Buckling performance of high-precision variable stiffness composites laminate based on automatic placement technology
-
摘要: 基于自动铺放技术制备的曲线变刚度复合材料层合板,通过定制面内刚度,可有效提高结构的抗屈曲性能。在铺放过程中,铺放轨迹的路径规划是实现变刚度设计的关键技术之一。鉴于此,本文分别以纤维角度线性变化曲线、等曲率曲线及二次Bezier曲线构成的纤维轨迹为研究对象,对其压缩屈曲性能进行参数化分析。并利用有限元模型研究了铺丝头上丝带宽度对层合板型面精度和抗屈曲力学性能的影响。结果表明:在压缩工况下,二次Bezier曲线路径的抗屈曲性能最佳,等曲率曲线路径受曲率约束的影响最小。铺丝头丝束宽度一定,丝带宽度与重叠区域面积和抗屈曲性能呈负相关。使用最大的丝带宽度可最大程度地减小重叠区域面积,提高结构的型面精度,同时保证结构屈曲性能提高37.3%。Abstract: The buckling resistance of the variable stiffness composite laminates laid by the automatic placement can be effectively improved by tailoring the in-plane stiffness. During the placement process, laying the trajectory path planning is one of the key technologies to achieve variable stiffness design. So, the fiber trajectories composed of angle linear variation, constant-curvature curve and quadratic Bezier curve were taken as the research object, and the parametric analysis of its compression buckling performance was carried out. Finally, the influence of tape width on the surface profile accuracy and buckling resistance mechanical properties was studied using a finite element model. The results show that under the compression condition, the secondary Bezier curve has the best buckling resistance, and the equal curvature curve is least affected by the curvature constraint. The width of the tape is negatively correlated with the area of the overlap area and the buckling resistance, when the tow width of the fiber placement head is constant. Using the largest tape size can minimize the overlapping area and improve the profile accuracy of the composite structure. At the same time, it is guaranteed that the buckling performance of the structure is improved by 37.3%.
-
Key words:
- variable stiffness /
- buckling performance /
- automatic placement /
- Bezier curve /
- fiber tow
-
表 1 算法程序有效性验证
Table 1. Algorithm validity verification
Curve placement example This article/N Literature[6]/N Error/% ${\left[ { \pm 45/0 \pm {{\left\langle {45|60} \right\rangle }_2}/0 \pm {{\left\langle {30|15} \right\rangle }_2}} \right]_{\rm{S}}}$ 15 689.5 15 641 0.30 ${\left[ { \pm 45/0 \pm \left\langle {30|45} \right\rangle /0 \pm {{\left\langle {45|60} \right\rangle }_2}/0 \pm \left\langle {30|15} \right\rangle } \right]_{\rm{S}}}$ 16 558.0 16 514 0.27 表 2 丝带宽度对M40J/4211复合材料变刚度层合板型面精度及结构抗屈曲效率的影响
Table 2. Effect of tape width on profile accuracy and structure buckling efficiency of M40J/4211 composite variable stiffness laminated plate
Tape width/mm Number of tow Average thickness/mm Critical buckling load/N Improved structural efficiency/% 38.1 12 1.0505 1 594 44.4 50.8 16 1.0352 1 534 41.0 63.5 20 1.0292 1 508 39.5 76.2 24 1.0250 1 487 38.0 88.9 28 1.0219 1 468 36.7 101.6 32 1.0206 1 452 35.4 114.3 36 1.0197 1 443 34.7 -
[1] 文立伟, 肖军, 王显峰, 等. 中国复合材料自动铺放技术研究进展[J]. 南京航空航天大学学报, 2015, 47(5):637-649.WEN Liwei, XIAO Jun, WANG Xianfeng, et al. Process of automated placement technology for composites in China[J]. Journal of Nanjing University of Aeronautics & Astronautics,2015,47(5):637-649(in Chinese). [2] 周晓芹, 曹正华. 复合材料自动铺放技术的发展及应用[J]. 航空制造技术, 2009(s1):1-3, 7.ZHOU Xiaoqin, CAO Zhenghua. Development and application of automated placement technology for composites[J]. Aeronautical Manufacturing Technology,2009(s1):1-3, 7(in Chinese). [3] SHIRINZADEH B, CASSIDY G, OETOMO D, et al. Trajectory generation for open-contoured structures in robotic fibre placement[J]. Robotics and Computer-Integrated Manufacturing,2007,23(4):380-394. doi: 10.1016/j.rcim.2006.04.006 [4] ABDALLA M M, SETOODEH S, GÜRDAL Z. Design of variable stiffness composite panels for maximum fundamental frequency using lamination parameters[J]. Composite Structures,2007,81(2):283-291. doi: 10.1016/j.compstruct.2006.08.018 [5] SETOODEH S, ABDALLA M M, GÜRDAL Z. Design of variable-stiffness laminates using lamination parameters[J]. Composites Part B: Engineering,2006,37(4-5):301-309. doi: 10.1016/j.compositesb.2005.12.001 [6] 马永前, 张淑杰, 许震宇. 纤维曲线铺放的变刚度复合材料层合板的屈曲[J]. 玻璃钢/复合材料, 2009(5):31-35.MA Yongqian, ZHANG Shujie, XU Zhenyu. The buckling of variable-stiffness composite panels with curvilinear fiber format[J]. Fiber Reinforced Plastics/Composites,2009(5):31-35(in Chinese). [7] GÜRDAL Z, OLMEDO R. In-plane response of laminates with spatially varying fiber orientations: Variable stiffness concept[J]. AIAA Journal,1993,31(4):751-758. doi: 10.2514/3.11613 [8] GÜRDAL Z, TATTING B F, WU C K. Variable stiffness composite panels: Effects of stiffness variation on the in-plane and buckling response[J]. Composites Part A: Applied Science and Manufacturing,2008,39(5):911-922. doi: 10.1016/j.compositesa.2007.11.015 [9] WU K C, GÜRDAL Z, STARNES J H. Structural response of compression loaded, tow placed, variable stiffness panels[C]//Proceedings of 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Denver: AIAA, 2002: 2002-1512. [10] JEGLRY D C, TATTING B F, GÜRDAL Z. Tow-steered panels with holes subjected to compression or shear loading[C]//Proceedings of 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Austin: AIAA, 2005: 2005-2081. [11] GÜRDAL Z, TATTING B F, WU K C. Tow-placement technology and fabrication issues for laminated composite structures[C]//Proceedings of 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Austin: AIAA, 2005: 2005-2017. [12] 富宏亚, 曹忠亮, 杜霖, 等. Bezier曲线变角度层合板设计及屈曲特性分析[J]. 复合材料学报, 2017, 34(8):1729-1735.FU Hongya, CAO Zhongliang, DU Lin, et al. Design of Bezier curve variable angle laminates and analysis on buckling property[J]. Acta Materiae Compositae Sinica,2017,34(8):1729-1735(in Chinese). [13] 牛雪娟, 杨涛, 杜宇. 基于流场函数的变刚度层合板铺放设计[J]. 固体火箭技术, 2014, 37(6):848-855.NIU Xuejuan, YANG Tao, DU Yu. Path planning of variable stiffness laminates based on the flow field function[J]. Journal of Solid Rocket Technology,2014,37(6):848-855(in Chinese). [14] 张雁, 张峤, 梁珂, 等. 变刚度复合材料机翼设计与优化[C]//2015中国力学大会. 上海: 中国力学学会, 2015.ZHANG Yan, ZHANG Qiao, LIANG Ke, et al. Design and optimization of variable stiffness composite wing[C]//2015 The Chinese Congress of Theoretical and Applied Mechanics. Shanghai: Chinese Society of Theoretical and Applied Mechanics, 2015(in Chinese). [15] FALCÓ O, MAYUGO J A, LOPES C S, et al. Variable-stiffness composite panels: As-manufactured modeling and its influence on the failure behavior[J]. Composites Part B: Engineering,2014,56:660-669. doi: 10.1016/j.compositesb.2013.09.003 [16] PEETERS D M J, LOZANO G G, ABDALLA M M. Effect of steering limit constraints on the performance of variable stiffness laminates[J]. Computers & Structures,2018,196:94-111. [17] MAROUENE A, BOUKHILI R, CHEN J, et al. Effects of gaps and overlaps on the buckling behavior of an optimally designed variable-stiffness composite laminates: A numerical and experimental study[J]. Composite Structures,2016,140:556-566. doi: 10.1016/j.compstruct.2016.01.012 [18] 杜霖. 变刚度层合板力学性能分析及铺放成型技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.DU Lin. Study on mechanical behavior of variable stiffness laminates and its manufacturing technology with fiber placement[D]. Harbin: Harbin Institute of Technology, 2016(in Chinese). [19] CAO Z, FU H, HAN Z. Comparative study on bezier curve and linear variable angle method for variable stiffness laminates[J]. Polymer Composites,2019,40(3):952-960. [20] 顾杰斐, 陈普会, 孔斌, 等. 考虑制造因素的变刚度层合板的抗屈曲铺层优化设计[J]. 复合材料学报, 2018, 35(4):866-875.GU Jiefei, CHEN Puhui, KONG Bin, et al. Layup optimization for maximum buckling load of variable stiffness laminates considering manufacturing factors[J]. Acta Materiae Compositae Sinica,2018,35(4):866-875(in Chinese).