留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AlB2对高硅氧纤维/可瓷化酚醛树脂复合材料及其裂解产物力学性能的影响

徐博 丁杰 王兵 杨威 黄志雄 王雁冰

徐博, 丁杰, 王兵, 等. AlB2对高硅氧纤维/可瓷化酚醛树脂复合材料及其裂解产物力学性能的影响[J]. 复合材料学报, 2021, 38(1): 129-136. doi: 10.13801/j.cnki.fhclxb.20200619.001
引用本文: 徐博, 丁杰, 王兵, 等. AlB2对高硅氧纤维/可瓷化酚醛树脂复合材料及其裂解产物力学性能的影响[J]. 复合材料学报, 2021, 38(1): 129-136. doi: 10.13801/j.cnki.fhclxb.20200619.001
XU Bo, DING Jie, WANG Bing, et al. Effects of AlB2 on mechanical properties of high silica fiber/ceramicizable phenolic resin composites and their pyrolysis products[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 129-136. doi: 10.13801/j.cnki.fhclxb.20200619.001
Citation: XU Bo, DING Jie, WANG Bing, et al. Effects of AlB2 on mechanical properties of high silica fiber/ceramicizable phenolic resin composites and their pyrolysis products[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 129-136. doi: 10.13801/j.cnki.fhclxb.20200619.001

AlB2对高硅氧纤维/可瓷化酚醛树脂复合材料及其裂解产物力学性能的影响

doi: 10.13801/j.cnki.fhclxb.20200619.001
基金项目: 中央高校基本科研业务费专项资金(WUT: 2019Ⅲ066JL; 2020Ⅲ001XZ)
详细信息
    通讯作者:

    丁杰,博士,讲师,硕士生导师,研究方向为耐高温树脂基复合材料 E-mail:jied@whut.edu.cn

  • 中图分类号: TB332

Effects of AlB2 on mechanical properties of high silica fiber/ceramicizable phenolic resin composites and their pyrolysis products

  • 摘要: 以AlB2和SiC颗粒填充酚醛树脂作为基体,高硅氧纤维作为增强体,制备了高硅氧纤维/可瓷化酚醛树脂复合材料。研究了不同添加量的AlB2颗粒对高硅氧纤维/可瓷化酚醛树脂复合材料常温和1200℃裂解产物性能的影响,并分析了AlB2颗粒对其裂解产物的增强机制。结果表明:随着AlB2颗粒的添加,高硅氧纤维/可瓷化酚醛树脂复合材料常温下的弯曲强度逐渐减小,但其1200℃裂解产物的弯曲强度先增大后减小。当AlB2颗粒与酚醛树脂的质量比为12%时,裂解产物的弯曲强度提高最为显著,相比未添加AlB2颗粒的复合材料,其裂解产物的弯曲强度提高了16.4%。AlB2颗粒在1200℃有氧环境中反应生成由B2O3 、Al2O3和Al20B4O36组成的共熔体,填充了树脂基体裂解产生的孔隙,明显减少复合材料裂解产物的结构缺陷,阻止内部材料进一步氧化,提高了裂解产物的力学性能。

     

  • 图  1  高硅氧纤维/可瓷化酚醛树脂(HSF/CPR)复合材料的固化工艺曲线

    Figure  1.  Curing process curve of high silica fiber/ceramicizable phenolic resin (HSF/CPR) composites

    图  2  HSF/CPR复合材料的常温导热系数

    Figure  2.  Thermal conductivity of HSF/CPR composites at room temperature

    图  3  HSF/CPR复合材料裂解后的宏观照片

    Figure  3.  Macro photographs of HSF/CPR composites after pyrolysis ((a) HSF/CPR-1; (b) HSF/CPR-2; (c) HSF/CPR-3; (d) HSF/CPR-4; (e) HSF/CPR-5)

    图  4  HSF/CPR复合材料裂解后表面的SEM图像

    Figure  4.  SEM images of surface of HSF/CPR composites after pyrolysis ((a) HSF/CPR-1; (b) HSF/CPR-2; (c) HSF/CPR-3; (d) HSF/CPR-4; (e) HSF/CPR-5)

    图  5  AlB2、SiC和SiC-AlB2改性酚醛树脂固化物高温裂解前后的XRD图谱

    Figure  5.  XRD patterns of AlB2, SiC and SiC-AlB2 modified phenolic resin curing products before and after pyrolysis

    RT—Room temperature

    表  1  HSF/CPR复合材料的预浸料质量配方(以酚醛树脂质量为基准)

    Table  1.   Prepreg mass formulation of HSF/CPR composites (Based on mass of phenolic resin)

    SampleMass ratio to phenolic resin/%
    Phenolic
    resin
    AlcoholSiCAlB2High silica
    fabric
    HSF/CPR-1 100 100 60 0 130
    HSF/CPR-2 100 100 60 6 133
    HSF/CPR-3 100 100 60 12 136
    HSF/CPR-4 100 100 60 18 139
    HSF/CPR-5 100 100 60 24 142
    下载: 导出CSV

    表  2  HSF/CPR复合材料的常温物理性能

    Table  2.   Physical properties of HSF/CPR composites at room temperature

    SampleDensity/
    (g·cm−3)
    Apparent porosity/%Flexural strength/MPa
    HSF/CPR-1 1.63 3.08±0.20 165.0±8.1
    HSF/CPR-2 1.66 2.90±0.15 149.8±6.4
    HSF/CPR-3 1.68 2.83±0.13 135.4±7.3
    HSF/CPR-4 1.70 2.80±0.18 114.5±5.8
    HSF/CPR-5 1.71 2.70±0.11 102.6±7.4
    下载: 导出CSV

    表  3  HSF/CPR复合材料裂解后的物理性能

    Table  3.   Physical properties of HSF/CPR composites after pyrolysis

    SampleDensity/
    (g·cm−3)
    Apparent porosity/%Flexural strength/MPa
    HSF/CPR-1 1.58 17.98±1.2 24.79±1.4
    HSF/CPR-2 1.61 14.05±0.6 26.43±2.0
    HSF/CPR-3 1.63 12.15±0.9 28.86±1.8
    HSF/CPR-4 1.65 16.75±1.1 27.52±1.0
    HSF/CPR-5 1.68 21.66±1.5 26.51±0.8
    下载: 导出CSV

    表  4  HSF/CPR复合材料的热失重率和热收缩率

    Table  4.   Thermal weight-loss rate and thermal shrinkage of HSF/CPR composites

    SampleThermal mass-
    loss rate/%
    Thermal
    shrinkage/%
    HSF/CPR-1 17.7±1.1 3.81±0.30
    HSF/CPR-2 16.4±1.4 3.59±0.28
    HSF/CPR-3 14.6±0.8 2.83±0.16
    HSF/CPR-4 11.4±1.0 2.68±0.23
    HSF/CPR-5 10.2±0.6 2.44±0.15
    下载: 导出CSV
  • [1] 陈玉峰, 洪长青, 胡成龙, 等. 空天飞行器用热防护陶瓷材料[J]. 现代技术陶瓷, 2017, 38(5):311-390.

    CHEN Yufeng, HONG Changqing, HU Chenglong, et al. Ceramic based thermal protection materials for aerospace vehicles[J]. Advanced Ceramics,2017,38(5):311-390(in Chinese).
    [2] HONG C, HAN J, ZHANG X, et al. Novel phenolic impregnated 3D fine woven pierced carbon fabric composites: Microstructure and ablation behavior[J]. Composites Part B: Engineering,2012,43(5):2389-2394. doi: 10.1016/j.compositesb.2011.12.001
    [3] 梁馨, 罗丽娟, 谭珏, 等. 美国空间探测器热防护材料发展现状及趋势[J]. 材料导报, 2016, 30(s1):551-557.

    LIANG Xin, LUO Lijuan, TAN Jue, et al. Current status and trend of thermal protection material for space exploration in America[J]. Materials Review,2016,30(s1):551-557(in Chinese).
    [4] 韩杰才, 洪长青, 张幸红, 等. 新型轻质热防护复合材料的研究进展[J]. 载人航天, 2015, 21(4):315-321. doi: 10.3969/j.issn.1674-5825.2015.04.001

    HAN Jiecai, HONG Changqing, ZHANG Xinghong, et al. Research progress of novel lightweight thermal protection composites[J]. Manned Spaceflight,2015,21(4):315-321(in Chinese). doi: 10.3969/j.issn.1674-5825.2015.04.001
    [5] 谢永旺, 李峥, 夏雨, 等. 可陶瓷化酚醛树脂基复合材料烧蚀隔热性能研究[J]. 首都师范大学学报(自然科学版), 2019, 40(5):52-56.

    XIE Yongwang, LI Zheng, XIA Yu, et al. Study on ablation and thermal insulation performance of ceramizable phenolic matrix composites[J]. Journal of cApital Normal University (Natural Science Edition),2019,40(5):52-56(in Chinese).
    [6] 秦岩, 饶志龙, 刘慧娟. 可瓷化酚醛复合材料烧蚀隔热性能研究[J]. 玻璃钢/复合材料, 2012, 39(s1):52-55.

    QIN Yan, RAO Zhilong, LIU Huijuan. The studying of ablation and heat insulation properties of ceramifiable phenolic composite[J]. Fiber Reinforced Plastics/Composites,2012,39(s1):52-55(in Chinese).
    [7] DING J, YANG T, HUANG Z, et al. Thermal stability and ablation resistance, and ablation mechanism of carbon-phenolic composites with different zirconium silicide particle loadings[J]. Composites Part B: Engineering,2018,154:313-320.
    [8] 柳云钊, 师建军, 王筠, 等. PICA 中的酚醛树脂热分解机理[J]. 宇航材料工艺, 2016, 46(6):68-73, 78.

    LIU Yunzhao, SHI Jianjun, WANG Yun, et al. Pyrolysis mechanism of PICA phenolics[J]. Aerospace Materials & Technology,2016,46(6):68-73, 78(in Chinese).
    [9] JIANG H, WANG J, WU S, et al. The pyrolysis mechanism of phenol formaldehyde resin[J]. Polymer Degradation and Stability,2012,97(8):1527-1533. doi: 10.1016/j.polymdegradstab.2012.04.016
    [10] 胡海峰, 张玉娣, 邹世钦, 等. SiC/SiC复合材料及其在航空发动机上的应用[J]. 航空制造技术, 2010(6):90-91. doi: 10.3969/j.issn.1671-833X.2010.06.021

    HU Haifeng, ZHANG Yudi, ZOU Shiqin, et al. SiC/SiC composites and its application on aero-engine[J]. Aeronautical Manufacturing Technology,2010(6):90-91(in Chinese). doi: 10.3969/j.issn.1671-833X.2010.06.021
    [11] 张立同, 成来飞. 连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J]. 复合材料学报, 2007, 24(2):1-6. doi: 10.3321/j.issn:1000-3851.2007.02.001

    ZHANG Litong, CHENG Laifei. Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites[J]. Acta Materiae Compositae Sinica,2007,24(2):1-6(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.02.001
    [12] DU B, HONG C, ZHOU S, et al. Multi-composition coating for oxidation protection of modified carbon-bonded carbon fiber composites[J]. Journal of the European Ceramic Society,2016,36(14):3303-3310. doi: 10.1016/j.jeurceramsoc.2016.05.028
    [13] 曾燮榕, 李贺军, 李龙, 等. 碳/碳复合材料MoSi2/SiC涂层在动态氧化环境下的性能研究[J]. 复合材料学报, 2002, 19(6):43-46. doi: 10.3321/j.issn:1000-3851.2002.06.008

    ZENG Xierong, LI Hejun, LI Long, et al. Dynamic anti-oxidation behavior of MoSi2/SiC coating system for carbon-carbon composites[J]. Acta Materiae Compositae Sinica,2002,19(6):43-46(in Chinese). doi: 10.3321/j.issn:1000-3851.2002.06.008
    [14] LOA I, KUNC K, SYASSEN K, et al. Crystal structure and lattice dynamics of AlB2 under pressure and implications for MgB2[J]. Physical Review B,2002,66(13):134101. doi: 10.1103/PhysRevB.66.134101
    [15] DAYANAND S, BOPPANA S B, HEMANTH J, et al. Microstructure and corrosion characteristics of in situ aluminum diboride metal matrix composites[J]. Journal of Bio-and Tribo-Corrosion,2019,5(3):60. doi: 10.1007/s40735-019-0250-8
    [16] SUNAYAMA H. Effects of AlB2 addition on the resistance of oxidation of MgO-C refractories[C]//The PacRim 2nd Refractories Conference. Australia: Caims, 1996.
    [17] ZHAO J, LIU H T, LIU J X, et al. ZrB2 ceramics doped with AlB2[J]. Ceramics International,2014,40(6):8915-8920. doi: 10.1016/j.ceramint.2014.01.037
    [18] DING J, HUANG Z X, QIN Y, et al. Improved ablation resistance of carbon-phenolic composites by introducing zirconium silicide particles[J]. Composites Part B: Engineering,2015,82:100-107.
    [19] 范珊珊, 石敏先, 孟盼, 等. 助熔剂对陶瓷化硼酚醛复合材料热行为及微观结构的影响[J]. 复合材料学报, 2017, 34(1):60-66.

    FAN Shanshan, SHI Minxian, MENG Pan, et al. Effects of fusing agent on the thermal behavior and microstructure of ceramifiable boron phenolic resin composites[J]. Acta Materiae Compositae Sinica,2017,34(1):60-66(in Chinese).
    [20] 黄志雄, 丁杰, 秦岩. ZrSi2/硼酚醛泡沫的制备及其裂解产物的增强机制[J]. 复合材料学报, 2016, 33(10):2174-2180.

    HUANG Zhixiong, DING Jie, QIN Yan. Preparation of ZrSi2/boron phenolic foam and enhancement mechanism of its cleavage products[J]. Acta Materiae Compositae Sinica,2016,33(10):2174-2180(in Chinese).
    [21] 黄赤, 秦岩, 黄志雄, 等. 酚醛基烧蚀材料改性研究进展[J]. 武汉理工大学学报, 2014, 36(8):37-43.

    HUANG Chi, QIN Yan, HUANG Zhixiong, et al. Recent modification research progress of phenolic-based ablative materials[J]. Journal of Wuhan University of Technology,2014,36(8):37-43(in Chinese).
    [22] 中国国家标准化管理委员会. 纤维增强塑料密度和相对密度试验方法: GB/T 1463—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Test methods for density and relative density of fiber reinforced plastics: GB/T 1463—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [23] 中国国家标准化管理委员会. 非金属固体材料导热系数的测定热线法: GB/T 10297—2015[S]. 北京: 中国标准出版社, 2015.

    Standardization Administration of the People’s Republic of China. Test method for thermal conductivity of nonmetal solid materials Hot wire method: GB/T 10297—2015[S]. Beijing: China Standards Press, 2015(in Chinese).
    [24] 中国国家标准化管理委员会. 致密定形耐火制品体积密度、显气孔率和真气孔率试验方法: GB/T 2997—2015[S]. 北京: 中国标准出版社, 2015.

    Standardization Administration of the People’s Republic of China. Test method for bulk density, apparent porosity and true porosity of dense shaped refractory products: GB/T 2997—2015[S]. Beijing: China Standards Press, 2015(in Chinese).
    [25] 中国国家标准化管理委员会. 纤维增强塑料弯曲性能试验方法: GB/T 1449—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Test method for bending properties of fiber reinforced plastics: GB/T 1449—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [26] TRICK K A, SALIBA T E. Mechanisms of the pyrolysis of phenolic resin in a carbon/phenolic composite[J]. Carbon,1995,33(11):1509-1515. doi: 10.1016/0008-6223(95)00092-R
    [27] KO T H, KUO W S, CHANG Y H. Raman study of the microstructure changes of phenolic resin during pyrolysis[J]. Polymer Composites,2000,21(5):745-750. doi: 10.1002/pc.10229
    [28] TRICK K A, SALIBA T E, SANDHU S S. A kinetic model of the pyrolysis of phenolic resin in a carbon/phenolic composite[J]. Carbon,1997,35(3):393-401. doi: 10.1016/S0008-6223(97)89610-8
    [29] 左新章, 张立同, 刘永胜, 等. Si-B-C 陶瓷涂敷2D C/SiC复合材料的抗氧化性能[J]. 复合材料学报, 2013, 30(3):100-106.

    ZUO Xinzhang, ZHANG Litong, LIU Yongsheng, et al. Oxidation resistance of two dimensional C/SiC composite coated with Si-B-C ceramic[J]. Acta Materiae Compositae Sinica,2013,30(3):100-106(in Chinese).
    [30] CHENG L, XU Y, ZHANG L, et al. Effect of glass sealing on the oxidation behavior of three dimensional C/SiC composites in air[J]. Carbon,2001,39(8):1127-1133. doi: 10.1016/S0008-6223(00)00148-2
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  1300
  • HTML全文浏览量:  452
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-11
  • 录用日期:  2020-06-15
  • 网络出版日期:  2020-06-19
  • 刊出日期:  2021-01-15

目录

    /

    返回文章
    返回