Research progress on moisturizing and anti-freezing conductive hydrogels in flexible electronics
-
摘要:
近年来,柔性电子材料得到了快速发展,导电水凝胶因其突出的导电性、柔韧性、亲肤性等已被广泛的应用于该领域。然而,类似于传统的水凝胶,大多数导电水凝胶仍面临在极端环境下应用受限的瓶颈问题。因此,许多学者对水凝胶的保湿/抗冻行为进行了研究,并设计制备了一系列保湿抗冻型导电水凝胶。本文对近年来保湿抗冻导电水凝胶的制备策略进行了总结及归类,详细阐述了提升水凝胶温度适应性的潜在机制;重点对耐温型水凝胶在柔性电子领域的应用进行了综述,包括运动感知、健康监测、智能识别与人机交互等;并且对现阶段保湿抗冻型导电水凝胶面临的机遇和挑战进行了探讨和展望,旨在为新型耐温型导电水凝胶的构筑提供新的思路,可望开发出综合性能优异的导电水凝胶,进一步推动其在柔性电子领域中的实际应用。
Abstract:Conductive hydrogel is one novel flexible material with outstanding conductivity, flexibility and skin-friendliness, which has made great progress in flexible electronics recently. However, similar to traditional hydrogels, the applications of conductive hydrogels in extreme environments still face limitations. To extend the operational temperature range of hydrogels, some researchers have paid attention to the dehydration/freezing behavior of hydrogels, resulting in the successful design and fabrication of a series of hydrogels with moisturizing and anti-freezing properties. In this review, the strategies for improving the temperature tolerance of hydrogels are summarized, and the potential mechanisms of moisturizing and anti-freezing hydrogels are described in detail. Furthermore, the applications of environmentally stable hydrogels in the field of flexible electronics are discussed, including motion perception, health monitoring, intelligent recognition and human-computer interaction. Additionally, the opportunities and challenges faced by the moisturizing and anti-freezing hydrogels are deliberated, with the objective of stimulating innovative approaches towards weather-resistant hydrogel development. By advancing the development of modern hydrogels with excellent comprehensive performance, the aim is to facilitate their broader practical application in extreme environments.
-
Keywords:
- conductive hydrogel /
- extreme environment /
- moisturizing /
- anti-freezing /
- flexible sensor
-
工程用水泥基复合材料(Engineered cementitious composites,ECC)是一种通过微观力学和断裂力学原理对材料体系进行系统设计和优化的短纤维乱向水泥基复合材料[1-2],国内外学者围绕ECC的受拉、受弯等基本力学性能开展了大量相关研究工作,并取得了众多优异成果[3-8]。然而ECC的抗拉强度仍然有限,用于结构加固时对构件的抗拉、抗弯承载力和抗裂性能的增强效果有限,仍需与性能优异的增强材料共同使用,为此,众多学者相继开展筋材、网材等用于增强ECC受力性能的研究。
Fischer等[9]、Mihashi等[10]进行了钢筋增强ECC单轴拉伸试验,结果表明,钢筋增强ECC试件裂缝分布更加均匀,减小了裂缝宽度,提高了变形能力。郑宇宙等[11]、朱忠锋等[12]对纤维增强ECC复合材料进行了单轴拉伸试验,结果表明,增强材料可以明显改善ECC的受拉性能,其轴向刚度、极限承载力也得到了显著提高。但是已研究的增强材料中,采用普通钢筋时,ECC的优越性能不能完全发挥,使用纤维编织网增强材料又降低了经济性。而高强不锈钢绞线抗拉强度高,具有良好的耐腐蚀性能和经济性。相关学者对高强不锈钢绞线加固混凝土结构的研究表明,其能有效提高加固构件的抗弯、抗剪承载力和刚度[13-17]。目前该加固技术已成功应用于实际工程,并取得了优异的效果[18-19]。
综上分析,高强不锈钢绞线网是由不锈钢绞线编制而成,本身具有很强的耐腐蚀、抗锈蚀能力;ECC具有良好的裂缝分散能力,正常使用状态裂缝宽度很小[1-10],二者结合后,可以使ECC开裂后钢绞线不发生锈蚀,耐久性好。因此,朱俊涛等[20]提出了新型高性能复合材料“高强不锈钢绞线网增强ECC”。已对高强不锈钢绞线网与ECC的粘结锚固性能[21-22]进行了试验和理论研究,结果表明,在试验所得的粘结滑移曲线中,平均粘结应力达到峰值开始微下降至峰值的85%左右之后,即进入延性强化段,该阶段平均粘结应力不再降低,仅滑移量呈水平线增长,说明高强不锈钢绞线网与ECC具有良好的粘结锚固性能。为了尽快使该复合材料在实际工程中得到应用,本文对高强不锈钢绞线网增强ECC的受拉性能进行试验和理论研究。
1. 试验概况
1.1 试件设计及材性试验
为了研究ECC抗拉强度、高强不锈钢绞线网受拉方向配筋率及高强不锈钢绞线网增强ECC试件宽度三个影响因素对高强不锈钢绞线增强ECC抗拉性能的影响,共设计了9组试件,每组3个共27个试件,各组试件参数见表1。为了避免试件在加载过程中在变截面处应力集中破坏,本试验受拉试件均采用哑铃型试件,试件变截面处为弧形,试件示意图如图1所示。试验中ECC的两种配合比见刘伟康[5]研究成果,试件标准养护28天。对预留的ECC受拉薄板试件(280 mm×40 mm×15 mm)进行拉伸试验,得到两种ECC配合比的抗拉性能,各组试件的ECC抗拉性能见表2。高强不锈钢绞线直径均为2.4 mm,对其进行拉伸试验(3根),得到高强不锈钢绞线应力-应变曲线如图2所示。
表 1 高强不锈钢绞线网增强工程水泥基复合材料(ECC)试件参数Table 1. Parameters of engineered cementitious composites(ECC) reinforced by high-strength stainless steel wire mesh specimensGroup number Test section width bc /mm Steel strand spacing/mm Reinforcement ratio of steel strand TC12 80 50 0.0028 TC22 70 40 0.0032 TC32 60 30 0.0037 TC42 50 20 0.0048 TC52 90 30 0.0037 TD12 80 50 0.0028 TD22 70 40 0.0032 TD32 60 30 0.0037 TD42 50 20 0.0048 表 2 ECC受拉试验结果Table 2. Tensile test results of ECCGroup number Tensile strength/MPa Ultimate tensile strain Cracking stress/MPa Cracking strain TC12 3.53 0.0179 2.45 0.000204 TC22 3.53 0.0179 2.45 0.000204 TC32 3.53 0.0179 2.45 0.000204 TC42 3.53 0.0179 2.45 0.000204 TC52 3.53 0.0179 2.45 0.000204 TD12 3.46 0.0297 2.39 0.000189 TD22 3.46 0.0297 2.39 0.000189 TD32 3.46 0.0297 2.39 0.000189 TD42 3.46 0.0297 2.39 0.000189 1.2 加载及测试方法
单轴拉伸试验采用100 kN电液伺服万能试验机。试验加载采用位移控制,加载速率为0.2 mm/min。试件正反面分别粘贴应变片,测试区段两侧面分别布置量程为30 mm的位移计。
1.3 试验现象及机制分析
高强不锈钢绞线网增强ECC试件受拉试验的加载装置如图3(a)所示。当荷载达到极限荷载的25%~30%时,在试件接近中间位置表面出现一条细微裂缝(如图3(b)所示),宽度仅为0.02 mm。随着荷载的增加,试件表面不断出现新的裂缝,已有的裂缝宽度缓慢增大;当荷载增加到极限荷载的85%~90%,裂缝数量达到饱和状态(如图3(c)所示),试件表面布满相互平行的细微裂缝,此时各试件的最大裂缝宽度为0.2~0.28 mm,该状态的荷载远远超过了规范GB 50010—2010[23]规定的正常使用极限状态。继续加载,试件表面不再出现新裂缝,已有裂缝变宽。达到极限荷载时,试件表面的某条裂缝发展成主裂缝,同时伴随着明显的纤维拔出和断裂声,随后主裂缝处的纵向高强不锈钢绞线拉断。试件破坏形态如图3(d)所示。
分析上述试验现象发现,高强不锈钢绞线的加入增加了ECC裂缝分散能力,其机制主要是钢绞线表面的螺旋进一步限制了ECC裂缝的开展,使受拉试件在达到极限承载力的85%~90%时,最大裂缝宽度依然满足规范GB 50010—2010[23]中正常使用极限状态裂缝要求。充分表明了本文研究的新型复合材料高强不锈钢绞线网增强ECC具有良好的抗裂性能;验证了高强不锈钢筋网和ECC具有很好的粘结性能。
2. 试验结果及分析
2.1 试验结果
各组高强不锈钢绞线网增强ECC试件拉伸试验结果见表3 (试验值均取同一组试件的平均值,应力为试验拉力除以受力面积)。
表 3 高强不锈钢绞线网增强ECC试件拉伸试验结果Table 3. Tensile test results of ECC reinforced by high-strength stainless steel wire mesh specimensGroup number Cracking stress/MPa Cracking strain Ultimate tensile stress/MPa Ultimate tensile strain Elastic modulus/MPa TC12 2.20 0.000156 7.09 0.030874 14 471 TC22 2.25 0.000162 7.94 0.034056 14 122 TC32 2.41 0.000171 8.77 0.030581 14 492 TC42 2.56 0.000182 10.65 0.034815 14 578 TC52 2.54 0.000181 8.82 0.033683 14 642 TD12 1.97 0.000145 6.41 0.031929 14 216 TD22 1.99 0.000149 7.81 0.043660 14 727 TD32 2.07 0.000139 8.62 0.041116 14 460 TD42 2.19 0.000159 10.30 0.035051 14 496 2.1.1 试件宽度对高强不锈钢绞线网增强ECC受拉性能的影响
对比表3中TC32组和TC52组试件,结果表明,增大截面宽度对受拉试件的开裂应力和极限应力几乎没有影响。
2.1.2 高强不锈钢绞线配筋率对高强不锈钢绞线网增强ECC受拉性能的影响
对比表3中TC12~TC42及TD12~TD42试件的试验结果可知,随着高强不锈钢绞线配筋率的增大,受拉试件的开裂应力略有增大,极限应力明显增大。
2.1.3 ECC抗拉强度对高强不锈钢绞线网增强ECC受拉性能的影响
对比表3中TC12组与TD12组、TC22组与TD22组、TC32组与TD32组及TC42组与TD42组试件结果可知,随着ECC抗拉强度的增大,受拉试件的开裂应力和极限应力均明显增大。
2.2 高强不锈钢绞线网增强ECC受拉应力-应变曲线
高强不锈钢绞线网增强ECC试件在单轴荷载作用下的受拉应力-应变曲线如图4所示。可知,高强不锈钢绞线网增强ECC试件受拉应力-应变曲线呈现出明显的两阶段特征,故可将其分为两个阶段:(1)可表征为弹性阶段,从试件开始加载到试件开裂为止,为峰值的25%~30%。在该阶段ECC和不锈钢绞线均处于弹性工作状态;应力-应变曲线接近为直线;(2)可表征为弹塑性阶段,对应于试件ECC开裂至完全破坏(纵向高强不锈钢绞线拉断)。该阶段应力-应变曲线为非线性关系,试件表现出明显的弹塑性性质。此阶段主要是ECC裂缝出现和发展,由于裂缝处的聚乙烯醇(PVA)纤维尚未从水泥基中拔出或拉断,而高强不锈钢绞线表面的螺旋增大了与ECC的粘结力。因此,该阶段ECC和高强不锈钢绞线依然共同承担拉力,亦是高强不锈钢绞线网增强ECC受拉的主要阶段。由图4还可以看出,极限应力是开裂应力的3~5倍,极限应变为开裂应变的200倍以上,达到3%~5%,超过了本文采用的ECC和高强不锈钢绞线本身的极限拉应变,显示了该新型高性能复合材料优越的变形能力。
3. 高强不锈钢绞线网增强ECC受拉本构模型
3.1 模型提出
由图4可知,高强不锈钢绞线网增强ECC受拉应力-应变曲线可分为弹性阶段(OA段)和应变硬化阶段(AB段)。弹性阶段即认为应力-应变为线性关系;弹塑性(应变硬化)阶段应力由ECC和钢绞线共同承担,其本构模型由二者应力-应变关系组合而成。同时考虑该阶段高强不锈钢绞线网和ECC可能产生相对滑移,用γ表示钢绞线的应力发挥系数。本文提出了高强不锈钢绞线网增强ECC受拉本构模型,如图5所示。其表达式如下:
σse={Eseεse(εse⩽εse,cr)γσsρs+σe(εse,cr⩽εse⩽εse,u) (1) 式中:σse、σse,cr和σse,u分别为高强不锈钢绞线网增强ECC试件的受拉应力、开裂应力和极限拉应力;σe和σs分别为ECC和高强不锈钢绞线的应力;Ese为高强不锈钢绞线网增强ECC的弹性模量;εse、εse,cr和εse,u分别为高强不锈钢绞线网增强ECC试件的受拉应变、开裂应变和极限拉应变;γ为高强不锈钢绞线的应力发挥系数;ρs为高强不锈钢绞线的配筋率。
3.2 模型参数分析
3.2.1 弹性阶段
高强不锈钢绞线网增强ECC受拉试件开裂前,由高强不锈钢绞线和ECC共同承担外部荷载;该阶段高强不锈钢绞线网与ECC间无滑移。根据应变协调原理得出弹性阶段高强不锈钢绞线网增强ECC受拉试件的弹性模量Ese如下式:
Ese=Ee+EsAsAse (2) 式中:Ee和Es分别为ECC和高强不锈钢绞线的弹性模量;Ase和As分别为高强不锈钢绞线网增强ECC和高强不锈钢绞线的截面面积。
3.2.2 弹塑性阶段
首先建立高强不锈钢绞线受拉本构模型。对本试验得到的高强不锈钢绞线应力-应变曲线(图2)采用三次多项式进行拟合,如下式:
σsσs,u=aεsεs,u+(3−2a)(εsεs,u)2+(a−2)(εsεs,u)3 (3a) 式中:σs,u为高强不锈钢绞线的极限拉应力;εs和εs,u分别为高强不锈钢绞线应变和极限拉应变。
根据式(3a),基于最小二乘法对试验数据进行回归分析,得到待定常数a的值。对三组数据进行拟合,其值分别为3.37、3.26和3.36。由拟合结果可知,各组值较接近,故可取其平均值a=3.33。将a代入式(3a),则有:
σsσs,u=3.33εsεs,u−3.66(εsεs,u)2+1.33(εsεs,u)3 (3b) ECC的受拉应力-应变关系采用刘伟康[5]的研究成果,如下式:
σe={σe,crεe,crεe(εe⩽εe,cr)(0.31εeεe,u+0.69)σe,u(εe,cr⩽εe⩽εe,u) (4) 式中:σe,cr和σe,u为ECC的开裂应力和极限拉应力;εe、εe,cr和εe,u为ECC的应变、开裂应变和极限拉应变。
3.2.3 高强不锈钢绞线应力发挥系数γ
将式(2)、式(3b)和式(4)代入式(1),则高强不锈钢绞线网增强ECC受拉本构关系可表示为
σse={(Ee+EsAsAse)εseγ[3.33εseεse,u−3.66(εseεse,u)2+1.33(εseεse,u)3]σs,uAsAse+(0.31εseεse,u+0.69)σe,u (5) 基于应变协调,高强不锈钢绞线网增强ECC的开裂应变与ECC相等,即εse,cr=εe,cr;同时高强不锈钢绞线网增强ECC受拉试件的破坏形态为纵向高强不锈钢绞线拉断破坏,其极限应变主要取决于高强不锈钢绞线的极限应变大小,即εse,u=εs,u。
分别将开裂状态和破坏状态的应变值代入式(5),利用MATLAB软件进行分析,得到式(5)中高强不锈钢绞线应力发挥系数γ的值,如表4所示。可知,各组值较接近,故取其平均值(0.725)作为式(5)中γ的值。
表 4 高强不锈钢绞线应力发挥系数γ取值Table 4. Value of stress development coefficient γ of high-strength stainless steel strandGroup number γ R2 TC12 0.73 0.9267 TC22 0.72 0.9459 TC32 0.76 0.9607 TD12 0.71 0.9157 TD22 0.72 0.9755 TD32 0.71 0.9325 3.2.4 开裂应力和抗拉强度公式
基于高强不锈钢绞线网增强ECC受拉试件的本构关系模型(式(5)),推导出高强不锈钢绞线网增强ECC受拉试件的开裂应力和极限拉应力即抗拉强度的计算公式:
{σse,cr=(Ee+EsAsAse)εse,crfse,u=0.725σs,uAsAse+σe,u (6) 式中,fse,u为高强不锈钢绞线网增强ECC受拉试件的极限应力,即抗拉强度。
3.3 模型验证
为验证本文提出的高强不锈钢绞线网增强ECC受拉本构模型,将试验得出的应力-应变曲线与式(5)计算的应力-应变曲线进行对比,如图6所示。将试验得出的开裂应力和极限拉应力(抗拉强度)与式(6)计算的结果进行对比,如表5所示。
表 5 试验与式(6)计算得到的高强不锈钢绞线网增强ECC试件开裂应力和极限应力的对比Table 5. Comparison of cracking stress and ultimate tensile stress of ECC reinforced by high-strength stainless steel wire mesh specimens obtained by test and equation (6)Group number Cracking stress/MPa Ultimate tensile stress/MPa T C R T C R TC12 2.20 2.26 0.97 7.09 6.79 1.04 TC22 2.25 2.27 0.99 7.94 7.25 1.10 TC32 2.41 2.28 1.06 8.77 7.87 1.11 TC42 2.56 2.30 1.11 10.65 9.19 1.16 TC52 2.54 2.28 1.11 8.82 7.87 1.12 TD12 1.97 1.94 1.01 6.41 6.58 0.97 TD22 1.99 1.95 1.02 7.81 7.03 1.11 TD32 2.07 1.96 1.06 8.62 7.63 1.13 TD42 2.19 1.98 1.11 10.30 8.90 1.16 Notes: T—Test value; C—Calculated value; R—T/C. 从图6可看出,本文提出的本构模型与试验应力-应变曲线整体趋势完全一致。其中,本文所提的受拉本构关系曲线的弹性阶段与试验值基本重合,符合良好;其弹塑性阶段与试验曲线弯曲度均吻合较好(TD42稍有差别),仅试验在ECC开裂后,荷载有微小波动,属于正常情况。因此,本文提出的高强不锈钢绞线网增强ECC受拉本构模型能较准确地预测受拉应力-应变关系全曲线。表5中的高强不锈钢绞线网增强ECC受拉试件的开裂应力试验值与计算值比值的平均值为1.05,标准差为0.05,变异系数为0.05;极限应力试验值与计算值比值的平均值为1.10,标准差为0.06,变异系数为0.05,说明本文提出的式(6)计算结果和试验值吻合良好。
综上所述,本文提出的高强不锈钢绞线网增强ECC受拉本构模型和开裂应力、抗拉强度计算公式可用于反映高强不锈钢绞线网增强ECC受拉状态的应力-应变关系和分析其受拉性能。
4. 结 论
对高强不锈钢绞线网增强工程水泥基复合材料(Engineered cementitious composites,EEC) 的受拉性能进行试验和理论研究,提出了其受拉本构关系模型。
(1)高强不锈钢绞线表面的螺旋进一步限制了ECC裂缝的开展,增加了ECC裂缝的分散能力,使受拉试件在达到极限承载力的85%时,最大裂缝宽度依然小于规范GB 50010—2010[23]中正常使用极限状态裂缝要求。充分显示了高强不锈钢绞线网增强ECC的良好抗裂性能。
(2)高强不锈钢绞线网增强ECC受拉应力-应变曲线分为弹性阶段和弹塑性阶段,弹塑性阶段是其主要受拉阶段,该阶段是ECC和钢绞线共同受拉至钢绞线拉断,极限应变可达到3%~5%,显示了该新型复合材料优越的变形能力。
(3)随着ECC抗拉强度提高和纵向钢绞线配筋率增大,高强不锈钢绞线网增强ECC的开裂应力和极限拉应力(抗拉强度)均增大。
(4)所建立的受拉本构模型及模型参数计算公式与试验结果吻合良好,能够较好地反映高强不锈钢绞线网增强ECC的受拉应力-应变关系,预测其受力状态;所提出的高强不锈钢绞线网增强ECC受拉开裂应力、抗拉强度的计算公式与试验结果吻合良好,可以用于分析该新型复合材料受拉性能。
-
图 2 (a)溶剂置换制备SPOH有机水凝胶的示意图[19];(b)胶束水凝胶的制备过程及其环境稳定性[20]
Figure 2. (a) Schematic diagram of the preparation of SPOH organohydrogel by solvent displacement[19]; (b) Preparation and environmental stability of the organogels[20]
F127DA—Pluronic F127 diacrylate; PAAm—Polyacrylamide; PEDOT∶PSS—Poly(3, 4-ethylenedioxythiophene)-poly(styrene sulfonate)
图 3 (a) P(AM-co-AA)/海藻糖/LiCl水凝胶的合成过程[25];(b)羧甲基纤维素(CMC)/聚丙烯酸(PAA)/Fe3+/LiCl水凝胶的设计策略[26]
Figure 3. (a) Preparation procedure of P(AM-co-AA)/trehalose/LiCl hydrogels[25]; (b) Designing strategy of carboxymethyl cellulose (CMC)/poly(acrylic acid) (PAA)/Fe3+/LiCl hydrogel[26]
AM—Acrylamide; AA—Acrylic acid; SLS—Sodium lignosulfonate; KPS—Potassium persulfate
图 4 (a)双网络离子水凝胶示意图[33];(b)离子液体(IL)/聚(3, 4-亚乙基二氧噻吩)-聚(苯乙烯磺酸) (PEDOT:PSS)-聚(2-丙烯酰胺基-2-甲基-1-丙磺酸) (PAMPS)的双网络-高导电柔性离子凝胶[34]
Figure 4. (a) Schematic illustration of the ionic hydrogels[33]; (b) Design of highly electrically conductive flexible ionic gel derived from ionic liquid (IL)/PEDOT:PSS-poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS)[34]
DMAPS—3-dimethyl(methacryloyloxyethyl)ammonium propane sulfonate; [EMIM][OAc]—1-ethyl-3-methyl imidazolium acetate; MBA—N, N'-methylene bisacrylamide; [EMIM][DCA]—1-ethyl-3-methyl imidazolium dicyanamide; P@P —[EMIm][DCA]-IL/PEDOT:PSS@[EMIm][DCA]-PAMPS
图 5 (a) PNVBA水凝胶的设计与合成机制[36];(b)聚丙烯酸2-羟基乙酯(PHEA)/两性离子脯氨酸(ZP)水凝胶的形成示意图[37]
Figure 5. (a) Design and synthesis mechanism of the PNVBA hydrogel[36]; (b) Schematic diagram illustrating the formation of poly(2-hydroxyethyl acrylate) (PHEA)/zwitterionic proline (ZP) hydrogels[37]
APS—Ammonium persulfate; TEMED—N, N, N', N'-tetramethylethylenediamine; VBIMBr—1-butyl-3-vinylimidazolium bromide; NIPAM—N-isopropylacrylamide; AAPBA—3-acrylamidophenylboronic acid; Irgacure2959—2-hydroxy-2-methyl-1-[4-(2-hydroxyethoxy)phenyl]-1-propanone
图 6 (a)基于丝素蛋白(SF)/聚乙烯醇(PVA)/甘油(Gly)/氯化锂(LiCl) (SPGL)水凝胶的应变传感器示意图和通过电路板实时监测人类颈椎运动[47];(b) 有机凝胶(PCOBE)-摩擦纳米发电机(TENG)的“三明治”结构示意图及其在单电极模式下的工作机制[48]
Figure 6. (a) Schematic diagram of the silk fibroin (SF)/polyvinyl alcohol (PVA)/glycerin (Gly)/lithium chloride (LiCl) (SPGL) hydrogel-based strain sensor and real-time monitoring of human head bowing movement through the circuit board[47]; (b) Schematic diagram of the "sandwich" structure of PCOBE-triboelectric nanogenerator (TENG) and its working mechanism in single-electrode mode[48]
R1—Divider resistor 1 (1 kΩ); R2—Divider resistor 2 (1 kΩ); R3—Pull-up resistor (10 kΩ); RX—Adjustable resistor; U1∶A—Comparing unit A; U1∶B—Comparing unit B; D1−Diode 1; D2−Diode 2; PMMA—Polymethyl methacrylate; Voc—Open-circuit voltage
图 7 (a) 传感器附在人手腕上用于监测脉搏[49];(b) 水凝胶电极收集的心电信号(ECG)相应放大信号[50]
Figure 7. (a) Sensor attached to the human wrist for monitoring the radial artery pulse[49]; (b) Electrocardiogram (ECG) signals and the corresponding magnified signals collected by organohydrogel electrodes[50]
P1—Ercussion wave; P2—Tidal wave; P3—Diastolic wave; Tr—Upstroke time (Tr=T2−T1); AM—Acrylamide; NAGA—N-acryloylglycinamide; rGO—Reduced graphene oxide; P wave—Ventricular depolarization; QRS wave complex—Changes in the depolarization process of the left and right ventricles; T wave—Ventricular repolarization
图 8 (a) 2×2柔性传感器阵列及其对压力、温度的感应[51];(b)“温度死区”与温度的实时检测[53]
Figure 8. (a) Illustration of a flexible 2×2 array device and its pressure detection and temperature detection[51]; (b) "Temperature dead zone" and real-time monitoring of environmental temperature[53]
ΔR/R0—Relative resistance changes; PGC—Polyvinyl alcohol/Glycerol/Conductive cellulose nanofibers composite hydrogel
图 9 (a) PBAPE电子皮肤智能手套手语与多种手势相结合的照片[54];(b)二维多功能人机界面(2D-MHMI)进行检测及其应用[55]
Figure 9. (a) Photos of sign languages combined with multiple gestures and the signal curves corresponding to the five fingers collected by PBAPE e-skin smart glove[54]; (b) Detection using a two-dimensional multifunctional human-machine interface (2D-MHMI) and its application[55]
E-skin—Electronic skin; MLSTM-FCN—Multivariate long short term memory network-Fully convolutional network; Ra—Protection resistor a; Rb—Protection resistor b; V1—Voltage 1; V2—Voltage 2
图 10 (a) 有机水凝胶(SPOH)光纤在激光传输中的应用[19];(b) PVA/纳米木质素(LNP)水凝胶在100元人民币表面紫外线敏感荧光区的透明度和紫外线屏蔽能力[58];(c) 有机水凝胶实现重复的信息记录和擦除[59]
Figure 10. (a) Application of SPOH organohydrogel fibers in laser transmission[19]; (b) UV-shielding capabilities of PVA/lignin nanoparticle (LNP) hydrogels on the UV-sensitive fluorescent area of the 100-yuan CNY surface[58]; (c) Photographs showing the organohydrogel can achieve repeated information recording and erasing[59]
DMSO—Dimethyl sulfoxide
表 1 各种水凝胶的保湿抗冻性能比较
Table 1 Comprehensive performance comparison of various moisturizing and antifreezing hydrogels
Conductive hydrogel Agent Moisturizing ability Anti-freezing ability/℃ Ref. (PAAm)-F127DA Glycerol 60% (60℃, 34 d) −40 [20] CDPAP 1, 3-propanediol ~80% (25℃, 20 d) −60 [40] PAA-CS-G/Gly Glycerol 80% (37℃, 15 d) −45 [41] PAM/carrageenan LiBr 87% (25℃, 4 d) −78.5 [42] P(AM-co-AA) LiCl 83.8% (50℃, 10 h) −20 [25] P(AA-co-DMAPS)/Al3+ Ionic liquid 97.2%(20℃, 60 d) −80 [33] P@P composite ionogel Ionic liquid 120℃ −58 [34] HPE-LiCl Ethylene glycol/LiCl 87% (25℃, 30 d)
79% (80℃, 100 h)−40 [38] PGN Glycerol/CaCl2 90% (28℃, 12 d) −20 [43] PHA/Agar/EG Ethylene glycol/NaCl 89% (25℃, 12 d) −40 [44] P(PEG-co-AA)/PANI Glycerol/PEG ~90% (20℃, 7 d)
~85% (40℃, 7 d)
~80% (80℃, 7 d)−28 [45] P(SBMA-co-AA) LiCl/zwitterionic polymer 100% (25℃, 7 d) −80 [46] Notes: PAAm (PAM)—Polyacrylamide; F127DA—Pluronic F127 diacrylate; CDPAP—Collagen/dialdehyde carboxymethyl cellulose/acrylic acid/1,3-propylene glycol hydrogel; HPE-LiCl—Hydroxyethyl cellulose/hydroxyethyl acrylate/lithium chloride/ethylene glycol hydrogel; PGN—Polyvinyl alcohol/Glycerol/AgNW hydrogel; CS—Chitosan; G—Graphene; Gly—Glycerol; PHA—Poly(N-hydroxymethyl acrylamide); EG—Ethylene glycol; PEG—Poly(ethylene glycol) methacrylate; PANI—Polyaniline; SBMA—Sulfobetaine methacrylate. -
[1] LI H, LYU T, SUN H, et al. Ultrastretchable and superior healable supercapacitors based on a double cross-linked hydrogel electrolyte[J]. Nature Communications, 2019, 10(1): 536. DOI: 10.1038/s41467-019-08320-z
[2] PANJA S, DIETRICH B, ADAMS D J. Controlling syneresis of hydrogels using organic salts[J]. Angewandte Chemie International Edition, 2022, 61(4): e202115021. DOI: 10.1002/anie.202115021
[3] XU J, JING R, REN X, et al. Fish-inspired anti-icing hydrogel sensors with low-temperature adhesion and toughness[J]. Journal of Materials Chemistry A, 2020, 8(18): 9373-9381. DOI: 10.1039/D0TA02370A
[4] 崔聪聪, 李汉红, 毛林韩, 等. 聚天冬氨酸/聚(丙烯酰胺-丙烯酸)/Fe3+离子水凝胶应变传感器的制备及在人体运动监测中的应用[J]. 高分子材料科学与工程, 2023, 39(3): 127-133. CUI Congcong, LI Hanhong, MAO Linhan, et al. Preparation of polyaspartic acid/poly(acrylamide-acrylic acid)/Fe3+ ionic hydrogel strain sensor and its application in human motion monitoring[J]. Polymer Materials Science & Engineering, 2023, 39(3): 127-133(in Chinese).
[5] HU Y, ZHUO H, ZHANG Y, et al. Graphene oxide encapsulating liquid metal to toughen hydrogel[J]. Advanced Functional Materials, 2021, 31(51): 2106761.
[6] ZHANG M, YU R, TAO X, et al. Mechanically robust and highly conductive ionogels for soft ionotronics[J]. Advanced Functional Materials, 2022, 33(10): 2208083.
[7] FAN X, KE T, GU H. Multifunctional, ultra-tough organohydrogel e-skin reinforced by hierarchical goatskin fibers skeleton for energy harvesting and self-powered monitoring[J]. Advanced Functional Materials, 2023, 33(42): 2304015. DOI: 10.1002/adfm.202304015
[8] 杨羽歆, 周祥富, 郑丹丹, 等. 原位法制备聚乙二醇/聚(丙烯酰胺-co-丙烯酸)荧光水凝胶[J]. 高分子材料科学与工程, 2022, 38(6): 153-160. YANG Yuxin, ZHOU Xiangfu, ZHENG Dandan, et al. In-situ preparation of polyethylene glycol/poly (acrylamide-co-acrylic acid) fluorescent hydrogel[J]. Polymer Materials Science & Engineering, 2022, 38(6): 153-160(in Chinese).
[9] ZHOU L, DAI C, FAN L, et al. Injectable self-healing natural biopolymer-based hydrogel adhesive with thermoresponsive reversible adhesion for minimally invasive surgery[J]. Advanced Functional Materials, 2021, 31(14): 2007457. DOI: 10.1002/adfm.202007457
[10] 高建朋, 明李, 唐佩福. 刺激响应型水凝胶在骨修复中的应用综述[J]. 解放军医学院学报, 2021, 42(8): 873-877. DOI: 10.3969/j.issn.2095-5227.2021.08.016 GAO Jianpeng, MING Li, TANG Peifu. Research advances in application of stimuli-responsive hydrogels in bone repairation[J]. Academic Journal of Chinese PLA Medical School, 2021, 42(8): 873-877(in Chinese). DOI: 10.3969/j.issn.2095-5227.2021.08.016
[11] 谢竺航, 李金宝, 修慧娟, 等. OS-PVA/P(DMC-AM)双网络水凝胶的制备及其吸附性能研究[J]. 中国造纸, 2021, 40(10): 37-43. XIE Zhuhang, LI Jinbao, XIU Huijuan, et al. Preparation and adsorption properties of OS-PVA/P(DMC-AM) double network hydrogel[J]. China Pulp & Paper, 2021, 40(10): 37-43(in Chinese).
[12] KANG M, ODERINDE O, HAN X, et al. Development of oxidized hydroxyethyl cellulose-based hydrogel enabling unique mechanical, transparent and photochromic properties for contact lenses[J]. International Journal of Biological Macromolecules, 2021, 183: 1162-1173. DOI: 10.1016/j.ijbiomac.2021.05.029
[13] XU S, ZHOU Z, LIU Z, et al. Concurrent stiffening and softening in hydrogels under dehydration[J]. Science Advances, 2023, 9(1): 3240. DOI: 10.1126/sciadv.ade3240
[14] RONG Q, LEI W, CHEN L, et al. Anti-freezing, conductive self-healing organohydrogels with stable strain-sensitivity at subzero temperatures[J]. Angewandte Chemie International Edition, 2017, 56(45): 14159-14163. DOI: 10.1002/anie.201708614
[15] ZHOU X, ZHAO F, GUO Y, et al. Architecting highly hydratable polymer networks to tune the water state for solar water purification[J]. Science Advances, 2019, 5(6): 5484. DOI: 10.1126/sciadv.aaw5484
[16] XU C, YANG K, ZHU G, et al. Anti-freezing multifunctional conductive hydrogels: From structure design to flexible electronic devices[J]. Materials Chemistry Frontiers, 2024, 8(2): 381-403. DOI: 10.1039/D3QM00902E
[17] JIAN Y, WANG S, ZHANG J, et al. Biomimetic anti-freezing polymeric hydrogels: Keeping soft-wet materials active in cold environments[J]. Materials Horizons, 2021, 8(2): 351-369. DOI: 10.1039/D0MH01029D
[18] XIE Y, GAO S, JIAN J J, et al. Skin-mimicking strategy to fabricate strong and highly conductive anti-freezing cellulose-based hydrogels as strain sensors[J]. International Journal of Biological Macromolecules, 2023, 227: 462-471. DOI: 10.1016/j.ijbiomac.2022.12.079
[19] ZHU L, XU J, SONG J, et al. Transparent, stretchable and anti-freezing hybrid double-network organohydrogels[J]. Science China Materials, 2022, 65(8): 2207-2216. DOI: 10.1007/s40843-021-1961-1
[20] SUN Y, LU S, DU Y, et al. Long-lasting moisture and anti-freezing tough organohydrogels based on multi-functional nano-micelles for flexible dual-response sensors[J]. Journal of Applied Polymer Science, 2022, 139(38): 52916. DOI: 10.1002/app.52916
[21] WU M, CHEN B, FAN X, et al. Liquid-metals-induced formation of MXene/polyacrylamide composite organohydrogels for wearable flexible electronics[J]. Nano Research, 2024, 17(3): 1913-1922.
[22] LI M, CHEN D, SUN X, et al. An environmentally tolerant, highly stable, cellulose nanofiber-reinforced, conductive hydrogel multifunctional sensor[J]. Carbohydrate Polymers, 2022, 284: 119199. DOI: 10.1016/j.carbpol.2022.119199
[23] 王海朋, 蔡文生, 邵学广. 抗冻剂抗冻机制的近红外光谱与分子模拟研究[J]. 化学学报, 2023, 81(9): 1167-1174. DOI: 10.6023/A23040185 WANG Haipeng, CAI Wensheng, SHAO Xueguang. Antifreeze mechanism of antifreeze agents by near infrared spectroscopy and molecular simulations[J]. Acta Chimica Sinica, 2023, 81(9): 1167-1174(in Chinese). DOI: 10.6023/A23040185
[24] WANG C, LIU Y, QU X, et al. Ultra-stretchable and fast self-healing ionic hydrogel in cryogenic environments for artificial nerve fiber[J]. Advanced Materials, 2022, 34(16): 2105416. DOI: 10.1002/adma.202105416
[25] CAI H, ZHANG D, ZHANG H, et al. Trehalose-enhanced ionic conductive hydrogels with extreme stretchability, self-adhesive and anti-freezing abilities for both flexible strain sensor and all-solid-state supercapacitor[J]. Chemical Engineering Journal, 2023, 472: 144849. DOI: 10.1016/j.cej.2023.144849
[26] SONG Y, NIU L, MA P, et al. Rapid preparation of antifreezing conductive hydrogels for flexible strain sensors and supercapacitors[J]. ACS Applied Materials & Interfaces, 2023, 15(7): 10006-10017.
[27] FENG E, ZHANG M, LI X, et al. Mechanically toughed and self-adhesive organohydrogel with anti-freezing and non-drying properties for human motion monitoring and information transmission[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 682: 132992. DOI: 10.1016/j.colsurfa.2023.132992
[28] ZHANG X, LIANG S, LI F, et al. Flexible strain-sensitive sensors assembled from mussel-inspired hydrogel with tunable mechanical properties and wide temperature tolerance in multiple application scenarios[J]. ACS Applied Materials & Interfaces, 2023, 15(43): 50400-50412.
[29] CHEN D, ZHAO X, WEI X, et al. Ultrastretchable, tough, antifreezing, and conductive cellulose hydrogel for wearable strain sensor[J]. ACS Applied Materials & Interfaces, 2020, 12(47): 53247-53256.
[30] FAN X, LIU S, JIA Z, et al. Ionogels: Recent advances in design, material properties and emerging biomedical applications[J]. Chemical Society Reviews, 2023, 52(7): 2497-2527. DOI: 10.1039/D2CS00652A
[31] LIU J, ZHANG X, CUI Y, et al. Ionic liquid/water binary solvent anti-freezing hydrogel for strain and temperature sensors[J]. ACS Applied Materials & Interfaces, 2024, 16(4): 5208-5216.
[32] ZHOU Y, FEI X, TIAN J, et al. A ionic liquid enhanced conductive hydrogel for strain sensing applications[J]. Journal of Colloid and Interface Science, 2022, 606: 192-203. DOI: 10.1016/j.jcis.2021.07.158
[33] ZHANG X, CUI C, CHEN S, et al. Adhesive ionohydrogels based on ionic liquid/water binary solvents with freezing tolerance for flexible ionotronic devices[J]. Chemistry of Materials, 2022, 34(3): 1065-1077. DOI: 10.1021/acs.chemmater.1c03386
[34] YANG J, CHANG L, MA C, et al. Highly electrically conductive flexible ionogels by drop-casting ionic liquid/PEDOT:PSS composite liquids onto hydrogel networks[J]. Macromolecular Rapid Communications, 2022, 43(1): e2100557. DOI: 10.1002/marc.202100557
[35] WANG Y, YAO A, DOU B, et al. Self-healing, environmentally stable and adhesive hydrogel sensor with conductive cellulose nanocrystals for motion monitoring and character recognition[J]. Carbohydrate Polymers, 2024, 332: 121932. DOI: 10.1016/j.carbpol.2024.121932
[36] WANG Q, LIANG X, SHEN L, et al. Double cross-linked hydrogel dressings based on triblock copolymers bearing antifreezing, antidrying, and inherent antibacterial properties[J]. Biomacromolecules, 2024, 25(1): 388-399. DOI: 10.1021/acs.biomac.3c01040
[37] PENG H, HAO L, ZHANG X, et al. Zwitterion-incorporated antifreeze hydrogel with highly stretchable, transparent, and self-adhesive properties for flexible strain sensors[J]. ACS Applied Polymer Materials, 2024, 6(3): 1911-1921. DOI: 10.1021/acsapm.3c02749
[38] WANG Y, LIU H, YU J, et al. Ionic conductive cellulose-based hydrogels with superior long-lasting moisture and antifreezing features for flexible strain sensor applications[J]. Biomacromolecules, 2024, 25(2): 838-852. DOI: 10.1021/acs.biomac.3c01011
[39] LIU R, LIU Y, FU S, et al. Humidity adaptive antifreeze hydrogel sensor for intelligent control and human-computer interaction[J]. Small, 2024, 20(24): 2308092.
[40] LING Q, FAN X, LING M, et al. Collagen-based organohydrogel strain sensor with self-healing and adhesive properties for detecting human motion[J]. ACS Applied Materials & Interfaces, 2023, 15(9): 12350-12362.
[41] ZHANG Y, LI Q, CHEN J, et al. Rapid gelation of dual physical network hydrogel with ultra-stretchable, antifreezing, moisturing for stable and sensitive response[J]. Journal of Applied Polymer Science, 2023, 140(10): 53566. DOI: 10.1002/app.53566
[42] WU Z, SHI W, DING H, et al. Ultrastable, stretchable, highly conductive and transparent hydrogels enabled by salt-percolation for high-performance temperature and strain sensing[J]. Journal of Materials Chemistry C, 2021, 9(39): 13668-13679. DOI: 10.1039/D1TC02506F
[43] LI Y, HU C, LAN J, et al. Hydrogel-based temperature sensor with water retention, frost resistance and remoldability[J]. Polymer, 2020, 186: 122027. DOI: 10.1016/j.polymer.2019.122027
[44] YANG J, KANG Q, ZHANG B, et al. Strong, tough, anti-freezing, non-drying and sensitive ionic sensor based on fully physical cross-linked double network hydrogel[J]. Materials Science & Engineering C, 2021, 130: 112452.
[45] YU X, ZHANG H, WANG Y, et al. Highly stretchable, ultra-soft, and fast self-healable conductive hydrogels based on polyaniline nanoparticles for sensitive flexible sensors[J]. Advanced Functional Materials, 2022, 32(33): 2204366. DOI: 10.1002/adfm.202204366
[46] SUI X, GUO H, CAI C, et al. Ionic conductive hydrogels with long-lasting antifreezing, water retention and self-regeneration abilities[J]. Chemical Engineering Journal, 2021, 419: 129478. DOI: 10.1016/j.cej.2021.129478
[47] TAO X, ZHU K, CHEN H, et al. Recyclable, anti-freezing and anti-drying silk fibroin-based hydrogels for ultrasensitive strain sensors and all-hydrogel-state super-capacitors[J]. Materials Today Chemistry, 2023, 32: 101624. DOI: 10.1016/j.mtchem.2023.101624
[48] SONG B, FAN X, SHEN J, et al. Ultra-stable and self-healing coordinated collagen-based multifunctional double-network organohydrogel E-skin for multimodal sensing monitoring of strain-resistance, bioelectrode, and self-powered triboelectric nanogenerator[J]. Chemical Engineering Journal, 2023, 474: 145780. DOI: 10.1016/j.cej.2023.145780
[49] SHI Y, GUAN Y, LIU M, et al. Tough, antifreezing, and piezoelectric organohydrogel as a flexible wearable sensor for human-machine interaction[J]. ACS Nano, 2024, 18(4): 3720-3732. DOI: 10.1021/acsnano.3c11578
[50] LI J, GE S, NIU Y, et al. Intrinsically adhesive, conductive organohydrogel with high stretchable, moisture retention, anti-freezing and healable properties for monitoring of human motions and electrocardiogram[J]. Sensors and Actuators B: Chemical, 2023, 377: 133098. DOI: 10.1016/j.snb.2022.133098
[51] LU Y, YUE Y, DING Q, et al. Environment-tolerant ionic hydrogel-elastomer hybrids with robust interfaces, high transparence, and biocompatibility for a mechanical-thermal multimode sensor[J]. InfoMat, 2023, 5(4): 12409. DOI: 10.1002/inf2.12409
[52] PANG J, WANG L, XU Y, et al. Skin-inspired cellulose conductive hydrogels with integrated self-healing, strain, and thermal sensitive performance[J]. Carbohydrate Polymers, 2020, 240: 116360. DOI: 10.1016/j.carbpol.2020.116360
[53] MIAO Z, SONG Y, DONG Y, et al. Intrinsic conductive cellulose nanofiber induce room-temperature reversible and robust polyvinyl alcohol hydrogel for multifunctional self-healable biosensors[J]. Nano Research, 2022, 16(2): 3156-3167.
[54] SONG B, DAI X, FAN X, et al. Wearable multifunctional organohydrogel-based electronic skin for sign language recognition under complex environments[J]. Journal of Materials Science & Technology, 2024, 181: 91-103.
[55] WU W, REN Y, JIANG T, et al. Anti-drying, transparent, ion-conducting, and tough organohydrogels for wearable multifunctional human-machine interfaces[J]. Chemical Engineering Journal, 2022, 430: 132635. DOI: 10.1016/j.cej.2021.132635
[56] 范克凡, 李鲲, 杨志坚, 等. 双网络MXene水凝胶的制备及其电磁和紫外屏蔽性能[J]. 复合材料学报, 2023, 40(7): 3939-3949. FAN Kefan, LI Kun, YANG Zhijian, et al. Preparation of dual-network MXene hydrogels and their electromagnetic and UV shielding properties[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3939-3949(in Chinese).
[57] 王钦雯, 王雯君, 陈玟锦, 等. 纳米银/纳米纤维素复合抗菌应变响应性水凝胶[J]. 复合材料学报, 2024, 41(10): 5549-5560. WANG Qinwen, WANG Wenjun, CHEN Wenjin, et al. Silver nanoparticle/nanocellulose composites antibacterial strain-responsive hydrogels[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5549-5560(in Chinese).
[58] WANG Y, LIU S, WANG Q, et al. Nanolignin filled conductive hydrogel with improved mechanical, anti-freezing, UV-shielding and transparent properties for strain sensing application[J]. International Journal of Biological Macromolecules, 2022, 205: 442-451. DOI: 10.1016/j.ijbiomac.2022.02.088
[59] ZHENG G, GAO W, LI X, et al. A kappa-carrageenan-containing organohydrogel with adjustable transmittance for an antifreezing, nondrying, and solvent-resistant strain sensor[J]. Biomacromolecules, 2022, 23(11): 4872-4882. DOI: 10.1021/acs.biomac.2c01044
-
期刊类型引用(16)
1. 王新玲,李世伟,金蕾蕾,范家俊. 高强不锈钢绞线网/ECC约束高强混凝土受压本构模型. 工程力学. 2023(09): 153-160 . 百度学术
2. 王新玲,罗鹏程,钱文文,李可. 高强不锈钢绞线网增强工程水泥基复合材料薄板受弯承载力研究. 建筑结构学报. 2022(01): 164-172 . 百度学术
3. 姚淇耀,陆宸宇,彭林欣,滕晓丹,罗月静. 氯盐侵蚀作用下BFRP筋增强海砂ECC的拉伸及弯曲性能试验. 复合材料学报. 2022(03): 1215-1227 . 本站查看
4. 朱俊涛,张凯,邹旭岩,李可,张普. 钢绞线与水泥基复合材料局部黏结滑移模型. 哈尔滨工程大学学报. 2022(04): 541-548 . 百度学术
5. 王新玲,李赟璞,李苗浩夫,范家俊. 高强不锈钢绞线网增强ECC加固RC短柱轴心受压试验. 复合材料学报. 2022(05): 2308-2317 . 本站查看
6. 朱俊涛,张凯,王新玲,李可. 高强钢绞线网增强ECC与混凝土界面黏结-滑移关系研究. 工程力学. 2022(09): 204-214 . 百度学术
7. 李可,王宇,李志强,朱俊涛. 高强钢绞线网增强ECC加固无损RC梁受弯承载力研究. 建筑结构学报. 2022(12): 82-90 . 百度学术
8. 李可,李思辰,周擎威,王新玲. 高强钢绞线与工程水泥基复合材料黏结性能试验. 沈阳工业大学学报. 2022(06): 706-713 . 百度学术
9. 惠迎新,王文炜,朱忠锋. FRP-ECC复合约束混凝土圆柱反复受压力学性能. 复合材料学报. 2022(11): 5586-5598 . 本站查看
10. 王新玲,陈永杰,钱文文,李可,朱俊涛. 高强不锈钢绞线网增强工程水泥基复合材料弯曲性能试验. 复合材料学报. 2021(04): 1292-1301 . 本站查看
11. 王春红,左祺,支中祥,徐磊,SARANI Zakaria,SHERAZ Hussain Siddique Yousfani. 聚乙烯醇乳液改性对汉麻秸秆纤维/水泥基复合材料性能的影响. 复合材料学报. 2021(05): 1567-1575 . 本站查看
12. 朱俊涛,赵奎,邹旭岩,王新玲,李可,张哲. 高强不锈钢绞线网在ECC中的搭接性能. 土木与环境工程学报(中英文). 2021(03): 174-182 . 百度学术
13. 朱俊涛,侯晶强,王新玲,李可. 基于损伤演化的钢绞线网/ECC黏结滑移关系. 华中科技大学学报(自然科学版). 2021(06): 103-108 . 百度学术
14. 范建伟,李可,王新玲. 高性能复合材料“高强钢绞线/ECC”板受弯试验分析. 建筑科学. 2021(09): 130-136 . 百度学术
15. 王新玲,卫垚鑫,范建伟,朱俊涛. 新型复合材料“高强钢绞线网/ECC约束素混凝土”受压性能试验研究. 复合材料学报. 2021(11): 3904-3911 . 本站查看
16. 王新玲,赵要康,周擎威,朱俊涛. 高强不锈钢绞线与ECC黏结滑移性能研究. 华中科技大学学报(自然科学版). 2020(12): 108-113 . 百度学术
其他类型引用(2)
-
其他相关附件
-
目的
柔性电子材料得到了快速的发展,其中导电水凝胶由于其突出的导电性、柔韧性、亲肤性等已被广泛的应用于该领域。然而,在炎热干燥/低温严寒的环境下,水凝胶中的水分会发生相变(包括蒸发、结晶),导致其亲肤性、柔软性和可拉伸性均显著降低;特别地,电导率的大幅下降会显著降低水凝胶柔性电子产品的工作效率,严重时会直接造成产品失效。因而,理解水凝胶在极端环境下的结构变化,并采取一定策略对不利转变进行遏制,从而维持水凝胶的原始形态,提升其在极端温度环境下的适应能力,对拓宽水凝胶基柔性电子器件的工作温度范围,赋予其稳定的综合性能具有重要意义。
方法考虑到水凝胶中的水,无论是吸热蒸发过程还是放热结冰过程,均属水的相变过程。在水凝胶聚合物网络中存在三种水:强结合水,弱结合水和自由水,相较于自由水,结合水的相变需要更多的能量。因此,改善水凝胶的失水/结晶行为主要是通过调控凝胶网络与水的相互作用,改变凝胶中自由水与弱结合水的状态,进而控制其相变行为而达成的。具体而言,增强凝胶体系与水的相互作用,提高水发生相变时所需的能量可以减弱其相变行为:(1)减少自由水的含量,通过二元共混溶剂来实现;(2)改变自由水的组成,即通过添加可溶性离子;(3)用离子液体部分替代凝胶体系中的水;(4)改性聚合物凝胶网络,增强聚合物网络与水分子之间的相互作用。
结果许多学者对水凝胶的保湿/抗冻行为进行了研究,并通过上述提到的四种方式设计制备了一系列保湿抗冻导电水凝胶,均可以在极端环境下保持原有性能,这表明多元醇、可溶性离子、离子液体等都会显著提升水凝胶的保湿抗冻能力,使其在极端高低温下都可以保持良好的导电性及力学性能等。此外,耐候水凝胶因其优异的综合性能在柔性电子领域,包括运动感知、健康监测、智能识别与人机交互等被广泛应用。但现阶段大多数水凝胶是通过“添加”关键成分的方式来改善优化其性能,这种方式简单便捷但缺乏原创性和前瞻性,因而研发本征型聚合物高分子水凝胶,赋予其优异的导电性与耐温性等,从而获得稳定的综合性能优异的保湿抗冻水凝胶则是未来的一大工作重点。
结论导电水凝胶的长期稳定性一直是研究领域内的热点,并且水凝胶的保湿、防冻是材料科学、物理化学、化学工程等界面的复杂研究领域的集合,其具有广义上的普适性。本文可以使研究人员迅速熟悉水凝胶的失水/结晶行为以及保湿防冻水凝胶的构筑策略;并给不同领域的研究人员带来新的灵感以进一步加强科学合作,促进水凝胶应用从实验室实验向现实生活应用的过渡,使材料构筑策略和应用场景构建更为丰富。
-
保湿抗冻水凝胶的设计策略及其应用