Research progress in metamaterial absorber
-
摘要: 吸波超材料由于其独特的电磁特性,在过去十几年内成为吸波功能材料领域的研究热点。本文通过对近些年吸波超材料报道的归纳总结,对吸波超材料的研究进展进行介绍。经过多年来的发展,吸波超材料从最初的单一功能窄频段吸波特性逐渐向宽频带、宽角度入射、可智能调节等多功能方向发展,而在吸波频段的研究也由微波频段扩展至太赫兹、近红外、可见光等频段。对不同类型的吸波超材料分别进行介绍,对于不同特点吸波超材料的制备、设计方法和工作原理进行总结,最后对吸波超材料的发展方向进行了展望。Abstract: Due to the exotic electromagnetic properties, metamaterial absorber has spawned extensive research into wave absorption materials over the past decade. This paper provides an introduction on metamaterial absorber by summarizing the reports in recent years. The metamaterial absorber has progressed significantly with special function from narrow bandwidth to broad bandwidth, wide angle tolerance, polarization independence and smart/tunable absorbance. Meanwhile the working frequency across the electromagnetic spectrum is broadened from microwave to terahertz, near-infrared and optical. This paper introduces different types of metamaterial absorber and summarizes the fabrication, design method and working principle of metamaterial absorber. Finally, the promising research field of metamaterial absorber is predicted.
-
Key words:
- metamaterial /
- wave absorption /
- smart tunability /
- dielectric metamaterial /
- electromagnetic property
-
图 3 极化不敏感吸波超材料[29]: (a)极化不敏感结构单元; (b)电场沿x轴方向入射吸波性能;(c)在xy平面内旋转45°极化方向入射吸波性能(在图(b)和图(c)中,实线为模拟值,圆点标记为透过率,方块标记为反射率,三角标记为吸收率)
Figure 3. Metamaterial absorber with polarization insensitivity[29]: (a) Unit cell of metamaterial absorber with polarization insensitivity; (b) Wave absorption performance for polarization of electric component along x axis; (c) Wave absorption performance for polarization rotated 45° in xy plane (In fig. (b) and fig. (c), the solid lines is simulated line, the transmission is marked by circle, the reflection is marked by square and absorption is marked by triangle)
-
[1] HUO J, WANG L, YU H. Polymeric nanocomposites for electromagnetic wave absorption[J]. Journal of Materials Science,2009,44(15):3917-3927. doi: 10.1007/s10853-009-3561-1 [2] 邓龙江, 周佩珩, 陆海鹏, 等. 多频谱隐身涂层材料研究进展[J]. 中国材料进展, 2013, 32(8):449-462.DENG L J, ZHOU P H, LU H P, et al. Research progress in multispectral stealth coating material[J]. Materials China,2013,32(8):449-462(in Chinese). [3] 王亚林, 李悦霖. 隐身飞机雷达吸波材料背后的“魔法”[J]. 国际航空, 2017(3):73-77.WANG Y L, LI Y L. The magic of stealth materials[J]. International Aviation,2017(3):73-77(in Chinese). [4] LI X, YU L, ZHAO W, et al. Prism-shaped hollow carbon decorated with polyaniline for microwave absorption[J]. Chemical Engineering Journal,2020,379:122393. doi: 10.1016/j.cej.2019.122393 [5] YANG M, YUAN Y, LI Y, et al. Dramatically enhanced electromagnetic wave absorption of hierarchical CNT/Co/C fiber derived from cotton and metal-organic-framework[J]. Carbon,2020,161:517-527. doi: 10.1016/j.carbon.2020.01.073 [6] LEI Y, YAO Z, LI S, et al. Broadband high-performance electromagnetic wave absorption of Co-doped NiZn ferrite/polyaniline on MXenes[J]. Ceramics International, 2020, 46(8): 10006-10015. [7] HUANG Z, CHEN H, HUANG Y, et al. Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam[J]. Advanced Functional Materials,2018,28(2):1704363. doi: 10.1002/adfm.201704363 [8] WANG L, QUAN Q, ZHANG L, et al. Microwave absorption of NdFe magnetic powders tuned with impedance matching[J]. Journal of Magnetism and Magnetic Materials,2018,449:385-389. doi: 10.1016/j.jmmm.2017.10.067 [9] MICHELI D, APOLLO C, PASTORE R, et al. X-Band microwave characterization of carbon-based nanocomposite material, absorption capability comparison and RAS design simulation[J]. Composites Science and Technology,2010,70(2):400-409. doi: 10.1016/j.compscitech.2009.11.015 [10] CUI T J, SMITH D R, LIU R. Metamaterials[M]. New York: Springer, 2014. [11] VESELAGO V G. The electrodynamics of substances with simultaneously negative values of ε and μ[J]. Soviet Physics Uspekhi,1968,10(4):509-514. doi: 10.1070/PU1968v010n04ABEH003699 [12] PENDRY J B, HOLDEN A J, ROBBINS D J, et al. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theory and Techniques,1999,47(10):2075-2084. [13] SCHURIG D, MOCK J, JUSTICE B, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science,2006,314(5801):977-980. doi: 10.1126/science.1133628 [14] FANG N, LEE H, SUN C, et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science,2005,308(5721):534-537. doi: 10.1126/science.1108759 [15] SCHURIG D, SMITH D R. Negative index lens aberrations[J]. Physical Review E,2004,70(6):065601. [16] ENGHETA N. Thin absorbing screens using metamaterial surfaces[C]//IEEE Antennas and Propagation Society International Symposium. San Antonio: IEEE, 2002. [17] WATTS C M, LIU X, PADILLA W J. Metamaterial electromagnetic wave absorbers[J]. Advanced Materials,2012,24(23):98-120. [18] LANDY N I, SAJUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters,2008,100(20):207402. doi: 10.1103/PhysRevLett.100.207402 [19] HU C, LI X, FENG Q, et al. Investigation on the role of the dielectric loss in metamaterial absorber[J]. Optics Express,2010,18(7):6598-6603. doi: 10.1364/OE.18.006598 [20] TAO H, LANDY N I, BINGHAM C M, et al. A metamaterial absorber for the terahertz regime: Design, fabrication and characterization[J]. Optics express,2008,16(10):7181-7188. doi: 10.1364/OE.16.007181 [21] LIU X, STARR T, STARR A F, et al. Infrared spatial and frequency selective metamaterial with near-unity absorbance[J]. Physical Review Letters,2010,104(20):207403. doi: 10.1103/PhysRevLett.104.207403 [22] WEN Q Y, ZHANG H W, XIE Y S, et al. Dual band terahertz metamaterial absorber: Design, fabrication, and characterization[J]. Applied Physics Letters,2009,95(24):241111. doi: 10.1063/1.3276072 [23] SHEN X, YANG Y, ZANG Y, et al. Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation[J]. Applied Physics Letters,2012,101(15):154102. doi: 10.1063/1.4757879 [24] WANG N, TONG J, ZHOU W, et al. Novel quadruple-band microwave metamaterial absorber[J]. IEEE Photonics Journal,2015,7(1):1-6. [25] CEN C, YI Z, ZHANG G, et al. Theoretical design of a triple-band perfect metamaterial absorber in the THz frequency range[J]. Results in Physics,2019,14:102463. doi: 10.1016/j.rinp.2019.102463 [26] WEN D E, YANG H, YE Q, et al. Broadband metamaterial absorber based on a multi-layer structure[J]. Physica Scripta,2013,88(1):015402. doi: 10.1088/0031-8949/88/01/015402 [27] CUI Y, FUNG K H, XU J, et al. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab[J]. Nano Letters,2012,12(3):1443-1447. doi: 10.1021/nl204118h [28] DING F, CUI Y, GE X, et al. Ultra-broadband microwave metamaterial absorber[J]. Applied Physics Letters,2012,100(10):103506. doi: 10.1063/1.3692178 [29] BO Z, ZHENG B W, ZHEN Z Y, et al. Planar metamaterial microwave absorber for all wave polarizations[J]. Chinese Physics Letters,2009,26(10):114102. [30] AYDIN K, FERRY V E, BRIGGS R M, et al. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers[J]. Nature Communications,2011,2:517. doi: 10.1038/ncomms1528 [31] JI S, JIANG C, ZHAO J, et al. Design of a polarization-insensitive triple-band metamaterial absorber[J]. Optics Communications,2019,432:65-70. doi: 10.1016/j.optcom.2018.09.040 [32] TAO H, BINGHAM C M, STRIKWERDA A C, et al. Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization[J]. Physical Review B,2008,78(24):241103. doi: 10.1103/PhysRevB.78.241103 [33] HOA N, LAM P H, TUNG P D. Wide-angle and polarization-independent broadband microwave metamaterial absorber[J]. Microwave and Optical Technology Letters,2017,59(5):1157-1161. doi: 10.1002/mop.30490 [34] SHI Y, LI Y C, HAO T, et al. A design of ultra-broadband metamaterial absorber[J]. Waves in Random and Complex Media,2016,27(2):381-391. [35] 张亚坤, 曾凡, 戴全辉, 等. 雷达隐身技术智能化发展现状与趋势[J]. 战术导弹技术, 2019(1):56-63.ZHANG Y K, ZENG F, DAI Q H, et al. Development status and trend of intelligent radar stealth technology[J]. Tactical Missile Technology,2019(1):56-63(in Chinese). [36] CHAN W L, CHEN H T, TAYLOR A J, et al. A spatial light modulator for terahertz beams[J]. Applied Physics Letters,2009,94(21):213511. doi: 10.1063/1.3147221 [37] YUAN H, ZHU B O, FENG Y. A frequency and bandwidth tunable metamaterial absorber in x-band[J]. Journal of Applied Physics,2015,117(17):173103. doi: 10.1063/1.4919753 [38] LIU A Q, ZHU W M, TSAI D P, et al. Micromachined tunable metamaterials: A review[J]. Journal of Optics,2012,14(11):114009. doi: 10.1088/2040-8978/14/11/114009 [39] XU W, HE Y, KONG P, et al. An ultra-thin broadband active frequency selective surface absorber for ultrahigh-frequency applications[J]. Journal of Applied Physics,2015,118(18):184903. doi: 10.1063/1.4934683 [40] ZHU B, FENG Y, ZHAO J, et al. Polarization modulation by tunable electromagnetic metamaterial reflector/absorber[J]. Optics Express,2010,18(22):23196-23203. doi: 10.1364/OE.18.023196 [41] YANG H, CAO X, YANG F, et al. A programmable metasurface with dynamic polarization, scattering and focusing control[J]. Scientific Reports,2016,6:35692. doi: 10.1038/srep35692 [42] HUANG C, ZHANG C, YANG J, et al. Reconfigurable metasurface for multifunctional control of electromagnetic waves[J]. Advanced Optical Materials,2017,5(22):1700485. doi: 10.1002/adom.201700485 [43] PANG Y, WANG J, CHENG Q, et al. Thermally tunable water-substrate broadband metamaterial absorbers[J]. Applied Physics Letters,2017,110(10):104103. doi: 10.1063/1.4978205 [44] YAO Y, SHANKAR R, KATS M A, et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators[J]. Nano Letters,2014,14(11):6526-6532. doi: 10.1021/nl503104n [45] LI W, ZHAO L, DAI Z, et al. A temperature-activated nanocomposite metamaterial absorber with a wide tunability[J]. Nano Research,2018,11(7):3931-3942. doi: 10.1007/s12274-018-1973-4 [46] HU F, XU N, WANG W, et al. A dynamically tunable terahertz metamaterial absorber based on an electrostatic MEMS actuator and electrical dipole resonator array[J]. Journal of Micromechanics and Microengineering,2016,26(2):025006. doi: 10.1088/0960-1317/26/2/025006 [47] ZHANG F, FENG S, QIU K, et al. Mechanically stretchable and tunable metamaterial absorber[J]. Applied Physics Letters,2015,106(9):091907. doi: 10.1063/1.4914502 [48] YANG S, LIU P, YANG M, et al. From flexible and stretchable meta-atom to metamaterial: A wearable microwave meta-skin with tunable frequency selective and cloaking effects[J]. Scientific Reports,2016,6:21921. doi: 10.1038/srep21921 [49] WANG B X, WANG L L, WANG G Z, et al. Frequency continuous tunable terahertz metamaterial absorber[J]. Journal of Lightwave Technology,2014,32(6):1183-1189. doi: 10.1109/JLT.2014.2300094 [50] ZHELUDEV N I, PLUM E. Reconfigurable nanomechanical photonic metamaterials[J]. Nature Nanotechnology,2016,11(1):16-22. doi: 10.1038/nnano.2015.302 [51] ZHU W M, LIU A Q, ZHANG X M, et al. Switchable magnetic metamaterials using micromachining processes[J]. Advanced Materials,2011,23(15):1792-1796. doi: 10.1002/adma.201004341 [52] OU J Y, PLUM E, JIANG L, et al. Reconfigurable photonic metamaterials[J]. Nano Letters,2011,11(5):2142-2144. doi: 10.1021/nl200791r [53] WANG Z, JING L, YAO K, et al. Origami-based reconfigurable metamaterials for tunable chirality[J]. Advanced Materials,2017,29(27):1700412. doi: 10.1002/adma.201700412 [54] BILAL O R, FOEHR A, DARAIO C. Reprogrammable phononic metasurfaces[J]. Advanced Materials,2017,29(39):1700628. doi: 10.1002/adma.201700628 [55] 周济. 超材料与自然材料融合的若干思考[J]. 新材料产业, 2014(9):5-8. doi: 10.3969/j.issn.1008-892X.2014.12.003ZHOU J. Some thoughts on the merging of metamaterials and natural materials[J]. Advanced Materials Industry,2014(9):5-8(in Chinese). doi: 10.3969/j.issn.1008-892X.2014.12.003 [56] MIN W L, JIANG B, JIANG P. Bioinspired self-cleaning antireflection coatings[J]. Advanced Materials,2008,20(20):3914-3918. doi: 10.1002/adma.200800791 [57] LI W, GULER U, KINSEY N, et al. Refractory plasmonics with titanium nitride: Broadband metamaterial absorber[J]. Advanced Materials,2014,26(47):7959-7965. doi: 10.1002/adma.201401874 [58] CHEN X, WU Z, ZHANG Z, et al. Ultra-broadband and wide-angle absorption based on 3D-printed pyramid[J]. Optics & Laser Technology,2020,124:105972. [59] 郭建勇, 梁庆宣, 江子杰, 等. 一种熔融沉积3D打印的高性能超材料吸波结构[J]. 机械工程学报, 2019, 55(23):226-232.GUO J Y, LIANG Q X, JIANG Z J, et al. A high-performance metamaterials absorbing structures based on fused deposition modeling[J]. Journal of Mechanical Engineering,2019,55(23):226-232(in Chinese). [60] ASSIMONIS S D, FUSCO V. Polarization insensitive, wide-angle, ultra-wideband, flexible, resistively loaded, electromagnetic metamaterial absorber using conventional inkjet-printing technology[J]. Scientific Reports,2019,9:12334. doi: 10.1038/s41598-019-48761-6 [61] SHEN Y, PEI Z, PANG Y, et al. An extremely wideband and lightweight metamaterial absorber[J]. Journal of Applied Physics,2015,117(22):224503. doi: 10.1063/1.4922421 [62] 侯志灵, 王殿杰, 何鹏, 等. Fe3O4纳米纺锤体复合材料的制备及其高性能微波吸收[J]. 科学通报, 2018, 63(34):3667-3676. doi: 10.1360/N972018-00810HOU Z L, WANG D J, HE P, et al. Preparation of Fe3O4 nanospindle composites and high performance microwave absorption[J]. Chinese Science Bulletin,2018,63(34):3667-3676(in Chinese). doi: 10.1360/N972018-00810 [63] ZHANG K L, ZHANG J Y, HOU Z L, et al. Multifunctional broadband microwave absorption of flexible graphene composites[J]. Carbon,2018,141:608-617. [64] ZHANG K L, HOU Z L, BI S, et al. Modeling for multi-resonant behavior of broadband metamaterial absorber with geometrical substrate[J]. Chinese Physics B,2017,26(12):127802. doi: 10.1088/1674-1056/26/12/127802