Effects of AlB2 on mechanical properties of high silica fiber/ceramicizable phenolic resin composites and their pyrolysis products
-
摘要: 以AlB2和SiC颗粒填充酚醛树脂作为基体,高硅氧纤维作为增强体,制备了高硅氧纤维/可瓷化酚醛树脂复合材料。研究了不同添加量的AlB2颗粒对高硅氧纤维/可瓷化酚醛树脂复合材料常温和1200℃裂解产物性能的影响,并分析了AlB2颗粒对其裂解产物的增强机制。结果表明:随着AlB2颗粒的添加,高硅氧纤维/可瓷化酚醛树脂复合材料常温下的弯曲强度逐渐减小,但其1200℃裂解产物的弯曲强度先增大后减小。当AlB2颗粒与酚醛树脂的质量比为12%时,裂解产物的弯曲强度提高最为显著,相比未添加AlB2颗粒的复合材料,其裂解产物的弯曲强度提高了16.4%。AlB2颗粒在1200℃有氧环境中反应生成由B2O3 、Al2O3和Al20B4O36组成的共熔体,填充了树脂基体裂解产生的孔隙,明显减少复合材料裂解产物的结构缺陷,阻止内部材料进一步氧化,提高了裂解产物的力学性能。Abstract: The high silica fiber/ceramicizable phenolic resin composites were prepared by using AlB2 and SiC particles filled phenolic resin as matrix and high silica fiber as reinforcement. The effects of different amounts of AlB2 particles on the performance of high silica fiber/ceramicizable phenolic resin composites were studied at room temperature and after 1200℃ pyrolysis, respectively. The enhancement mechanism of AlB2 particles on pyrolysis products of the high silica fiber/ceramicizable phenolic resin composites was analyzed. The results reveal that as the amount of AlB2 particles increasing, the flexural strength of the high silica fiber/ceramicizable phenolic resin composites gradually decreases at room temperature, while the flexural strength of the 1200℃ pyrolytic composites displays a tendency to increase first and then decrease at high content of AlB2. When the mass ratio of AlB2 particles to phenolic resin is 12%, the flexural strength of the pyrolysis products is improved most significantly, 16.4% higher than that of the composites without AlB2 particles. AlB2 particles react in an aerobic environment at 1200℃ to form a co-melt composed of B2O3, Al2O3 and Al20B4O36, which fills the pores of the pyrolysis products of the phenolic resin, significantly reducing structural defects of the pyrolysis products, preventing further oxidation of the internal materials. Therefore, the mechanical properties of the pyrolysis products are improved.
-
Key words:
- AlB2 /
- SiC /
- phenolic resin /
- ceramicizable /
- pyrolysis product /
- mechanical properties /
- composite
-
表 1 HSF/CPR复合材料的预浸料质量配方(以酚醛树脂质量为基准)
Table 1. Prepreg mass formulation of HSF/CPR composites (Based on mass of phenolic resin)
Sample Mass ratio to phenolic resin/% Phenolic
resinAlcohol SiC AlB2 High silica
fabricHSF/CPR-1 100 100 60 0 130 HSF/CPR-2 100 100 60 6 133 HSF/CPR-3 100 100 60 12 136 HSF/CPR-4 100 100 60 18 139 HSF/CPR-5 100 100 60 24 142 表 2 HSF/CPR复合材料的常温物理性能
Table 2. Physical properties of HSF/CPR composites at room temperature
Sample Density/
(g·cm−3)Apparent porosity/% Flexural strength/MPa HSF/CPR-1 1.63 3.08±0.20 165.0±8.1 HSF/CPR-2 1.66 2.90±0.15 149.8±6.4 HSF/CPR-3 1.68 2.83±0.13 135.4±7.3 HSF/CPR-4 1.70 2.80±0.18 114.5±5.8 HSF/CPR-5 1.71 2.70±0.11 102.6±7.4 表 3 HSF/CPR复合材料裂解后的物理性能
Table 3. Physical properties of HSF/CPR composites after pyrolysis
Sample Density/
(g·cm−3)Apparent porosity/% Flexural strength/MPa HSF/CPR-1 1.58 17.98±1.2 24.79±1.4 HSF/CPR-2 1.61 14.05±0.6 26.43±2.0 HSF/CPR-3 1.63 12.15±0.9 28.86±1.8 HSF/CPR-4 1.65 16.75±1.1 27.52±1.0 HSF/CPR-5 1.68 21.66±1.5 26.51±0.8 表 4 HSF/CPR复合材料的热失重率和热收缩率
Table 4. Thermal weight-loss rate and thermal shrinkage of HSF/CPR composites
Sample Thermal mass-
loss rate/%Thermal
shrinkage/%HSF/CPR-1 17.7±1.1 3.81±0.30 HSF/CPR-2 16.4±1.4 3.59±0.28 HSF/CPR-3 14.6±0.8 2.83±0.16 HSF/CPR-4 11.4±1.0 2.68±0.23 HSF/CPR-5 10.2±0.6 2.44±0.15 -
[1] 陈玉峰, 洪长青, 胡成龙, 等. 空天飞行器用热防护陶瓷材料[J]. 现代技术陶瓷, 2017, 38(5):311-390.CHEN Yufeng, HONG Changqing, HU Chenglong, et al. Ceramic based thermal protection materials for aerospace vehicles[J]. Advanced Ceramics,2017,38(5):311-390(in Chinese). [2] HONG C, HAN J, ZHANG X, et al. Novel phenolic impregnated 3D fine woven pierced carbon fabric composites: Microstructure and ablation behavior[J]. Composites Part B: Engineering,2012,43(5):2389-2394. doi: 10.1016/j.compositesb.2011.12.001 [3] 梁馨, 罗丽娟, 谭珏, 等. 美国空间探测器热防护材料发展现状及趋势[J]. 材料导报, 2016, 30(s1):551-557.LIANG Xin, LUO Lijuan, TAN Jue, et al. Current status and trend of thermal protection material for space exploration in America[J]. Materials Review,2016,30(s1):551-557(in Chinese). [4] 韩杰才, 洪长青, 张幸红, 等. 新型轻质热防护复合材料的研究进展[J]. 载人航天, 2015, 21(4):315-321. doi: 10.3969/j.issn.1674-5825.2015.04.001HAN Jiecai, HONG Changqing, ZHANG Xinghong, et al. Research progress of novel lightweight thermal protection composites[J]. Manned Spaceflight,2015,21(4):315-321(in Chinese). doi: 10.3969/j.issn.1674-5825.2015.04.001 [5] 谢永旺, 李峥, 夏雨, 等. 可陶瓷化酚醛树脂基复合材料烧蚀隔热性能研究[J]. 首都师范大学学报(自然科学版), 2019, 40(5):52-56.XIE Yongwang, LI Zheng, XIA Yu, et al. Study on ablation and thermal insulation performance of ceramizable phenolic matrix composites[J]. Journal of cApital Normal University (Natural Science Edition),2019,40(5):52-56(in Chinese). [6] 秦岩, 饶志龙, 刘慧娟. 可瓷化酚醛复合材料烧蚀隔热性能研究[J]. 玻璃钢/复合材料, 2012, 39(s1):52-55.QIN Yan, RAO Zhilong, LIU Huijuan. The studying of ablation and heat insulation properties of ceramifiable phenolic composite[J]. Fiber Reinforced Plastics/Composites,2012,39(s1):52-55(in Chinese). [7] DING J, YANG T, HUANG Z, et al. Thermal stability and ablation resistance, and ablation mechanism of carbon-phenolic composites with different zirconium silicide particle loadings[J]. Composites Part B: Engineering,2018,154:313-320. [8] 柳云钊, 师建军, 王筠, 等. PICA 中的酚醛树脂热分解机理[J]. 宇航材料工艺, 2016, 46(6):68-73, 78.LIU Yunzhao, SHI Jianjun, WANG Yun, et al. Pyrolysis mechanism of PICA phenolics[J]. Aerospace Materials & Technology,2016,46(6):68-73, 78(in Chinese). [9] JIANG H, WANG J, WU S, et al. The pyrolysis mechanism of phenol formaldehyde resin[J]. Polymer Degradation and Stability,2012,97(8):1527-1533. doi: 10.1016/j.polymdegradstab.2012.04.016 [10] 胡海峰, 张玉娣, 邹世钦, 等. SiC/SiC复合材料及其在航空发动机上的应用[J]. 航空制造技术, 2010(6):90-91. doi: 10.3969/j.issn.1671-833X.2010.06.021HU Haifeng, ZHANG Yudi, ZOU Shiqin, et al. SiC/SiC composites and its application on aero-engine[J]. Aeronautical Manufacturing Technology,2010(6):90-91(in Chinese). doi: 10.3969/j.issn.1671-833X.2010.06.021 [11] 张立同, 成来飞. 连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J]. 复合材料学报, 2007, 24(2):1-6. doi: 10.3321/j.issn:1000-3851.2007.02.001ZHANG Litong, CHENG Laifei. Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites[J]. Acta Materiae Compositae Sinica,2007,24(2):1-6(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.02.001 [12] DU B, HONG C, ZHOU S, et al. Multi-composition coating for oxidation protection of modified carbon-bonded carbon fiber composites[J]. Journal of the European Ceramic Society,2016,36(14):3303-3310. doi: 10.1016/j.jeurceramsoc.2016.05.028 [13] 曾燮榕, 李贺军, 李龙, 等. 碳/碳复合材料MoSi2/SiC涂层在动态氧化环境下的性能研究[J]. 复合材料学报, 2002, 19(6):43-46. doi: 10.3321/j.issn:1000-3851.2002.06.008ZENG Xierong, LI Hejun, LI Long, et al. Dynamic anti-oxidation behavior of MoSi2/SiC coating system for carbon-carbon composites[J]. Acta Materiae Compositae Sinica,2002,19(6):43-46(in Chinese). doi: 10.3321/j.issn:1000-3851.2002.06.008 [14] LOA I, KUNC K, SYASSEN K, et al. Crystal structure and lattice dynamics of AlB2 under pressure and implications for MgB2[J]. Physical Review B,2002,66(13):134101. doi: 10.1103/PhysRevB.66.134101 [15] DAYANAND S, BOPPANA S B, HEMANTH J, et al. Microstructure and corrosion characteristics of in situ aluminum diboride metal matrix composites[J]. Journal of Bio-and Tribo-Corrosion,2019,5(3):60. doi: 10.1007/s40735-019-0250-8 [16] SUNAYAMA H. Effects of AlB2 addition on the resistance of oxidation of MgO-C refractories[C]//The PacRim 2nd Refractories Conference. Australia: Caims, 1996. [17] ZHAO J, LIU H T, LIU J X, et al. ZrB2 ceramics doped with AlB2[J]. Ceramics International,2014,40(6):8915-8920. doi: 10.1016/j.ceramint.2014.01.037 [18] DING J, HUANG Z X, QIN Y, et al. Improved ablation resistance of carbon-phenolic composites by introducing zirconium silicide particles[J]. Composites Part B: Engineering,2015,82:100-107. [19] 范珊珊, 石敏先, 孟盼, 等. 助熔剂对陶瓷化硼酚醛复合材料热行为及微观结构的影响[J]. 复合材料学报, 2017, 34(1):60-66.FAN Shanshan, SHI Minxian, MENG Pan, et al. Effects of fusing agent on the thermal behavior and microstructure of ceramifiable boron phenolic resin composites[J]. Acta Materiae Compositae Sinica,2017,34(1):60-66(in Chinese). [20] 黄志雄, 丁杰, 秦岩. ZrSi2/硼酚醛泡沫的制备及其裂解产物的增强机制[J]. 复合材料学报, 2016, 33(10):2174-2180.HUANG Zhixiong, DING Jie, QIN Yan. Preparation of ZrSi2/boron phenolic foam and enhancement mechanism of its cleavage products[J]. Acta Materiae Compositae Sinica,2016,33(10):2174-2180(in Chinese). [21] 黄赤, 秦岩, 黄志雄, 等. 酚醛基烧蚀材料改性研究进展[J]. 武汉理工大学学报, 2014, 36(8):37-43.HUANG Chi, QIN Yan, HUANG Zhixiong, et al. Recent modification research progress of phenolic-based ablative materials[J]. Journal of Wuhan University of Technology,2014,36(8):37-43(in Chinese). [22] 中国国家标准化管理委员会. 纤维增强塑料密度和相对密度试验方法: GB/T 1463—2005[S]. 北京: 中国标准出版社, 2005.Standardization Administration of the People’s Republic of China. Test methods for density and relative density of fiber reinforced plastics: GB/T 1463—2005[S]. Beijing: China Standards Press, 2005(in Chinese). [23] 中国国家标准化管理委员会. 非金属固体材料导热系数的测定热线法: GB/T 10297—2015[S]. 北京: 中国标准出版社, 2015.Standardization Administration of the People’s Republic of China. Test method for thermal conductivity of nonmetal solid materials Hot wire method: GB/T 10297—2015[S]. Beijing: China Standards Press, 2015(in Chinese). [24] 中国国家标准化管理委员会. 致密定形耐火制品体积密度、显气孔率和真气孔率试验方法: GB/T 2997—2015[S]. 北京: 中国标准出版社, 2015.Standardization Administration of the People’s Republic of China. Test method for bulk density, apparent porosity and true porosity of dense shaped refractory products: GB/T 2997—2015[S]. Beijing: China Standards Press, 2015(in Chinese). [25] 中国国家标准化管理委员会. 纤维增强塑料弯曲性能试验方法: GB/T 1449—2005[S]. 北京: 中国标准出版社, 2005.Standardization Administration of the People’s Republic of China. Test method for bending properties of fiber reinforced plastics: GB/T 1449—2005[S]. Beijing: China Standards Press, 2005(in Chinese). [26] TRICK K A, SALIBA T E. Mechanisms of the pyrolysis of phenolic resin in a carbon/phenolic composite[J]. Carbon,1995,33(11):1509-1515. doi: 10.1016/0008-6223(95)00092-R [27] KO T H, KUO W S, CHANG Y H. Raman study of the microstructure changes of phenolic resin during pyrolysis[J]. Polymer Composites,2000,21(5):745-750. doi: 10.1002/pc.10229 [28] TRICK K A, SALIBA T E, SANDHU S S. A kinetic model of the pyrolysis of phenolic resin in a carbon/phenolic composite[J]. Carbon,1997,35(3):393-401. doi: 10.1016/S0008-6223(97)89610-8 [29] 左新章, 张立同, 刘永胜, 等. Si-B-C 陶瓷涂敷2D C/SiC复合材料的抗氧化性能[J]. 复合材料学报, 2013, 30(3):100-106.ZUO Xinzhang, ZHANG Litong, LIU Yongsheng, et al. Oxidation resistance of two dimensional C/SiC composite coated with Si-B-C ceramic[J]. Acta Materiae Compositae Sinica,2013,30(3):100-106(in Chinese). [30] CHENG L, XU Y, ZHANG L, et al. Effect of glass sealing on the oxidation behavior of three dimensional C/SiC composites in air[J]. Carbon,2001,39(8):1127-1133. doi: 10.1016/S0008-6223(00)00148-2