粘接界面缺陷,采用阳极氧化和砂化分别处理铝合金和CFRP板表面制得多孔表面。采用树脂预涂(RPC)技术消除铝合金孔道根部原有的大分子环氧树脂空穴缺陷,也可通过RPC技术将增强纤维碳纳米管浸渍到铝合金表面的孔道中,形成准Z方向的纤维桥联,进一步提高环氧接头的粘结强度。三点弯曲试验(3-P-B)结果表明,室温下处理后的铝合金-CFRP弯曲强度提高了14.6%,液氮温度下弯曲强度提高了27.6%。经过表面处理后,CFRP在室温和液氮温度下的破坏模式均由较弱的界面脱胶破坏转变为主体结构的断裂破坏。总之,系列有效的处理方法可为低温液体燃料箱的工业应用提供另一种参考。

     

  • 图  1  经阳极氧化、磨砂和树脂预涂(RPC)处理后的Al-CFRP复合材料优化设计方案

    Figure  1.  Optimized design schematic of Al substrate-CFRP composite after treated via anodizing, sanding and resin pre-coating (RPC)

    CFRP—Carbon fiber reinforced polymer; CNTs—Carbon nanotubes

    图  2  铝合金阳极氧化处理工艺与相关化学反应

    Figure  2.  Treatment process and relevant chemical reactions of anodizing treatment on Al substrate

    图  3  室温和液氮温度下的三点弯曲(3-P-B)试验模型

    Figure  3.  Three-point bending (3-P-B) test models at room temperature and liquid nitrogen temperature

    图  4  6060 T5铝合金的SEM图像:(a) 铝合金表面丙酮超声清洗;(b) 阳极氧化后的铝合金表面具有较深的微/纳米结构通道;(c) 阳极氧化后的铝合金52°视角图像;(d) 聚焦离子束(FIB)处理后多孔铝合金表面切口壁的正面图;(e)、(f) RPC处理后CNTs嵌入到铝合金表面孔道结构[32]

    Figure  4.  SEM images of 6060 T5 Al substrate: (a) Al substrate surface with acetone ultrasonic cleaning; (b) Al substrate surface with deep micro-/nano-structured channels after anodizing treatment; (c) 52° view image of the Al substrate after anodized corresponding to (b); (d) Frontal view of the notched wall on porous Al substrate surface after focus ion beam (FIB); (e),(f) CNTs inserted into the channel of Al substrate surface after RPC technique[32]

    图  5  铝合金的AFM图像:(a)、(b)经丙酮超声清洗的试样的两个不同位置;(c)、(d)经阳极氧化处理的试样的两个不同位置

    Figure  5.  AFM images of Al substrates: (a), (b) Two different positions of the same sample cleaned ultrasonically by acetone; (c), (d) Same sample after anodizing treatment

    图  6  丙酮超声清洗和阳极氧化的铝合金表面的光谱分析 (a) ;丙酮超声清洗 (b) 和阳极氧化处理后铝合金表面 (c) 的高分辨Al2p核心级光谱

    Figure  6.  Survey spectra of Al substrate surfaces cleaned ultrasonically by acetone and anodized (a); high resolution Al2p core-level spectra for Al substrate surfaces after acetone ultrasonic cleaning (b) andanodizing treatment (c)

    Aloh—Aluminium hydroxide hydroxide; Almet—Metallic aluminium; Alox—Aluminium oxide

    图  7  在室温和液氮温度下完成3-P-B试验后的对照组和增强效果最优的实验组Al-CFRP复合材料:(a) 典型的力与位移曲线;(b) 弯曲强度

    Figure  7.  Control and optimal Al-CFRP composites after 3-P-B tests at both room temperature and liquid nitrogen temperature: (a) Typical load-displacement curves; (b) Flexural strength values

    图  8  Al-CFRP复合材料三点弯曲试验后的部分粘合及分离的失效表面:(a) 丙酮超声清洗后的铝合金和CFRP板;(b) 铝合金经过阳极氧化和RPC(添加碳纳米管),CFRP板经过砂纸打磨和RPC

    Figure  8.  Failure surfaces of adhesive bonded Al-CFRP composite and the separated pieces: (a) Acetone ultrasonic cleaning for Al substrate and CFRP; (b) Anodized Al substrate with RPC + CNTs and sanding and RPC for CFRP

    图  9  Al-CFRP复合材料的粘接表面失效模式示意图:(a) 仅经过丙酮超声清洗的铝合金与CFRP板呈现出典型的脱胶失效;(b) 经过阳极氧化和RPC(添加碳纳米管)的铝合金与经过砂纸打磨和RPC的CFRP板呈现出碳纤维基体的断裂失效

    Figure  9.  Schematic diagram of failure mode on Al substrate and CFRP adhesive surface: (a) Typical adhesive failure only with acetone ultrasonic cleaning for Al substrate and CFRP; (b) CFRP fracture failure with anodizing + RPC with carbon nanotubes for Al substrate and sanding + RPC for CFRP

    CFRP—Carbon fiber reinforced polymer; CNTs—Carbon nanotubes

    表  1  经丙酮超声清洗和阳极氧化处理后6060 T5铝合金的表面粗糙度参数

    Table  1.   Surface roughness measurements of the 6060 T5 Al substrate treated by acetone ultrasonic cleaning and anodizing

    Treatment methodSample numberSa/nmSq/nmRmax/nm
    Acetone ultrasonic cleaning Fig.5(a) 53.4 62.5 353
    Fig.5(b) 36.5 42.9 238
    Anodizing surface treatment Fig.5(c) 91.3 114 785
    Fig.5(d) 95.4 134 1037
    Notes: Sa—Surface arithmetical mean roughness; Sq—Surface root mean square roughness; Rmax—Maximum roughness depth.
    下载: 导出CSV

    表  2  丙酮清洗和阳极氧化后铝合金上超薄表面层的表面元素组成

    Table  2.   Surface elemental composition of the ultra-thin surface layer on both acetone-cleaned and anodized Al substrates

    SampleAlmetAloxAloh
    Acetone-cleaned Al substrate 21.0% 62.7% 17.5%
    Anodized Al substrate 100.0%
    下载: 导出CSV

    表  3  室温(RT)和液氮温度(LNT)下对照组和实验组Al-CFRP复合材料的3-P-B试验结果

    Table  3.   3-P-B test results of control and treated Al-CFRP composites at room temperature (RT) and liquid nitrogen temperature (LNT)

    SampleTreatment processTest
    condition
    Average
    Pmax/N
    Standard
    deviation/N
    Shear
    strength/MPa
    Standard
    deviation/MPa
    Control Acetone ultrasonic cleaning for both RT 2564.21 136.87 269.97 48.14
    LNT 2915.79 591.69 532.92 60.51
    T1 Anodizing for Al and Acetone ultrasonic cleaning for CFRP RT 2690.45 142.53 285.76 23.42
    LNT 5364.05 514.17 569.73 49.64
    T2 Anodizing for Al and sanding +
    RPC for CFRP
    RT 2760.61 121.31 290.15 17.75
    LNT 5541.01 531.58 582.38 42.73
    T3 Anodizing for Al and RPC (CNTs) sanding + RPC for CFRP RT 5015.57 109.55 309.31 13.05
    LNT 6374.42 545.44 680.01 48.14
    Note: Pmax—Maximum peak load.
    下载: 导出CSV
  • [1] 李游, 李传习, 郑辉, 等. 固化剂混掺对高温下CFRP板-钢板界面黏结性能的影响[J]. 复合材料学报, 2021, 38(12):4073-4089.

    LI Y, LI C X, ZHENG H, et al. Effect of curing agent mixing on interfacial bond behavior of glued CFRP plate-steel plate at elevated temperature[J]. Acta Materiae Compositae Sinica,2021,38(12):4073-4089(in Chinese).
    [2] 任明伟, 洪治国, 周玉敬, 等. 复合材料防撞梁低速碰撞优化设计[J]. 复合材料学报, 2022, 39(2):854-862.

    REN M W, HONG Z G, ZHOU Y J. Low-speed collision optimization design of composite bumper[J]. Acta Materiae Compositae Sinica,2022,39(2):854-862(in Chinese).
    [3] 刘洋, 庄蔚敏. 碳纤维增强树脂复合材料和铝合金温热自冲铆接工艺及接头力学性能[J]. 复合材料学报, 2021, 38(11):3563-3577.

    LIU Y, ZHUANG W M. Joining process and mechanical properties of warm self-piercing riveting for carbon fiber reinforced polymer and aluminum alloy[J]. Acta Materiae Compositae Sinica,2021,38(11):3563-3577(in Chinese).
    [4] 包建文, 蒋诗才, 张代军. 航空碳纤维树脂基复合材料的发展现状和趋势[J]. 科技导报, 2018, 36(9):52-63.

    BAO J W, JIANG S C, ZHANG D J. Current status and trends of aeronautical resin matrix composites reinforced by carbon fiber[J]. Science & Technology Review,2018,36(9):52-63(in Chinese).
    [5] CHENG F, HU YS, LV ZF, et al. Directing helical CNT into chemically-etched micro-channels on aluminum substrate for strong adhesive bonding with carbon fiber composites[J]. Composites Part A: Applied Science and Manufacture,2020,135:105952. doi: 10.1016/j.compositesa.2020.105952
    [6] HU Y S, YUAN B Y, CHENG F, et al. NaOH etching and re-sin pre-coating treatments for stronger adhesive bonding between CFRP and aluminium alloy[J]. Composites Part B: Engineering,2019,178:107478. doi: 10.1016/j.compositesb.2019.107478
    [7] FIORE V, CALABRESE L, PROVERBIO E, et al. Salt spray fog ageing of hybrid composite/metal rivet joints for automo-tive applications[J]. Composites Part B: Engineering,2017,108:65-74. doi: 10.1016/j.compositesb.2016.09.096
    [8] MURRAY B R, DOULE A, FEERICK P J, et al. Rotational moulding of PEEK polymer liners with carbon fibre/PEEK over tape-placement for space cryogenic fuel tanks[J]. Material Design,2017,132:567-581. doi: 10.1016/j.matdes.2017.07.026
    [9] RAMOLA L, SANKARESWARAN N. Design and modal analy-sis of cryogenic rocket propellant tank[J]. International Journal of Scientific Research in Science, Engineering and Technology, 2016, 2: 614-620.
    [10] HU Y S, CHENG F, JI Y, et al. Effect of aramid pulp on low temperature flexural properties of carbon fibre reinforced plastics[J]. Composites Science and Technology,2020,192:108095. doi: 10.1016/j.compscitech.2020.108095
    [11] SETHI S, RAY B C. Experimental study on the mechanical behavior and microstructural assessment of Kevlar/epoxy composites at liquid nitrogen temperature[J]. Journal of the Mechanical Behavior of Materials,2014,23:95-100. doi: 10.1515/jmbm-2014-0011
    [12] SUN Z, SHI S, HU X Z, et al. Short-aramid-fiber toughening of epoxy adhesive joint between carbon fiber composites and metal substrates with different surface morphology[J]. Composites Part B: Engineering,2015,77:38-45. doi: 10.1016/j.compositesb.2015.03.010
    [13] SUN G, LIU X, ZHENG G, et al. On fracture characteristics of adhesive joints with dissimilar materials-An experimen-tal study using digital image correlation (DIC) technique[J]. Composites Structure,2018,201:1056-1075. doi: 10.1016/j.compstruct.2018.06.018
    [14] PARK S Y, CHOI W J, CHOI H S, et al. Recent trends in surface treatment technologies for airframe adhesive bonding processing: A review (1995-2008)[J]. The Journal of Adhesion,2010,86:192-221. doi: 10.1080/00218460903418345
    [15] WANG B, HU X, HUI J, et al. CNT-reinforced adhesive joint between grit-blasted steel substrates fabricated by simple resin pre-coating method[J]. The Journal of Adhesion,2018,94:529-540. doi: 10.1080/00218464.2017.1301255
    [16] 段瑛涛, 武肖鹏, 王智文, 等. 碳纤维增强树脂复合材料-热成型钢超混杂层合板层间力学性能[J]. 复合材料学报, 2020, 37(10):2418-2427.

    DUAN Y T, WU X P, WANG Zhiwen, et al. Interlaminar mechanical properties of carbon fiber reinforced plastics-thermoformed steel super-hybrid laminates[J]. Acta Materiae Compositae Sinica,2020,37(10):2418-2427(in Chinese).
    [17] LIU W, ZHENG Y, HU X, et al. Interfacial bonding enhancement on the epoxy adhesive joint between engineered bamboo and steel substrates with resin pre-coating surface treatment[J]. Wood Science and Technology,2019,53:785-799. doi: 10.1007/s00226-019-01109-9
    [18] SALEEMA N, SARKER DK, PAYNTER R W, et al. A simple surface treatment and characterization of AA 6061 aluminum alloy surface for adhesive bonding applications[J]. Applied Surface Science,2012,261:742-748. doi: 10.1016/j.apsusc.2012.08.091
    [19] ZAIN N M, AHMAD S H, ALI E S. Effect of surface treatments on the durability of green polyurethane adhesive bonded aluminium alloy[J]. International Journal of Adhesion and Adhesives,2014,55:43-55. doi: 10.1016/j.ijadhadh.2014.07.007
    [20] TAN B, JI Y, HU Y, et al. Pretreatment using diluted epoxy adhesive resin solution for improving bond strength between steel and wood surfaces[J]. International Journal of Adhesion and Adhesives,2019,98:102502.
    [21] WANG B, BAI Y, HU X, et al. Enhanced epoxy adhesion between steel plates by surface treatment and CNT/short-fibre reinforcement[J]. Composites Science and Technol-ogy,2016,127:149-157. doi: 10.1016/j.compscitech.2016.03.008
    [22] SHI S, SUN Z, HU X, et al. Carbon-fiber and aluminum-honeycomb sandwich composites with and without Kevlar-fiber interfacial toughening[J]. Composites Part A: Applied Science and Manufacture,2014,67:102-110. doi: 10.1016/j.compositesa.2014.08.017
    [23] SUN Z, HU X, CHEN H. Effects of aramid-fibre toughening on interfacial fracture toughness of epoxy adhesive joint between carbon-fibre face sheet and aluminium substrate[J]. International Journal of Adhesion and Adhe-sives,2014,48:288-294. doi: 10.1016/j.ijadhadh.2013.09.023
    [24] ZHANG Z, SHAN J G, TAN X H, et al. Effect of anodizing pretreatment on laser joining CFRP to aluminum alloy A6061[J]. International Journal of Adhesion and Adhe-sives,2016,70:142-151. doi: 10.1016/j.ijadhadh.2016.06.007
    [25] ALIASGHARI S, SKELDON P, ZHOU X, et al. Effect of an anodizing pre-treatment on AA 5052 alloy/polypropylene joining by friction stir spot welding[J]. Materials Science and Engineering: B,2019,245:107-112. doi: 10.1016/j.mseb.2019.05.018
    [26] XU Y, LI H, SHEN Y, et al. Improvement of adhesion performance between aluminum alloy sheet and epoxy based on anodizing technique[J]. International Journal of Adhesion and Adhesives,2016,70:74-80. doi: 10.1016/j.ijadhadh.2016.05.007
    [27] SAEEDIKHANI M, JAYIDI M, YAZDANI A. Anodizing of 2024-T3 aluminum alloy in sulfuric-boric-phosphoric acids and its corrosion behavior[J]. Transactions of Nonferrous Metals Society of China,2013,23:2551-2559. doi: 10.1016/S1003-6326(13)62767-3
    [28] 程飞, 蒋宏勇. 基于芳纶pulp优化的碳纤维增强树脂基复合材料的抗损伤性能及残余抗压强度研究[J]. 复合材料学报, 2021, 38(11):3610-3619.

    CHENG F, JIANG H Y. Research on damage resistance and residual compressive strength of carbon fiber reinforced plastic optimized by aramid pulp[J]. Acta Materiae Compositae Sinica,2021,38(11):3610-3619(in Chinese).
    [29] JIN K, WANG H, TAO J, et al. Interface strengthening mechanisms of Ti/CFRP fiber metal laminate after adding MWCNTs to resin matrix[J]. Composites Part B: Engineering,2019,171:254-263. doi: 10.1016/j.compositesb.2019.05.005
    [30] HUNG P, LAU K, QIAO K, et al. Property enhancement of CFRP composites with different graphene oxide employment methods at a cryogenic temperature[J]. Composites Part A: Applied Science and Manufacture,2019,120:56-63. doi: 10.1016/j.compositesa.2019.02.012
    [31] KARA M, KIRICI M, TATER A C, et al. Impact behavior of carbon fiber/epoxy composite tubes reinforced with multi-walled carbon nanotubes at cryogenic environment[J]. Composites Part B: Engineering,2018,145:145-154. doi: 10.1016/j.compositesb.2018.03.027
    [32] CHENG F, HU Y, ZHANG X, et al. Adhesive bond strength enhancing between carbon fiber reinforced polymer and aluminum substrates with different surface morphologies created by three sulfuric acid solutions[J]. Composites Part A: Applied Science and Manufacture,2021,146:106427. doi: 10.1016/j.compositesa.2021.106427
    [33] GOUSHEGIR S M, SCHARNAGL N, SANTOS J F, et al. XPS analysis of the interface between AA2024-T3/CF-PPS friction spot joints[J]. Surface and Interface Analysis,2016,48:706-711. doi: 10.1002/sia.5816
    [34] LI X, HUFNAGEL S, XU H Y, et al. Aluminum (oxy)hydroxide nanosticks synthesized in bicontinuous reverse microemulsion have potent vaccine adjuvant activity[J]. ACS Applied Materials & Interfaces,2017,9:22893-22901.
    [35] UHART A, LEDEUIL J B, GONBEAU D, et al. An auger and XPS survey of cerium active corrosion protection for AA2024-T3 aluminum alloy[J]. Applied Surface Science,2016,390:751-759. doi: 10.1016/j.apsusc.2016.08.170
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  1182
  • HTML全文浏览量:  477
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-17
  • 修回日期:  2021-06-08
  • 录用日期:  2021-06-10
  • 网络出版日期:  2021-06-17
  • 刊出日期:  2022-06-01

目录

    /

    返回文章
    返回