Flexural behavior of glass fiber reinforced polymer tube filled with steel bars/concrete hollow members
-
摘要: 为研究玻璃纤维增强树脂复合材料(GFRP)管-钢筋/混凝土空心构件的抗弯性能,编制了受弯构件的非线性分析程序,系统地分析了空心率、配筋率、GFRP管管壁厚度及混凝土强度等级等主要参数对其抗弯性能的影响,并通过试验对所编制的程序进行验证,最后建立适用于GFRP管-钢筋/混凝土空心构件的抗弯承载力计算公式。结果表明:利用编制的受弯构件非线性分析程序与建立的抗弯承载力公式,计算结果与试验结果均吻合较好,抗弯承载力随空心率的减小、配筋率的提高、GFRP管管壁厚度的增加及混凝土强度的增大而增加,空心率对构件抗弯承载力影响最大,其次是配筋率和GFRP管管壁厚度,最后是混凝土强度等级,空心部分半径比在0.25~0.5为宜,可以适当提高配筋率、GFRP管管壁厚度或混凝土强度等级来弥补该空心构件抗弯承载力,研究结论可为该结构在实际应用中提供参考依据。
-
关键词:
- 玻璃纤维增强树脂复合材料管-钢筋/混凝土 /
- 空心构件 /
- 抗弯性能 /
- 非线性分析程序 /
- 承载力公式
Abstract: In order to study the flexural performance of glass fiber reinforced polymer (GFRP) tube filled with steel bars/concrete hollow members, a nonlinear analysis program was developed. The effects of main parameters such as hollow rate, reinforcement ratio, GFRP tube wall thickness and strength grade of concrete were analyzed systematically. The program was verified by test. The calculation formula of the bearing capacity of GFRP tube filled with reinforced hollow concrete members was established. The results show that the calculation results are in good agreement with the test results by using the nonlinear analysis program and the established bearing capacity formula. The flexural bearing capacity increases with the decrease of the hollow rate and the increase of the reinforcement ratio, the GFRP tube wall thickness and the concrete strength grade. The hollow rate has the greatest influence on the flexural bearing capacity, followed by the reinforcement ratio and the thickness of GFRP tube wall thickness, and the concrete strength grade has relatively less influence on the flexural bearing capacity. The radius ratio of hollow part should be 0.25-0.5. The flexural bearing capacity of the hollow members can be compensated by properly increasing the reinforcement ratio, GFRP tube wall thickness or concrete strength grade. The research conclusion can provide reference for the practical application of the GFRP tube filled with steel bars/concrete hollow member structure. -
图 2 GFRP约束混凝土应力-应变关系
Figure 2. Stress-strain relationship of GFRP confined concrete
$ {f}_{\mathrm{c}\mathrm{o}}' $, $ {\varepsilon }_{\mathrm{c}\mathrm{o}} $—Peak stress and strain of concrete without restraint; $ {f}_{\mathrm{c}\mathrm{c}}' $, $ {\varepsilon }_{\mathrm{c}\mathrm{c}} $—Peak stress and strain of concrete under restraint; $ {E}_{2} $—Slope of the curve in the second stage
图 3 钢材的应力-应变关系
Figure 3. Stress-strain relationship of steel
a—Proportional limit; b—Yield lower limit; c—Flow amplitude; d—Ultimate strength; e—Steel failure;$ {f}_{\mathrm{t}\mathrm{u}} $—Ultimate strength of steel;$ {f}_{\mathrm{t}\mathrm{y}} $—Yield strength of steel;$ {f}_{\mathrm{t}\mathrm{p}} $—Strength corresponding to proportional limit of steel;$ { \varepsilon }_{\rm{te}} $, $ {\varepsilon }_{\rm{te}\rm{1}} $, $ {\varepsilon }_{\rm{te}\rm{2}} $, $ {\varepsilon }_{\rm{te}\rm{3}} $—Strain corresponding to a, b, c and d, respectively
图 4 GFRP管-钢筋/混凝土空心结构截面划分方法及应变图
Figure 4. Section division method and strain diagram of the GFRP tube filled with steel bars/concrete hollow structure
Δθ—Center of each circle corresponds to one corner; θ—Angle; O—Center of a circle; ΔAci —Center angle Δθi correspongding concrete partition unit area; ΔAfi—Center angle Δθi correspongding GFRP tube unit area; yci—Distance from the height center of the i-th strip of concrete to the centroid of the section; yfi —Distance from the height center of the i-th strip of GFRP tube to the centroid of the section; εfi—Strain of GFRP tube in unit i; ε ci—Strain of concrete in unit i; εsi—Strain of steel bar in unit i
图 14 GFRP管-钢筋/混凝土空心受弯构件正截面抗弯承载力计算简图
Figure 14. Calculation diagram of flexural capacity of GFRP tube filled with steel bars/concrete hollow bending members ((a) Section geometry; (b) Section strain; (c) Internal force of GFRP tube; (d) Internal force of concrete; (e) Internal force of hollow concrete; (f) Internal force of steel bars)
表 1 GFRP管-钢筋/混凝土空心受弯构件试验参数与试验结果
Table 1. Experimental parameters and results of GFRP tube filled with steel bars/concrete hollow bending members
Serial
numberHollow part
diameter/mmGFRP tube wall
thickness/mmSteel
barsUltimate bearing
capacity/kNGRCHB1 75 5 4 124 GRCHB2 75 7 4 138 GRCHB3 75 3 4 93 GRCHB4 50 5 4 127 GRCB5 — 5 4 129 GRCHB6 75 5 8 173 GRCHB7 75 5 6 147 表 2 GFRP管材料性能参数
Table 2. Material properties of GFRP tubes
Longitudinal direction Circumferential direction Elastic modulus /MPa Strength/MPa Elastic modulus /MPa Strength /MPa 16 680 174 27 210 467 表 3 钢筋性能参数
Table 3. Material properties of steel bars
Variety Model Yield strength/MPa Ultimate tensile strength/MPa Elongation/% HPB235 Diameter 8 mm 271.1 361.2 20.9 HRB335 Diameter 14 mm 379.8 494.6 18.6 表 4 GFRP管-钢筋/混凝土空心受弯构件试验结果与计算结果
Table 4. Calculated results and tested results of GFRP tube filled with steel bars/concrete hollow bending members
Specimen ${M^{{\rm{exp}}}}$/kN ${M^{{\rm{cal}}}}$/kN ${M^{{\rm{exp}}}}$/${M^{{\rm{cal}}}}$ GRCHB1 38.75 37.39 1.036 GRCHB2 43.13 42.99 1.003 GRCHB3 29.06 27.54 1.055 GRCHB4 39.69 37.57 1.056 GRCB5 40.31 37.80 1.066 GRCHB6 54.06 55.83 0.968 GRCHB7 45.94 45.89 1.001 BRCS(T)-5[1] 25.50 24.18 1.055 GRCB-3[14] 51.30 50.91 1.008 Notes: ${M^{{\rm{exp}}}}$—Tested bending moment; ${M^{{\rm{cal}}}}$—Calculated bending moment. -
[1] 王连广, 陈百玲. GFRP管及钢管型钢混凝土结构[M]. 沈阳: 辽宁科学技术出版社, 2013.WANG Lianguang, CHEN Bailing. Steel reinforced concrete-filled glass fiber reinforced polymer or steel tubular sturctures[M]. Shenyang: Liaoning Science and Technology Publishing House, 2013(in Chinese). [2] 田会文, 周臻, 陆纪平, 等. 纤维增强树脂复合材料约束超高性能混凝土轴压性能的细观数值模拟[J]. 复合材料学报, 2020, 37(7): 1629-1638TIAN Huiwen, ZHOU Zhen, LU Jiping, et al. Meso-scale numerical simulation of axial compression performance of fiber reinforced polymer-confined ultra-high performance concrete[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1629-1638. [3] 韩振宇, 张鹏, 郑天宇, 等. 纤维增强树脂复合材料网络结构成型工艺研究进展[J]. 复合材料学报, 2020, 37(4): 845-858.HAN Zhenyu, ZHANG Peng, ZHENG Tianyu, et al. Research poogress of forming proming process of fiber reinforced polymer composite grid structure[J]. Acta Materiae Compositae Sinica, 2020, 37(4): 845-858(in Chinese). [4] 厉嘉鑫. GFRP管约束型钢再生混凝土组合柱轴压性能研究[D]. 西安: 西安理工大学, 2019.LI Jiaxin. Research on axial compression performance of GFRP tube filled with steel reinforced recycled concrete composite columns[D]. Xi’an: Xi’an University of Technology, 2019(in Chinese). [5] 李峰, 刘加顺, 张东东, 等. GFRP管-铝合金管纤维缠绕齿连接接头拉伸试验[J]. 复合材料学报, 2018, 35(10):2678-2688.LI F, LIU J S, ZHANG D D, et al. Tensile experiments on the tooth connections with filament winding between GFRP tube and aluminum alloy tube[J]. Acta Materiae Compositae Sinica,2018,35(10):2678-2688(in Chinese). [6] IDRIS Y, OZBAKKALOGLY T. Flexural behavior of FRP-HSC-steel double skin tubular beams under reversed-cyclic loading[J]. Thin-Walled Structures,2015,87(2):89-101. [7] 樊彬彬, 单鲁阳, 章雪峰. GFRP管约束混凝土短柱滞回性能的有限元分析[J]. 建筑结构, 2018, 48(2):567-570.FAN Binbin, SHAN Luyang, ZHANG Xuefeng. Finite element analysis of hysteretic behavior of concrete short columns confined with GFRP tube[J]. Building Structure,2018,48(2):567-570(in Chinese). [8] SUN H P, JIA M M, ZHANG S M. Study of buckling-restrained braces with concrete infilled GFRP tubes[J]. Thin-Walled Structures,2019,136(3):16-33. [9] HUANG Liang, ZHANG Chen, YAN Libo. Flexural behavior of U-shape FRP profile-RC composite beams with inner GFRP tube confinement at concrete compression zone[J]. Composite Structures,2018,184(1):674-687. [10] HASSAN W M, HODHOD O A, HILAL M S, et al. Behavior of eccentrically loaded high strength concrete columns jacketed with FRP laminates[J]. Construction and Building Materials,2017,138(5):508-527. [11] REALFONSO R, NAPOLI A. Confining concrete members with FRP systems: predictive vs design models[J]. Composite Structures,2013,104(5):304-319. [12] YEH F Y, CHANG K C. Size and shape effects on strength and ultimate strain in FRP confined rectangualar concrete columns[J]. Journal of Mechanics,2012,28(4):677-690. doi: 10.1017/jmech.2012.118 [13] WEI Y Y, WU Y F. Unified stress-strain model of concrete for FRP-confined columns[J]. Construction and Building Materials,2012,26(1):381-392. doi: 10.1016/j.conbuildmat.2011.06.037 [14] 秦国鹏. GFRP管钢筋混凝土构件力学性能研究[D]. 沈阳: 东北大学, 2009.QIN Guopeng. Mechanical behaviors study on GFRP tube filled with reinforced concrete members[D]. Shenyang: Northeastern University, 2009(in Chinese). [15] WANG L G, HAN H F, LIU P. Behavior of reinforced concrete-filled tube GFRP tubes under eccentric compression loading[J]. Materials and Structures,2016,7(9):2819-2827. [16] LIM J C, OZBAKKALOGLU T. Unified stress–strain model for FRP and actively confined normal-strength and high-strength concrete[J]. Journal of Composites for Construction,2014,19(4):1-13. [17] CASCARDI Alessio, MICELLI Francesco, AIELLO Antonietta. Unified model for hollow columns externally confined by FRP[J]. Engineering Structures,2016,1(111):119-130. [18] ABDALLAH Hussein, SHAZLY Maha, MOHAMED Mostafa, et al. Nonlinear finite element analysis of short and long reinforced concrete columns confined with GFRP tubes[J]. Journal of Reinforced Plastics and Composites,2017,36(13):972-987. doi: 10.1177/0731684417698758 [19] CHEN B L, WANG L G. Experimental study of flexural behavior of splicing concrete-filled GFRP tubular composite members connected with steel bars[J]. Steel and Compo-site Structures,2015,18(5):1129-1144. doi: 10.12989/scs.2015.18.5.1129 [20] 李阳. GFRP管钢筋混凝土梁受力性能分析[D]. 大庆: 东北石油大学, 2013.LI Yang. Research on mechanical properties of the reinforced concrete filled GFRP tube beam[D]. Daqing: Northeast Petroleum University, 2013(in Chinese). [21] LAM L, TENG J G. Design-oriented stress-strain model for FRP-confined concrete[J]. Construction and Building Materials,2003,17(6):471-489. [22] COLLINS M P, MITCHELL D. Prestressed concrete structures[M]. Canada: Response Publications, 1997. [23] FAM A Z, RIZKALLA S H. Confinement model for axially loaded concrete confined by circular fiber-reinforced polymer tubes[J]. ACI Structural Journal,2001,98(4):451-461. [24] 钟善桐. 钢管混凝土结构[M]. 哈尔滨: 黑龙江科学技术出版社, 1994.ZHONG Shantong. The concrete-filled steel tubular structures[M]. Harbin: Heilongjiang Science and Technology Press, 1994(in Chinese).