留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分形理论分析裂缝形态对纤维/混凝土渗透性的影响

丁一宁 马跃 郝晓卫

丁一宁, 马跃, 郝晓卫. 基于分形理论分析裂缝形态对纤维/混凝土渗透性的影响[J]. 复合材料学报, 2020, 37(11): 2908-2916. doi: 10.13801/j.cnki.fhclxb.20200212.004
引用本文: 丁一宁, 马跃, 郝晓卫. 基于分形理论分析裂缝形态对纤维/混凝土渗透性的影响[J]. 复合材料学报, 2020, 37(11): 2908-2916. doi: 10.13801/j.cnki.fhclxb.20200212.004
DING Yining, MA Yue, HAO Xiaowei. Investigation on effect of crack geometry on permeability of fiber/concrete based on fractal theory[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2908-2916. doi: 10.13801/j.cnki.fhclxb.20200212.004
Citation: DING Yining, MA Yue, HAO Xiaowei. Investigation on effect of crack geometry on permeability of fiber/concrete based on fractal theory[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2908-2916. doi: 10.13801/j.cnki.fhclxb.20200212.004

基于分形理论分析裂缝形态对纤维/混凝土渗透性的影响

doi: 10.13801/j.cnki.fhclxb.20200212.004
基金项目: 国家自然科学基金(51578109)
详细信息
    通讯作者:

    丁一宁,博士,教授,研究方向为高性能混凝土 E-mail:ynding@hotmail.com

  • 中图分类号: TU528.572

Investigation on effect of crack geometry on permeability of fiber/concrete based on fractal theory

  • 摘要: 分形维数可以表征裂缝形态,能够用来分析混凝土裂缝断面的粗糙程度。裂缝形态对开裂混凝土的渗透性有重要影响,为研究这种影响,利用劈裂试验获得不同宽度的裂缝,使用不同的纤维种类,并设置多种纤维掺量,得到粗糙程度不同的裂缝断面,通过水渗透试验测量不同裂缝宽度时混凝土的渗透系数。采用激光扫描仪扫描裂缝断面并重构3D断面几何形态,采用立方体覆盖法计算断面分形维数。采用分形维数将实测裂缝宽度和有效裂缝宽度联系起来,联立达西定律和泊肃叶定律建立开裂混凝土渗透系数和分形维数的函数关系。结果表明:使用相同的网格划分法,分形维数随着纤维掺量的增加而增大;渗透系数随着纤维掺量的增加而减小;函数关系式中分形维数的指数绝对值和修正系数都随裂缝宽度增加而减小。

     

  • 图  1  渗透容器

    Figure  1.  Permeability vessel

    图  2  荷载作用下的渗透实验

    Figure  2.  Permeability test under loading

    图  3  断面扫描装置

    Figure  3.  Scanning device of rupture surface

    图  4  扫描路径

    Figure  4.  Scanning route

    图  5  立方体覆盖法[20]

    Figure  5.  Cube covering method[20]

    图  6  纤维/混凝土渗透系数-裂缝宽度曲线

    Figure  6.  Permeability coefficient-crack width curves of fiber/concrete

    图  7  纤维/混凝土劈裂试件示意图[12]

    Figure  7.  Schematic of fiber/concrete splitting specimen[12]

    LVDT—Linear variable differential transformer

    图  8  有效裂缝宽度示意图[12]

    Figure  8.  Schematic of effective crack width[12]

    图  9  纤维/混凝土渗透系数与分形维数的关系(裂缝宽度$ w$=150 μm)

    Figure  9.  Relationship between permeability coefficient and fractal dimension of fiber/concrete (Crack width $ w$=150 μm)

    图  10  纤维/混凝土影响因子与实测裂缝宽度的关系

    Figure  10.  Relationship between influence factor andmeasured crack width of fiber/concrete

    图  11  修正系数φ与实测裂缝宽度的关系

    Figure  11.  Relationship between correction factor φ and measured crack width

    表  1  钢纤维(SF)性能参数

    Table  1.   Performance parameters of steel fiber (SF)

    TypeFormLength/mmDiameter/mmAspect ratioElastic modulus/GPaTensile strength/MPaPieces/kg
    RC-65/35Hooked350.55652001 34514 500
    下载: 导出CSV

    表  2  聚丙烯长纤维(PP)性能参数

    Table  2.   Performance parameters of macro polypropylene fiber (PP)

    TypeTensile strength/MPaElastic modulus/GPaElongation/%Length/mmDiameter/mmPieces/kg
    WK-84905<30300.496 000
    下载: 导出CSV

    表  3  混凝土配比

    Table  3.   Mix proportion of concrete kg·m–3

    CementFly ashCoarse aggregate (5–10 mm)Fine aggregate (0–5 mm)WaterSuperplasticizer
    390155848822272.57.6
    下载: 导出CSV

    表  4  纤维/混凝土试件编号、纤维掺量和根数

    Table  4.   Specimen number, fiber contents and pieces of fiber/concrete

    Specimen numberSF content/vol%SF/(pieces·m–3)PP fiber content/vol%PP fiber/(pieces·m–3)
    PP0.5/concrete 0 0 0.50 432 000
    PP0.75/concrete 0 0 0.75 648 000
    SF0.5/concrete 0.50 569 125 0 0
    SF0.75/concrete 0.75 853 688 0 0
    SF1/concrete 1.00 1 138 250 0 0
    SF0.5-PP0.5/concrete 0.50 569 125 0.50 432 000
    SF0.5-PP0.75/concrete 0.50 569 125 0.75 648 000
    SF0.75-PP0.5/concrete 0.75 853 688 0.50 432 000
    下载: 导出CSV

    表  5  不同裂缝宽度下纤维/混凝土的渗透系数k

    Table  5.   Permeability coefficients k of fiber/concrete under different crack width μm·s–1

    Specimen100 μm125 μm150 μm175 μm200 μm225 μm250 μm
    PP0.5/concrete 8.50 13.00 19.90 28.40 39.90 49.30 59.80
    PP0.75/concrete 5.50 7.65 10.80 15.40 21.90 30.00 41.80
    SF0.5/concrete 0.27 0.70 1.84 2.68 3.88 5.91 8.96
    SF0.75/concrete 0.07 0.26 0.97 1.73 3.18 4.94 7.54
    SF1/concrete 0.01 0.05 0.23 0.70 1.59 3.17 6.19
    SF0.5-PP0.5/concrete 0.19 0.47 1.20 1.92 3.03 4.94 7.75
    SF0.5-PP0.75/concrete 0.04 0.12 0.35 0.61 1.38 2.50 4.57
    SF0.75-PP0.5/concrete 0.01 0.04 0.10 0.38 0.42 1.78 2.39
    下载: 导出CSV

    表  6  纤维/混凝土裂缝断面分形维数

    Table  6.   Fractal dimensions of rupture surface of fiber/concrete

    SpecimenFractal
    dimension D
    Change in
    decimal of D/%
    PP0.5/concrete2.1140
    PP0.75/concrete2.12913.16
    SF0.5/concrete2.15737.72
    SF0.75/concrete2.18965.79
    SF1/concrete2.22597.37
    SF0.5-PP0.5/concrete2.17553.51
    SF0.5-PP0.75/ concrete2.19974.56
    SF0.75-PP0.5/ concrete2.21588.60
    下载: 导出CSV

    表  7  不同裂缝宽度条件下纤维/混凝土渗透系数与分形维数的关系

    Table  7.   Relationship between permeability coefficient and fractal dimension of fiber/concrete under different crack width

    Crack width/μmR2Relationship
    1000.95$k = 1.05 {\rm{1}}{0^{37}} {D^{ - 123}}$
    1250.98$k = 6.99 {\rm{1}}{0^{2{\rm{9}}}} {D^{ - 101}}$
    1500.99$k = {\rm{1}}.25 {\rm{1}}{0^{{\rm{29}}}} {D^{ - 98}}$
    1750.99$k = {\rm{4}}.24 {\rm{1}}{0^{{\rm{28}}}} {D^{ - 96}}$
    2000.99$k = {\rm{5}}.97 {\rm{1}}{0^{{\rm{27}}}} {D^{ - 93}}$
    2250.98$k = {\rm{3}}.04 {\rm{1}}{0^{{\rm{23}}}} {D^{ - 79}}$
    2500.97$k = {\rm{2}}.36 {\rm{1}}{0^{{\rm{20}}}} {D^{ - 69}}$
    下载: 导出CSV

    表  8  不同实测裂缝宽度的lgφ

    Table  8.   lgφ for different measured crack width

    Measured crack width $ w$/μmlgφ
    10045.12
    12537.56
    15036.49
    17535.75
    20034.67
    22530.17
    25026.88
    下载: 导出CSV
  • [1] HOSEIINI M, BINDIGANAVILE V, BANTHIA N. The effect of mechanical stress on permeability of concrete: A review[J]. Cement and Concrete Composites,2009,31(4):213-220. doi: 10.1016/j.cemconcomp.2009.02.003
    [2] LIU Q F, FENG G L, XIA J, et al. Ionic transport features in concrete composites containing various shaped aggregates: A numerical study[J]. Composite Structures,2018,183:371-380. doi: 10.1016/j.compstruct.2017.03.088
    [3] SHIN K J, BAE W, CHOI S W, et al. Parameters influencing water permeability coefficient of cracked concrete specimens[J]. Construction and Building Materials,2017,151:907-915. doi: 10.1016/j.conbuildmat.2017.06.093
    [4] LI X, LI D, XU Y. Modeling the effects of microcracks on water permeability of concrete using 3D discrete crack network[J]. Composite Structures,2019,210:262-273. doi: 10.1016/j.compstruct.2018.11.034
    [5] DESMETTRE C, CHARRON J P. Water permeability of reinforced concrete with and without fiber subjected to staticand constant tensile loading[J]. Cement and Concrete Research,2012,42(7):945-952. doi: 10.1016/j.cemconres.2012.03.014
    [6] BANTHIA N, BHARGAVA A. Permeability of stressed concrete and role of fiber reinforcement[J]. ACI Materials Journal,2007,104(1):70-76.
    [7] CHOINSKA M, KHELIDJ A, CHATZIGEORGIOU G, et al. Effects and interactions of temperature and stress-level related damage on permeability of concrete[J]. Cement and Concrete Research,2007,37(1):79-88. doi: 10.1016/j.cemconres.2006.09.015
    [8] WANG K, JANSEN D C, SHAH S P, et al. Permeability study of cracked concrete[J]. Cement and Concrete Research,1997,27(3):381-393. doi: 10.1016/S0008-8846(97)00031-8
    [9] YI S T, HYUN T Y, KIM J K. The effects of hydraulic pressure and crack width on water permeability of penetration crack-induced concrete[J]. Construction and Building Materials,2011,25(5):2576-2583. doi: 10.1016/j.conbuildmat.2010.11.107
    [10] DING Y, LI D, ZHANG Y. Quantitative analysis of macro steel fiber influence on crack geometry and water permeability of concrete[J]. Construction and Building Materials,2018,187:325-335.
    [11] PICANDET V, KHELIDJ A, BELLEGOU H. Crack effects on gas and water permeability of concretes[J]. Cement and Concrete Research,2009,39(6):537-547. doi: 10.1016/j.cemconres.2009.03.009
    [12] AKHAVAN A, SHAFAATIAN S M H, RAJABIPOUR F. Quantifying the effects of crack width, tortuosity, and roughness on water permeability of cracked mortars[J]. Cement and Concrete Research,2012,42(2):313-320. doi: 10.1016/j.cemconres.2011.10.002
    [13] 丁一宁, 李林泽, 曾伟. 纤维对混凝土的损伤、裂缝曲折度及裂缝恢复的影响[J]. 复合材料学报, 2019, 36(10):2439-2447.

    DING Yining, LI Linze, ZENG Wei. Fibers effects on the concrete damage, crack tortuosity and crack recovery[J]. Acta Materiae Compositae Sinica,2019,36(10):2439-2447(in Chinese).
    [14] RESTUCCIA L, REGGIO A, FERRO G A, et al. Fractal analysis of crack paths into innovative carbon-based cementitious composites[J]. Theoretical and Applied Fracture Mechanics,2017,90:133-141. doi: 10.1016/j.tafmec.2017.03.016
    [15] 殷新龙, 孙洪泉, 薛祯钰, 等. 橡胶混凝土梁裂缝分形理论分析[J]. 土木建筑与环境工程, 2013, 35(s2):157-159.

    YIN Xinlong, SUN Hongquan, XUE Zhenyu, et al. Study of cracks on rubber concrete beams based on fractal theory[J]. Journal of Civil, Architectural & Environmental Engineering,2013,35(s2):157-159(in Chinese).
    [16] 蒋赏, 徐港, 赵恬悦. 冻融损伤混凝土梁抗力性能演化的裂缝分形特征[J]. 水电能源科学, 2018, 36(1):124-127.

    JIANG Shang, XU Gang, ZHAO Tianyue. Fractal characteristics of fracture resistance evolution of concrete beam subjected to freeze-thaw damage[J]. Water Resources and Power,2018,36(1):124-127(in Chinese).
    [17] ISSA M A, ISSAM A, ISLAM M S, et al. Fractal dimension: A measure of fracture roughness and toughness of concrete[J]. Engineering Fracture Mechanics,2003,70(1):125-137. doi: 10.1016/S0013-7944(02)00019-X
    [18] 李冬, 丁一宁. 结构型纤维对开裂混凝土渗透性能的影响[J]. 土木工程学报, 2017, 50(10):62-68.

    LI Dong, DING Yining. Effects of macro fibers on the permeability of cracked concrete[J]. China Civil Engineering Journal,2017,50(10):62-68(in Chinese).
    [19] 中国工程建设标准化协会. 纤维混凝土试验方法标准: CECS 13∶2009[S]. 北京: 中国计划出版社, 2010.

    China Association for Engineering Construction Standardization. Standard test methods for fiber reinforced concrete: CECS 13∶2009[S]. Beijiing: China Planning Press, 2010(in Chinese).
    [20] ZHOU H W, XIE H. Direct estimation of the fractal dimensions of a fracture surface of rock[J]. Surface Review and Letter,2003,10(5):751-762. doi: 10.1142/S0218625X03005591
    [21] MANDELBROT B B. The fractal geometry of nature[M]. New York: WH Freeman and Co., 1983.
    [22] WHITE F M. Fluid mechanics[M]. 9th Edition. New York: McGraw-Hill, 2003.
    [23] RASTIELLO G, BOULAY C, PONT D S, et al. Real-time water permeability evolution of a localized crack in concrete under loading[J]. Cement and Concrete Research,2014,56:20-28. doi: 10.1016/j.cemconres.2013.09.010
  • 加载中
图(11) / 表(8)
计量
  • 文章访问数:  1753
  • HTML全文浏览量:  782
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-18
  • 录用日期:  2020-01-31
  • 网络出版日期:  2020-02-13
  • 刊出日期:  2020-11-15

目录

    /

    返回文章
    返回