Loading [MathJax]/jax/output/SVG/jax.js

碳纤维增强水泥基复合材料界面优化设计研究进展

李子琪, 裴纯, 朱继华

李子琪, 裴纯, 朱继华. 碳纤维增强水泥基复合材料界面优化设计研究进展[J]. 复合材料学报, 2024, 41(10): 5125-5145. DOI: 10.13801/j.cnki.fhclxb.20240319.001
引用本文: 李子琪, 裴纯, 朱继华. 碳纤维增强水泥基复合材料界面优化设计研究进展[J]. 复合材料学报, 2024, 41(10): 5125-5145. DOI: 10.13801/j.cnki.fhclxb.20240319.001
LI Ziqi, PEI Chun, ZHU Jihua. Current status of interface modification of carbon fiber cement-based composite materials[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5125-5145. DOI: 10.13801/j.cnki.fhclxb.20240319.001
Citation: LI Ziqi, PEI Chun, ZHU Jihua. Current status of interface modification of carbon fiber cement-based composite materials[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5125-5145. DOI: 10.13801/j.cnki.fhclxb.20240319.001

碳纤维增强水泥基复合材料界面优化设计研究进展

基金项目: 国家自然科学基金(52108231);广东省重点领域研究开发项目(2019B111107002);深圳市科技创新项目(20220810140230001;20220810160453001)
详细信息
    通讯作者:

    朱继华,博士,教授,博士生导师,研究方向为碳纤维材料功能化应用等 E-mail: zhujh@szu.edu.cn

  • 中图分类号: TB332

Current status of interface modification of carbon fiber cement-based composite materials

Funds: National Natural Science Foundation of China (52108231); Key-Area Research and Development Program of Guangdong Province (2019B111107002); Shenzhen Science and Technology Innovation Program (20220810140230001; 20220810160453001)
  • 摘要: 碳纤维增强水泥基复合材料(Carbon fiber reinforced cement composite,CFRCC)以其高强度质量比、耐腐蚀性和耐久性而通常用于建筑、基础设施和土木工程等领域。对CFRCC而言,界面是联系基体与增强相的桥梁,界面性能、结构直接关系到复合材料粘结强度,从而直接影响到复合材料的各项宏观性能。然而,碳纤维的疏水性及其与水性悬浮液之间不充分的结合行为,限制了碳纤维在水泥和其他矿物建筑材料中的应用。为了解决这一问题,学者们研究了物理和化学改性方法,以加强从矿物基质到碳纤维的负载转移。本文介绍了碳纤维、CFRCC及CFRCC界面的性能及存在的问题。总结了近些年国内外学者对CFRCC及其界面改性方法,例如氧化、电泳沉积、等离子体和接枝处理等表面改性方法,并讨论了相关机制分析。还介绍了碳纤维本身的特性及其与水泥基质的结合行为的表征方法。

     

    Abstract: Carbon fiber reinforced cement composite (CFRCC) is widely used in the fields of construction, infrastructure, and civil engineering due to its high strength-to-weight ratio, corrosion resistance, and durability. In the context of CFRCC, the interface plays a crucial role as it acts as a bridge connecting the matrix and the reinforcing phase. The performance and structure of the interface directly impact the bond strength of the composite material, thereby influencing its overall macroscopic properties. However, the inherent hydrophobic nature of carbon fibers and their inadequate bonding with aqueous suspensions limit their application in cement and other mineral building materials. To address this issue, researchers have explored physical and chemical modification methods to enhance the transfer of load from the mineral matrix to the carbon fibers. This paper provides an overview of the properties of carbon fibers, CFRCC, and CFRCC interfaces, while also summarizing recent studies by domestic and foreign scholars on CFRCC and its interface modification methods, such as oxidation, electrophoretic deposition, plasma, and grafting treatments, along with discussions on relevant mechanistic analyses. Additionally, it presents characterization methods for studying the properties of carbon fibers themselves and their bonding behavior with cementitious matrices.

     

  • 随着时代的发展,大量的电磁波产生于商业、工业和军事应用中,无形的电磁波正在侵袭着人们的正常生活[1-3] ,并且逐渐导致一系列环境和社会安全问题。值得注意的是,电磁波吸收器能够有效地减弱或者消除入射电磁波的电磁能量,特别是不同频率的电磁辐射(尤其是在2~18 GHz范围内),能够将其转化为热能或其他形式的能量,这被认为是消除电磁波辐射的简单可行的解决方案[4-6]。近年来,微波吸收剂种类越来越多,但大多数吸收剂由于其复杂的合成工艺和昂贵的原材料阻碍了它们的实际应用,相比之下,从自然资源中转化而来的生物质碳(BDC)材料,由于其丰富的资源和便捷的合成,能够以对待环境友好的方式大量获取[7-8]。生物质衍生碳拥有分层级结构、多孔结构[9]和网状结构中存在的微观结构能够提供丰富的界面极化和偶极极化位点,有利于形成2D/3D导电网络,提高材料的电磁波吸收能力[10]

    生物质衍生碳作为典型的介电损耗型吸波材料,具有低密度、高导电性和良好的化学稳定性,但单一的损耗型机制无法满足各个频段电磁波的有效地吸收[11]。同时,单组分生物质衍生碳的磁损耗性能较差,阻抗匹配较低,进而限制了单组分生物质衍生碳材料的发展。因此,可以通过对碳材料表面进行改性,或者与磁性组分结合来改善复合材料的阻抗特性和吸波性能[12]。Dong等[13]以可持续生物质香蒲为模板,合理构建了分级钉状碳纤维/ZnO纳米棒复合材料,当填充率仅为15wt%时,分级钉状碳纤维@ZnO在2.29 mm的匹配厚度下,在14.12 GHz下表现出−62.35 dB的较高的反射损耗,分级钉状碳纤维的中空结构和互连导电网络的结构有助于传导损耗和多次反射;Yan等[14]以香蒲绒毛为模板,通过绿色、简单的合成工艺,构建出管状碳纤维/镍纳米粒子复合材料,其中原位生长的镍纳米粒子的均匀分布提供了磁耦合网络,并与碳纤维形成丰富的异质界面,以增强界面极化,促进了复合材料的有效吸收带宽;Dong等[15]通过水热和碳化方法制备了爆米花衍生的蜂窝状的多孔碳杂化物,通过调整碳化温度,材料厚度为1.57 mm,其反射损耗可达−52.97 dB,吸收带宽为4.8 GHz,其高效的吸收特性归因于NiS2/SnS2纳米粒子对碳组分的有效调控,因而复合材料的阻抗匹配特性大幅度的提升。由此可见生物质衍生碳在结合上磁性组分或者表面改性后,能够很大程度的改善复合碳材料的阻抗匹配特性,其独特的多孔结构也能够为纳米磁性颗粒提供大量的活性位点,增加了界面极化效应的可能性,从而微波吸收能力能够得到较大的提高。

    磁性材料固有的磁特性能够促进低频电磁波吸收并优化阻抗匹配[16] ,材料的组成和结构是影响吸波性能的重要因素。通常通过合适的组分配比和添加磁性掺杂物等手段,来实现介电常数和复磁导率的平衡,以达到最佳的吸波性能,因此具有磁损耗和介电损耗的轻质碳材料是比较有前途的制备吸波剂的方法[17]。本课题通过在碳基体上随机分布的磁性颗粒(Fe)制备了具有磁性碳复合吸收剂。

    基于此,研究采用一种简单的碳热还原的方法,以生物质香蒲为原料,利用其固有的吸附特性,经原位吸附和高温煅烧还原得到了Fe/C复合材料,受介电-磁损耗机制的协同增强,Fe/C复合材料具有优异的吸波性能,其最大反射损耗值在4.4 GHz处可达−35 dB,研究将为生物质衍生碳基吸波材料提供新的策略。

    香蒲,淘宝购买;FeCl3·6H2O(AR,99.0%)和尿素购自上海阿拉丁生化科技股份有限公司; 氩气(99.99%,河南源正特种气体有限公司),去离子水和工业乙醇。

    将0.5 g香蒲、100 mL 0.50 mol/L的尿素溶液和100 mL 1 mol/L的六水合三氯化铁混合在一起搅拌24 h后抽滤,再将香蒲转移至真空烘箱50℃烘干,制得浅黄色前驱体,经氩气气氛以升温速率5℃/min高温煅烧还原2 h制备出Fe/C复合材料,将经过700℃、800℃、900℃的材料分别命名为Fe/C-700、Fe/C-800和Fe/C-900(表1),制备流程如图1(a)所示,图1(d)为Fe/C-700、 Fe/C-800 和Fe/C-900吸波样品的制备流程图。本次制备采用了30%的填料量(石蜡质量为0.06 g、样品质量为0.025 g),后经石蜡充分搅拌和研磨使复合材料粉末均匀地分散到圆环中。

    表  1  Fe/C复合材料的命名
    Table  1.  Naming of Fe/C composites
    Sample Calcination temperature/℃
    Fe/C-700 700
    Fe/C-800 800
    Fe/C-900 900
    下载: 导出CSV 
    | 显示表格
    图  1  Fe/C复合材料的制备流程图 (a)、SEM图像 ((b)~(c))、吸波测试样品制备流程图 (d)、XRD图谱 (e)、热重图谱 (f)、拉曼图谱 (g)、 振动样品磁强计(VSM) (h)
    Figure  1.  Fe/C composite preparation flow chart (a), SEM images ((b)-(c)), flow chart for sample preparation for wave absorption testing (d), XRD (e), TG (f), Raman mapping (g), vibrating sample magnetometer (VSM) (h)
    ID/IG—Intensity ratio of the D band and G band

    实验采用日本HITACHI公司扫描电子显微镜(SEM,S-4800型),调整放大倍数可以观察到样品的形貌和结构;利用X射线衍射仪(XRD,U1tima IV,日本,Cu-Kα辐射,扫描速度10/min)对材料组分、晶体结构或粒径等信息进行分析;热重测试采用德国NETZSCH公司热重分析仪器(TG,209FI Iris)。通过热重分析材料的热稳定性,确定煅烧温度及分析物理化学反应;X射线光电子能谱分析仪(XPS)采用美国热电公司(ESCALAB 250Xi),用来测定材料中元素构成、试验式及其中所含元素化学态和电子态的定量能谱技术。磁性测试采用美国Lake Shore公司振动样品磁强针,对材料的磁特性进行分析的仪器;利用Agilent 8720B矢量网络分析仪( 集成信号源,动态范围为95 dB)在微波暗室内采用同轴法进行涂层吸 波性能测试, 测试频率范围为2~18 GHz,真空烘箱采用上海精宏实验设备有限公司(DZF-6020)。

    图1(b)为煅烧后没有经过负载的香蒲纤维。煅烧后的香蒲纤维呈现出竹节状,能够更大程度地增加比表面积,使负载效果更佳;图1(c)可以看出Fe纳米粒子成功负载到了碳层上,碳层较大的表面积为磁性颗粒增加了更多的活性位点[18],可以有效地避免磁性颗粒的团聚,同时能够有效地增加复合材料的导电性,有利于电子的快速传输[10];附着在碳层表面的颗粒平均尺度大约为0.25 μm,呈现出不规则形状的纳米颗粒是通过Fe3+还原沉淀而成;在外电场的作用下,大量的Fe单质和碳层之间产生了许多的异质界面,由于二者的导电性和介电特性的不同,额外电荷将聚集在它们之间的界面上,从而导致界面极化的发生[19],使复合材料的电磁波吸收能力进一步得到提升。

    图1(e)是不同煅烧温度下复合材料的XRD图谱。Fe/C复合材料在3个不同温度下煅烧,700℃、800℃、900℃煅烧的样品衍射峰分别位于2θ=44.8°、65.0°和82.3°,分别对应于体心立方Fe单质的PDF(JCPDS No.06-0696)的(110)、(200)和(211)平面[20],特征峰的出现表明存在不含任何杂质的Fe单质,证实在C的存在下Fe/C复合材料中三价铁离子被完全还原成金属铁,并且金属粒子可以增加复合材料的磁损耗机制。Fe/C-800特征峰较另外两个样品特征峰十分尖锐,说明Fe/C-800中Fe的结晶度较高;并且复合材料在2θ=26°出现随温度升高逐渐凸显的鼓包峰,对应于石墨碳的(002)平面[4]

    为了评估Fe/C复合材料的热稳定性能,利用热重分析仪将复合材料在空气氛围中进行高温热分解,从图1(f)中可以看出,复合材料在空气氛围下经历了一个明显的失重区。第一个质量下降过程裂解温度小于400℃时,是由于复合材料表面上少量的吸附水受热蒸发,Fe/C-700、Fe/C-800、Fe/C-900复合材料分别损失7.86wt%、4.6wt%、4.8wt%;Fe/C-700、Fe/C-800、Fe/C-900复合材料在500℃开始剧烈失重,复合材料失重率分别为50%、60%和80%,这是由于复合材料中的碳在高温空气下被迅速燃烧,直至800℃后趋于稳定;Fe/C-700、Fe/C-800、Fe/C-900复合材料的剩余质量分别为14.15wt%、51.5wt%和40.1wt%。结合式(1),估算得到Fe/C复合材料Fe元素含量分别为12.0wt%、43.0wt%、33.0wt%,其中W为剩余质量百分数,M为化合物相对分子质量。由此可知Fe/C-800复合材料中的Fe元素含量最高,在最终形成了氧化产物中残余质量最大。

    WR=(1WcarbonWwater)M(Fe2O3)2M(Fe) (1)

    为了进一步确定复合材料中Fe元素含量,对其进行电感耦合等离子体(ICP)测试,确定出Fe/C-700、Fe/C-800、Fe/C-900复合材料Fe元素含量分别为38.5874 、490.7882 、192.6471 mg/g,与热重分析所得结果一致。

    复合材料中碳组分的石墨化程度会对其介电损耗和电磁波吸收性能产生重要的影响,较高石墨化程度可以增强碳组分的电导损耗[21],用拉曼对Fe/C复合材料的石墨化程度进行分析,从图1(g)拉曼图谱可以看出,在1350 cm−1(D带)和1590 cm−1(G带)出现两个明显的峰,D带与C原子晶格缺陷有关,而G带与C原子sp2杂化的面内伸缩振动有关[13],其比值ID/IG值常用来表征碳材料的石墨化程度,所得Fe/C复合材料中的碳材料应为部分石墨化的碳材料,Fe/C-700、Fe/C-800和Fe/C-900的ID/IG的比值分别为0.92、0.87和0.91,从比值上看复合材料Fe/C-800的石墨化强度大于Fe/C-900,是由于在煅烧过程中,材料中的有机物会发生热解和氧化反应,从而导致材料中的碳元素逐渐向石墨化方向发展。但是,在高温下,氧化反应也会被加速,从而使材料中的碳元素被氧化成为气态化合物而流失。同时,煅烧过程中还会形成多种杂质和晶格缺陷,这些杂质和缺陷会影响材料的导电性能和吸波性能,从而影响材料的石墨化程度,Fe/C-800材料ID/IG比值较小,证明其复合材料的石墨化程度最强,复合材料的介电性能越好,这主要得益于高温煅烧的铁/碳复合材料中无定形碳向石墨转化。

    通过振动样品磁强计可以测定Fe/C复合材料的饱和磁化强度(Ms)和矫顽力(Hc)。从图1(h)所示,不同温度下的复合材料有相似的曲线趋势图,三者均表现出了铁磁性质,700℃、800℃、900℃的Fe/C复合材料的饱和磁化强度(Ms)分别为52.09 emu/g、96.66 emu/g、51.52 emu/g,可以看出Fe/C-800饱和磁化强度(Ms)最大,根据TG测试结果分析可知Fe/C-800复合材料中Fe组分含量最高,以往文献分析可知,磁性组分的含量大小影响着复合材料的饱和磁化强度大小[22],铁/碳复合材料的区域扩大磁滞曲线如图1(e)内插图所示,通过分析发现,在Fe/C-700、Fe/C-800和Fe/C-900的Hc依次为2077.56、1106.44和1599.96 kA/m,一般来说,复合材料的矫顽力通常受磁各向异性、形状各向异性和颗粒尺寸等因素影响, 复合材料中Fe纳米颗粒均为相同的面心立方结构,微观形貌均为片状,因此矫顽力受颗粒尺寸影响较大,对于Fe/C-700、Fe/C-800,Ms增加,Hc降低,是铁纳米粒子的生长过程中通过表层的自旋斜切效应导致的[23],Fe/C-700和Fe/C-900 的复合材料的饱和磁化强度非常接近,是由于复合材料中Fe纳米粒子中在煅烧中,经炉体环境的影响造成了Fe纳米粒子在微观环境的自旋造成,并且饱和磁化强度决定于组成材料的磁性原子数、原子磁矩和温度。但在低温区,它遵循布洛赫(Bloch)定律,使Fe/C-700复合材料的饱和磁化强度同Fe/C-900非常接近。

    图2展示了Fe/C-700、Fe/C-800和Fe/C-900复合材料的的氮气吸附/脱附等温线图(BET)。等温线显示具有典型H3磁滞回线的IV型等温线,表明复合材料具有介孔结构; Fe/C-700、Fe/C-800和Fe/C-900 BET比表面积(SBET)分别为478.6 m2·g−1、543.56 m2·g−1和589.04 m2·g−1,高比表面积进一步印证了材料的多孔结构,适宜的多孔结构为延长电磁波传输提供更多空间。同时,孔径分布图证实材料的介孔特性,Fe/C-800和Fe/C-900复合材料孔径主要分布于3~10 nm之间,进而调节复合材料等效电磁参数以优化材料阻抗匹配。

    图  2  Fe/C-700 (a)、Fe/C-800 (b)、Fe/C-900 (c) 的BET曲线
    Figure  2.  BET curves of Fe/C-700 (a), Fe/C-800 (b), Fe/C-900 (c)
    STP—Standard temperature and pressure

    利用XPS对Fe/C复合材料元素种类及其表面化学价态进行表征。Fe/C复合材料XPS全谱如图3(a)所示,在284.08、399.08、531.08、713.05 eV周围有5个不同的峰,分别归属于C1s、N1s、O1s、Fe2p;C1s高分辨率XPS图谱图3(b)显示复合材料存在C—C/C=C(283.88 eV)峰,C—N(285.18 eV)峰和C—O(287.18 eV)[24];如图3(c)所示,N1s光谱在398.28、399.78、400.48和402.68 eV处分为4个峰,属于吡啶N、吡咯N、石墨N和氧化N,石墨氮的形成有助于提高复合材料的电导率[25-27];Fe2p高分辨率XPS图谱如图3(d)所示,其中在位于709.48 和722.58 eV处的峰可归属于Fe2p3/2和Fe2p1/2,712.28 eV和724.78 eV处的峰分属于Fe2+,而717.38 eV和733.4 eV两个峰分别对应于卫星峰[26];Fe/C复合材料的O1s光谱如图3(e)所示,在529.58、530.48、531.38和531.98 eV周围有4个不同的峰,分别归属于Fe3O4、C=O、C—O和FeCO3[28]

    图  3  Fe/C复合材料的XPS全谱 (a)、Cls (b)、N1s (c)、Fe2p (d)、O1s (e)
    Figure  3.  Fe/C composite XPS full spectum (a), Cls (b), N1s (c), Fe2p (d), O1s (e)

    Fe/C复合材料的微波吸收特性通过矢量网络分析仪(VNA)在2~18 GHz的频率范围内测量,样品填料量为30wt%,电磁参数包括介电常数ε( ε = ε'jε'') 和磁导率μ(μ= μ'jμ''),其中介电常数实部(ε')和磁导率实部(μ′)代表电能和磁能的储存能力,相应的虚部( ε''μ'')代表电能和磁能的损耗能力。如图4(a)所示,Fe/C复合材料在介电常数实部(ε')和介电常数虚部(ε'')变化上均有频散效应发生,Fe/C-700、 Fe/C-800和 Fe/C-900分别从8.52、10.5、12.64降至5.91、7.96和7.6[29],介电常数实部(ε')的明显下降可能是由于碳基复合材料中频率相关的介电色散引起的;介电常数虚部随频率变化曲线如图4(b)所示,其变化趋势同实部相反,在2至18 GHz的频率范围3个样品介电常数虚部值都有所增加,Fe/C-700、 Fe/C-800和 Fe/C-900分别从1.89、2.74、5.15增至2.96、4.3和5.65,介电常数虚部的增加原因有两种:一种是归因于碳组分相对含量和相对石墨化程度的提升、另一种是由于随着煅烧温度的提高,单个的Fe原子被杂原子取代引起的电偶极子的增加,介电常数虚部的提升也增强了复合材料的介电损耗能力;复合材料的介电常数实部和虚部在6至18 GHz频率范围内出现多重共振现象, 这种波动峰可能是由材料内部多种损耗机制导致的。

    图  4  Fe/C复合材料的介电常数实部ε' (a)、介电常数虚部ε'' (b)、介电损耗正切值tanδϵ(c)、复磁导率实部μ' (d)、复磁导率虚部μ'' (e)、复磁损耗正切值tanδμ(f)、Cole-Cole环 (g)、涡流损耗对磁损耗的贡献(C0) (h)、衰减因子谱 (i)
    Figure  4.  Fe/C composite real part of the dielectric constant ε' (a), Imaginary part of the dielectric constant ε'' (b), Dielectric loss tanδε (c), Complex magnetic permeability real part μ' (d), Complex magnetic permeability imaginary part μ'' (e), Complex magnetic loss tanδμ (f), Cole-Cole (g), Contribution of Eddy current loss to magnetic loss (C0) (h) and Attenuation factor mapping (i)

    介电损耗角正切值(tanδε=ε/ε) 可用于表征材料的介电损耗的强弱。如图4(c)所示。Fe/C-700、Fe/C-800、Fe/C-900在低频(2~8 GHz)和高频(10~18 GHz)都出现多重共振峰,表明存在多重极化弛豫过程,通常,高频共振峰归因于界面极化,低频共振峰归因为偶极极化;从图中可以出在高频段(17 GHz)时,介电损耗正切值显著增强,其中Fe/C-800、Fe/C-900增强幅度尤为突出,由此推断,煅烧温度的提高有利于促进复合材料Fe原子和石墨碳构建导电网络,增强了材料的极化行为和介电损耗能力;Fe/C-900具有最佳的介电损耗能力,是由于它具有较高的介电正切值。

    众所周知,磁损耗特性能够显著的提升材料的电磁波损耗性能。图4(d)~4(e)是Fe/C复合材料相对复磁导率的实部和虚部随频率变化曲线,结合电磁参数变化可进一步探究复合材料的吸波性能。Fe/C-700、Fe/C-800、Fe/C-900分别从1.33、1.28、1.17降至1.06、1.03、1.032。实部曲线的变化趋势相似;Fe/C复合材料复磁导率虚部(μ'')如图4(e)所示,Fe/C-700、Fe/C-800、Fe/C-900在低频区(2~8 GHz)和高频区(12~18 GHz)有清晰的共振峰,根据文献记载,低频共振峰与自然共振相关,高频共振峰与交换共振相关;3个样品的虚部随着频率的增加虚部值呈下降趋势,值得注意的是μ''在高频下呈现负值。根据麦克斯韦方程,交变电场可以产生反向磁场,如果感应磁场比原始磁场强,磁能可以直接辐射出去,从而产生负磁导率。

    磁损耗角的正切值(tanδμ=μ/μ)可用于表征材料的磁损耗能力的强弱。如图4(f)所示,Fe/C-700、Fe/C-800曲线的变化趋势相似,随着频率的增加Fe/C-900正切值略低于另外两个样品曲线,根据TG测试结果可知Fe/C-900的磁性成分(Fe)较低,是导致磁损耗角正切值低的原因,其中复合材料介电损耗正切值远高于磁损耗正切值,这表明介电损耗比磁损耗对电磁波吸收的贡献更大。

    为了进一步探究磁损耗机制,由下式计算出Fe/C复合材料的C0值:

    C0 = μ(μ)2f (2)

    对于生物质衍生碳基复合材料电磁波损耗机制主要是介电损耗,而介电损耗机制主要由极化弛豫解释,因此引入Cole-Cole半圆模型来解释复合材料极化弛豫过程。ε'ε''之间的关系如下式:

    (ε(εs+ε)22)+ε2=((εsε)22) (3)

    式中:f代表电磁波频率;εsε分别为静态介电常数、高频极限相对介电常数。 图4(g)所示,Fe/C-700存在3个Cole-Cole半圆环,表明其存在3个极化弛豫过程,Fe/C-800、 Fe/C-900分别存在四个和五个极化弛豫过程[30],表明煅烧温度的提高有利于材料的极化能力;Fe/C-700、Fe/C-800和 Fe/C-900有部分扭曲的半圆,这表明除了极化弛豫以外,还存在其他的损耗机制;并且Fe/C-800、 Fe/C-900 Cole-Cole曲线在低频下其尾部变得长而直,根据以往研究表明,复合材料中存在另一种电磁波衰减机制——电导损耗,造成这种损耗的主要原因是由于高温碳化后的材料中存在金属Fe和石墨碳,提高自由电子的流动,从而增加了材料的电导损耗。

    磁损耗机制在整个测试频率域中主要由的自然共振、涡流损耗和交换共振,如图4(h)所示,Fe/C-700、Fe/C-800、Fe/C-900的C0值在2~9 GHz的频率范围内剧烈波动,这表明在该频率范围内磁损耗的主要机制归因于自然共振,材料的几何结构是造成自然共振的主要原因;复合材料C0值在14~18 GHz高频区内也产生轻微的波动,这表明在该频率范围内磁损耗的主要机制归因于交换共振,交换共振主要存在于铁磁材料中[5]

    一般来说,根据广义传输线理论,可以使用下式计算RL值以评估样品的吸收性能。

    RL=20lg|ZinZ0Zin+Z0| (4)
    Z0=μ0ε0 (5)
    Zin=Z0μrεrtanh[j2πfdcμrεr] (6)

    式中:μ0ε0Z0代表自由空间磁导率、介电常数和输入阻抗;Zin代表材料的输入阻抗;d代表材料的厚度;c代表空间光速;f代表电磁波频率;RL为反射损耗(dB);εrμr代表相对介电常数和相对磁导率。通常,当RL值小于−10 dB时,意味着90%的电磁波可以转换,相应的频率范围被定义为有效吸收带宽。材复合材料的复合材料经700℃煅烧,厚度为2 mm时,最大有效吸收带宽为4.05 GHz (12.8~18 GHz),最大反射损耗值在15 GHz处为−20.5 dB,在吸收剂厚度为2 ~ 5 mm 范围内时,有效吸收频带可达13.52 GHz,如图5(a)所示;Fe/C-800在材料的厚度为2 mm时,材料的有效吸收带宽可达3.7 GHz (10.8~14.5 GHz),最大反射损耗在为−23.4 dB如图5(b)所示;Fe/C-900有效吸收频带随着材料的厚度增加逐步向低频移动[6],这种现象可以用四分之一波长匹配模型解释:

    图  5  Fe/C-700 (a)、Fe/C-800 (b)、Fe/C-900 (c) 的二维反射损耗图;Fe/C-700 (d)、Fe/C-800 (e)、Fe/C-900 (f) 的三维反射损耗图;Fe/C-700 (g)、Fe/C-800 (h)、Fe/C-900 (i) 的阻抗匹配图
    Figure  5.  2D reflection loss diagrams for Fe/C-700 (a), Fe/C-800 (b), Fe/C-900 (c); 3D reflection loss diagrams for Fe/C-700 (d), Fe/C-800 (e), Fe/C-900 (f); Impedance matching diagram for Fe/C-700 (g), Fe/C-800 (h), Fe/C-900 (i)
    tm = nc(4fm|εr||μr|)(n = 1,3,5,) (7)

    式中:tm是实现RLmin时的匹配厚度;ƒm是相应的频率,材料的厚度为5 mm时,最大反射损耗值在4.4 GHz处为−35 dB,可以看出样品的最大反射损耗对应频率与其厚度密不可分,并且表现出随着吸收样品厚度的增加,被吸收层中电磁波膜覆盖样品的时间更长,这意味着电磁波更多的被吸收,就会降低其最大反射损耗对应频率。另外,被吸收样品也构成了一个具有折射和反射作用的电磁绝缘体,当电磁波穿过时,会发生折射和反射的现象,反射损耗将会降低。如图5(c)所示,复合材料更好的有效吸收带宽和较低反射损耗值得益于Fe和C形成的导电网络,使其拥有加优异介电特性和磁损耗,因此表现出良好的吸波性能。

    材料吸波性能的差异受衰减因子和阻抗匹配的影响,衰减因子用于评价材料电磁衰减能力,阻抗匹配用于评价电磁波是否可最大限度进入材料内部,且阻抗匹配是完成电磁波衰减的前提。图4(i)为Fe/C复合材料的衰减因子曲线。可以看出,随着频率增加,复合材料的衰减能力逐渐增强,材料在中高频区域的衰减性能最优。Fe/C-700衰减能力最弱,这主要是其相对较低的介电常数所致。众所周知,衰减因子和阻抗匹配共同决定材料的吸波性能差异,图5(g)为 Fe/C复合材料700℃、800℃和900℃的阻抗匹配因子随频率变化图,研究可知|∆| 值的大小影响着阻抗匹配的性能。计算|Δ|如下式:

    |Δ| = |sinh2(Kfd)M| (8)

    式中,K为常数:

    K=4πμrεrsinδe + δm2ccosδecosδm (9)

    阻抗匹配因子(|Δ|)接近0.4的区域面积越大,阻抗匹配特性越好。利用公式(9)计算出Fe/C-700、Fe/C-800、Fe/C-900阻抗匹配有效区域占比为23.7%、36.2%和60.3%。对比可知,Fe/C-700表明其与电磁波最不相容,导致电磁波在材料表面发生反射或散射,无法有效吸收电磁波,而Fe/C-900 电磁波与复合材料的兼容性最好,减少电磁波在材料表面发生反射而吸波性能遭受损失,具有适宜的衰减特性和良好的阻抗匹配,吸波性能最佳。

    为了更好地理解复合材料的电磁波吸收方式,图6总结了Fe/C复合材料电磁波吸收机制。首先生物质衍生碳和Fe纳米颗粒的协同效应在优化阻抗匹配特性和提高电磁波的衰减能力起着至关重要的作用,其次,样品分散在石蜡中以形成电导网络,更多的电子在不同的碳层之间跳跃,网络导电性增强,将更多的电磁波能量转化为热能,体心立方Fe和碳管之间形成大量的异质界面,并且异质界面之间Fe纳米颗粒和碳层有利于在交变电磁场下的自由电荷积累和振荡,从而增强了界面极化;此外,在复合材料中形成了高密度的氮杂取代,可以极大地促进偶极极化,进一步提高了介电损耗能力,Fe纳米颗粒贡献的磁滞损耗和在低频段发生的自然铁磁共振以及在高频的交换铁磁共振和伴随的涡流损耗,都增强了复合材料的磁损耗性能,多种损耗机制有益于复合材料吸波性能的提升。

    图  6  Fe/C复合材料吸波机制图
    Figure  6.  Diagram of the wave absorption mechanism of Fe/C composites

    综上所述,以香蒲为载体,Fe3+为金属源,经原位吸附、碳热还原得到Fe/C复合材料。

    (1) X射线衍射测试结果表明,复合材料经高温煅烧后,生物质香蒲转化为碳基质,铁盐转化为Fe纳米颗粒,且随温度升高Fe纳米颗粒结晶性增强。

    (2) 反射损耗结果显示,900℃的Fe/C复合材料的吸波性能最佳,厚度为5 mm时,最大反射损耗达−35 dB,复合材料优异的吸波性能取决于其较好的阻抗匹配特性和介电损耗与磁损耗的协同作用,研究将为新型生物质衍生轻质、高效、价廉的碳基吸波材料提供实验指导。

  • 图  1   拉伸破坏机制:(a) 连接平行于纤维轴的两个晶粒的取向错误的晶粒;(b) 平行于纤维轴施加的拉伸应力导致基面在La方向上断裂,裂纹沿着La和Lc发展;(c) 应力的进一步施加导致取向不良的微晶完全失效[58]

    Figure  1.   Mechanism of tensile failure: (a) Misoriented crystallite linking two crystallites parallel to fibre axis; (b) Tensile stress exerted parallel to fibre axis causes basal plane rupture in direction La, crack develops along La and Lc; (c) Further exertion of stress causes complete failure of misoriented crytallite[58]

    图  2   碳纤维增强水泥基复合材料(CFRCC)的力学性能:(a) CFRCC弯曲强度与碳纤维质量分数之间的关系[65];(b) CFRCC抗压强度与碳纤维质量分数之间的关系[65];(c) 碳纤维对大理石灰和底灰混合料固化28天和56天抗硫酸盐性能的影响[66]

    Figure  2.   Mechanical properties of carbon fiber reinforced cement composite (CFRCC): (a) Relationship between CFRCC flexural strength and carbon fiber mass fraction[65]; (b) Relationship between CFRCC compressive strength and carbon fiber mass fraction[65]; (c) Effect of carbon fiber on sulfate resistance for marble dust and bottom ash mixture groups at 28 days and 56 days of curing[66]

    MD—Marble dust; BA—Bottom ash; F—Carbon fibers

    图  3   CFRCC的功能性:(a) 碳纤维混凝土的电阻率随碳纤维长度和含量的变化[65];(b) 水泥基传感器中理论传导路径的示意图[3]

    Figure  3.   Functionality of CFRCC: (a) Electrical resistivity of CFRCC varies with carbon fiber length and content[65]; (b) Schematic presentation of theoretical conduction pathways in a cement-based sensor[3]

    EDLs—Electrical double layers; Schematic presentation of theoretical conduction pathways in a cement-based sensor. The insulative cement matrix and aggregates are represented by grey and orange areas, respectively: J1—Current density in the EDLs of cement-electrolyte interface; J2 and J3—Current densities in the EDLs of fibre-electrolyte interface; J4—Current density in bulk electrolyte; J5—Current density in or between fibre bodies. For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.

    图  4   纤维-基体界面的失效模式:(a) 胶结基体中的失效[80];(b) 纤维失效[80];(c) 脱粘失效[81];(d) 纤维-基体之间的界面间隙[34]

    Figure  4.   Failure modes of fiber-matrix interface: (a) Failure in cementitious matrix[80]; (b) Failure in fibers[80]; (c) Debonding failure[81]; (d) Interfacial gap between the CF and cement matrix[34]

    CF—Carbon fiber

    图  5   (a) 臭氧改性聚乙烯(PE)纤维示意图[86];(b) 等离子体氧化碳纤维的成键原理[87];(c) 涂层法改性碳纤维原理示意图[91];(d) 电化学沉积法改性碳纤维装置示意图[33];(e) 接枝法改性碳纤维原理示意图[81];(f) 浸渍碳纤维装置图[103]

    Figure  5.   (a) Ozone modified polyethylene (PE) fiber[86]; (b) Bonding principle of plasma oxidation of CF[87]; (c) Schematic diagram of the principle of coating method modified CF [91]; (d) Electrochemical deposition method modified CF device[33]; (e) Schematic diagram of grafting method for modifying CF[81];(f) Impregnation CF device[103]

    DC—Direct current; O-CF—Oxidized carbon fiber; CNF—Carbon nanotube; KH550—γ-aminopropyltriethoxysilane (silane coupling agent KH550)

    图  6   化学元素表征方法:(a) XPS[81];(b) XRD[114];(c) FTIR[81];(d) Raman[119];(e) EDX[33];(f) TGA[33]

    Figure  6.   Characterization method of chemical elements: (a) XPS[81]; (b) XRD[114]; (c) FTIR[81]; (d) Raman[119]; (e) EDX[33]; (f) TGA[33]

    CNTs—Carbon nanotubes; ID/IG—Ratio of the intensities of the D and G peaks in Raman spectra, where the D peak represents defects in carbon atom crystals and the G peak represents the in-plane stretching vibrations of sp² hybridized carbon atoms; I refers to intensity.

    图  7   表面形貌表征方法:(a) TEM[124];(b) EBSD[91];(c) 接触角表征[130];(d) AFM[87]

    Figure  7.   Surface morphology characterization method: (a) TEM[124]; (b) EBSD[91]; (c) Contact angle characterization[130]; (d) AFM[87]

    图  8   纳米压痕示意图[136]

    Figure  8.   Schematic illustration of nanoindentation[136]

    图  9   单丝纤维拔出试验的样品制备(a)和装置图(b)[123, 90]

    Figure  9.   Sample preparation (a) and experimental setup (b) of the single fiber pullout test[123, 90]

    Uf—Frame units; Ub—Bottom units; Ut—Upper units; L—Specimen thickness

    表  1   碳纤维表面改性常用方法

    Table  1   Common methods for surface modification of carbon fibers

    Surface modification of carbon fiber Principle Characteristic
    Oxidation method Electrochemical
    oxidation
    The carbon fiber was electrified by electrochemical method, so that its surface was oxidized and functional groups were introduced to increase the surface active sites of the fiber Increase fiber surface active sites, but the equipment is complex and the cost is high
    Ozonation Ozone gas oxidizer was used to oxidize the fiber surface to increase the reactive groups on the fiber surface Oxidation time is short, reaction conditions are mild and easy to control, but ozone has certain toxicity
    Plasma oxidation Oxygen dissociates into oxygen atoms or ions to produce oxygen-containing free radicals, which etch the surface of the fiber and generate oxygen-containing functional groups at the fiber defects It is easy to expand, eco-friendly and efficient, but the equipment is complex and the cost is high
    Coating method Coating on carbon fiber surface by physical or chemical methods Protect the strength of fiber body, simple process, but limited durability
    Deposition method Under the chemical or electric drive, the groups in the electrolyte will move towards the electrode with opposite charge, so that the desired product is deposited on the surface of carbon fiber Less damage to the fiber body, functional groups can be deposited, but the preparation efficiency is low, and the process parameters need to be optimized
    Grafting method The introduction of polymer chains or active functional groups such as hydroxyl, carboxyl and amino groups on the surface of carbon fibers through chemical reactions It has strong controllability and can realize multifunctional modification, but the process is complex and some organic solvents used are not friendly to the environment
    Impregnation method By immersing the fiber in a solution containing mineral components, the mineral components penetrate into the fiber, thereby improving the performance of the fiber The mineral composition usually used is environment-friendly, low cost and relatively simple process, but it may damage the fiber
    下载: 导出CSV

    表  2   界面性能表征常用方法

    Table  2   Common methods for evaluating interface performance

    Characterization methods Method type Advantage Disadvantage
    XPS Elemental
    characterization
    Provides chemical composition and chemical state information of material surfaces Requires analysis under vacuum conditions and high surface requirements for samples
    XRD Elemental
    characterization
    Provides crystal structure information, beneficial for the analysis of crystalline materials Unable to provide material chemical composition information, weak in analyzing amorphous materials
    FTIR Elemental
    characterization
    Provides molecular structure and chemical bond information of materials, suitable for organic and polymer analysis Weak in analyzing inorganic crystalline materials
    Raman spectroscopy Elemental
    characterization
    Provides molecular structure and crystal structure information of materials, suitable for non-destructive analysis Weak signal intensity, weak in surface analysis of materials
    EDX Elemental
    characterization
    Provides material element composition and distribution information, suitable for micro-area analysis Relatively low resolution, weak in analyzing light elements
    TGA Elemental
    characterization
    Provides material thermal stability and thermal decomposition information Unable to provide material structural information, weak in analyzing non-thermally decomposing materials
    SEM Surface morphology characterization Provides material surface morphology and microstructure information Unable to provide material chemical composition and crystal structure information
    TEM Surface morphology characterization Provides material microstructure and crystal structure information, particularly suitable for nano-scale material analysis Requires complex sample preparation and operation techniques, high sample requirements
    Electron backscatter diffraction (EBSD) Surface morphology characterization Provides material crystal structure and grain orientation information Requires complex sample preparation and operation techniques, high sample requirements
    AFM Surface morphology characterization Provides material surface morphology, roughness, and other surface property information Only provides surface property information, weak in analyzing other properties
    Contact angle measurement Polarity characterization Provides material surface hydrophilicity and hydrophobicity information Only provides polarity performance information, weak in analyzing other properties
    Nanoindentation (NI) Mechanical testing Provides material hardness and elastic modulus information Requires complex sample preparation and operation techniques, high sample requirements
    Micro-droplet detachment test Mechanical testing Mechanical testing provides material surface adhesion information Requires complex sample preparation and operation techniques, high sample requirements
    Fiber tensile
    testing
    Mechanical testing Provides material tensile mechanical properties High variability, requires a large number of repeated tests
    Fiber pullout testing Mechanical testing Mechanical testing provides material interfacial mechanical properties Requires complex sample preparation and operation techniques, high requirements for samples and testing equipment
    下载: 导出CSV
  • [1]

    LIU X, WANG G, YU J, et al. Stress-sensitivity of carbon nanotube-grafted-carbon fiber incorporated cement-based composites[J]. Journal of Building Engineering, 2023, 64: 105589. DOI: 10.1016/j.jobe.2022.105589

    [2]

    KANG Z, ASLANI F, HAN B. Prediction of mechanical and electrical properties of carbon fibre-reinforced self-sensing cementitious composites[J]. Case Studies in Construction Materials, 2024, 20: e02716.

    [3]

    ZHANG J, HEATH A, ABDALGADIR H M T, et al. Electrical impedance behaviour of carbon fibre reinforced cement-based sensors at different moisture contents[J]. Construction and Building Materials, 2022, 353: 129049. DOI: 10.1016/j.conbuildmat.2022.129049

    [4]

    TAFESSE M, ALEMU A S, LEE H K, et al. Effect of chloride penetration on electrical resistivity of CNT-CF/cement composites and its application as chloride sensor for reinforced mortar[J]. Cement and Concrete Composites, 2022, 133: 104662. DOI: 10.1016/j.cemconcomp.2022.104662

    [5]

    GALAO O, BANON L, BAEZA F, et al. Highly conductive carbon fiber reinforced concrete for icing prevention and curing[J]. Materials, 2016, 9(4): 281. DOI: 10.3390/ma9040281

    [6]

    MUTHUSAMY S, CHUNG D D L. Carbon-fiber cement-based materials for electromagnetic shielding[J]. ACI Materials Journal, 2010, 107(6): 602-610.

    [7]

    NASER M Z, HAWILEH R A, ABDALLA J A. Fiber-reinforced polymer composites in strengthening reinforced concrete structures: A critical review[J]. Engineering Structures, 2019, 198: 109542. DOI: 10.1016/j.engstruct.2019.109542

    [8]

    LI H, LIEBSCHER M, ZHAO D, et al. A review of carbon fiber surface modification methods for tailor-made bond behavior with cementitious matrices[J]. Progress in Materials Science, 2023, 132: 101040. DOI: 10.1016/j.pmatsci.2022.101040

    [9]

    YANG E H, WANG S, YANG Y, et al. Fiber-bridging constitutive law of engineered cementitious composites[J]. Journal of Advanced Concrete Technology, 2008, 6(1): 181-193. DOI: 10.3151/jact.6.181

    [10]

    LIN C, KANSTAD T, JACOBSEN S, et al. Bonding property between fiber and cementitious matrix: A critical review[J]. Construction and Building Materials, 2023, 378: 131169. DOI: 10.1016/j.conbuildmat.2023.131169

    [11]

    HAN B, ZHANG L, ZHANG C, et al. Reinforcement effect and mechanism of carbon fibers to mechanical and electrically conductive properties of cement-based materials[J]. Construction and Building Materials, 2016, 125: 479-489. DOI: 10.1016/j.conbuildmat.2016.08.063

    [12]

    PELED A, ZAGURI E, MAROM G. Bonding characteristics of multifilament polymer yarns and cement matrices[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(6): 930-939. DOI: 10.1016/j.compositesa.2008.03.012

    [13]

    REN G, WANG J, WEN X, et al. Using sol-gel deposition of nanosilica to enhance interface bonding between sisal fiber and ultra-high performance concrete[J]. Cement and Concrete Composites, 2022, 133: 104705. DOI: 10.1016/j.cemconcomp.2022.104705

    [14] 张旺玺. 聚丙烯腈基碳纤维[M]. 上海: 东华大学出版社, 2005: 163.

    ZHANG Wangxi. Polyacrylonitrile based carbon fiber[M]. Shanghai: Donghua University Press, 2005: 163(in Chinese).

    [15] 谭婷婷. 高性能PAN基碳纤维微观结构与力学性能相关性研究[D]. 济南: 山东大学, 2013.

    TAN Tingting. Relationship between microstructure and mechanical properties of high-performance PAN based carbon fibers[D]. Jinan: Shandong University, 2013(in Chinese).

    [16]

    BENNETT S, JOHNSON D. Structural heterogeneity in carbon fibers[C]//Proceedings of the Fifth London International Carbon and Graphite Conference. London: Society of Chemical Industry, 1978: 377.

    [17] 徐樑华, 曹维宇, 胡良全. 聚丙烯腈基碳纤维[M]. 北京: 国防工业出版社, 2018: 1.

    XU Lianghua, CAO Weiyu, HU Liangquan. Polyacrylonitrile based carbon fiber[M]. Beijing: National Defense Industry Press, 2018: 1(in Chinese).

    [18] 李伟伟, 康宏亮, 徐坚, 等. 高强高模型碳纤维与高模型碳纤维微观结构分析[J]. 高分子学报, 2018(3): 380-388.

    LI Weiwei, KANG Hongliang, XU Jian, et al. Microstructure analysis of high-strength and high model carbon fibers and high model carbon fibers[J]. Acta Polymerica Sinica, 2018(3): 380-388(in Chinese).

    [19] 张婧, 陈虹, 于今, 等. PAN基碳纤维原丝纺丝技术及其发展现状[J]. 高科技纤维与应用, 2013, 38(6): 46-48, 54.

    ZHANG Jing, CHEN Hong, YU Jin, et al. PAN based carbon fiber precursor spinning technology and its development status[J]. Hi-Tech Fiber and Application, 2013, 38(6): 46-48, 54(in Chinese).

    [20]

    FU X L, LU W M, CHUNG D D L. Improving the tensile properties of carbon fiber reinforced cement by ozone treatment of the fiber[J]. Cement and Concrete Research, 1996, 26(10): 1485-1488. DOI: 10.1016/0008-8846(96)00141-X

    [21]

    XU X F, HU Y Y. The properties of oxidated carbon fibers reinforced cement[J]. Advanced Materials Research, 2011, 163-167: 1203-1206.

    [22]

    LI J. Interfacial studies on the O3 modified carbon fiber-reinforced polyamide 6 composites[J]. Applied Surface Science, 2008, 255(5): 2822-2824. DOI: 10.1016/j.apsusc.2008.08.013

    [23]

    FINEGAN I C, TIBBETTS G G, GLASGOW D G, et al. Surface treatments for improving the mechanical properties of carbon nanofiber/thermoplastic composites[J]. Journal of Materials Science, 2003, 38: 3485-3490. DOI: 10.1023/A:1025109103511

    [24] 张承双. 氧气等离子体改性对PBO纤维表面及PBO/PPESK复合材料界面的影响[D]. 大连: 大连理工大学, 2009.

    ZHANG Chengshuang. Effect of oxygen plasma modification on surface properties of PBO fibers and interface of PBO/PPESK composites[D]. Dalian: Dalian University of Technology, 2009(in Chinese).

    [25] 刘哲. 等离子体处理对PBO纤维、碳纤维表面性能及其复合材料界面性能的影响[D]. 大连: 大连理工大学, 2014.

    LIU Zhe. Effect of plasma treatment on surface properties of PBO fibers, carbon fibers, and interface properties of composite materials[D]. Dalian: Dalian University of Technology, 2014(in Chinese).

    [26] 韩德滨. 常压空气DBD等离子体对PBO纤维及PBO/PPESK复合材料界面性能的影响[D]. 大连: 大连理工大学, 2023.

    HAN Debin. Effect of atmospheric air DBD plasma on the interfacial properties of PBO fibers and PBO/PPESK composites[D]. Dalian: Dalian University of Technology, 2023(in Chinese).

    [27]

    CHEN J H, WEI G, MAEKAWA Y, et al. Grafting of poly (ethylene-block-ethylene oxide) onto a vapor grown carbon fiber surface by γ-ray radiation grafting[J]. Polymer, 2003, 44(11): 3201-3207. DOI: 10.1016/S0032-3861(03)00274-X

    [28]

    LI J Q, HUANG Y D, FU S Y, et al. Study on the surface performance of carbon fibres irradiatedby γ-ray under different irradiation dose[J]. Applied Surface Science, 2010, 256(7): 2000-2004. DOI: 10.1016/j.apsusc.2009.09.035

    [29]

    TIWARI S, BIJWE J, PANIER S. Gamma radiation treatment of carbon fabric to improve the fiber-matrix adhesion and tribo-performance of composites[J]. Wear, 2011, 271(9-10): 2184-2192. DOI: 10.1016/j.wear.2010.11.032

    [30]

    LEE H S, KIM S Y, NOH Y J, et al. Design of microwave plasma and enhanced mechanical properties of thermoplastic composites reinforced with microwave plasma-treated carbon fiber fabric[J]. Composites Part B: Engineering, 2014, 60: 621-626. DOI: 10.1016/j.compositesb.2013.12.064

    [31]

    DILSIZ N, ERINC N K, BAYRAMLI E. Surface energy and mechanical properties of plasma modified carbon fibers[J]. Carbon, 1995, 33(6): 853-858. DOI: 10.1016/0008-6223(94)00181-X

    [32]

    WANG S, WANG X, HE J, et al. Mechanical behavior and microstructure of graphene oxide electrodeposited carbon fiber reinforced cement-based materials[J]. Crystals, 2022, 12(7): 964. DOI: 10.3390/cryst12070964

    [33]

    LI H, LIEBSCHER M, CUROSU I, et al. Electrophoretic deposition of nano-silica onto carbon fiber surfaces for an improved bond strength with cementitious matrices[J]. Cement and Concrete Composites, 2020, 114: 103777. DOI: 10.1016/j.cemconcomp.2020.103777

    [34]

    LU Z, HANIF A, SUN G, et al. Highly dispersed graphene oxide electrodeposited carbon fiber reinforced cement-based materials with enhanced mechanical properties[J]. Cement and Concrete Composites, 2018, 87: 220-228. DOI: 10.1016/j.cemconcomp.2018.01.006

    [35]

    IROH J O, YUAN W. Surface properties of carbon fibres modified by electrodeposition of polyamic acid[J]. Polymer, 1996, 37(18): 4197-4203. DOI: 10.1016/0032-3861(96)00266-2

    [36] 李启金, 李国忠. 聚丙烯纤维化学接枝改性增强水泥基复合材料的界面结合[J]. 复合材料学报, 2013, 30(4): 238-244.

    LI Qijin, LI Guozhong. Surface modification of polypropylene fibers chemical grafted methods to reinforce the interfacial bonding of cement-based composites[J]. Acta Materiae Compositae Sinica, 2013, 30(4): 238-244(in Chinese).

    [37] 林国良, 郑玉婴. 碳纤维化学接枝甲基丙烯酸甲酯的研究[J]. 表面技术, 2015, 44(2): 83-86, 104.

    LIN Guoliang, ZHENG Yuying. Study on chemical grafting of methyl methacrylate on carbon fiber[J]. Surface Technology, 2015, 44(2): 83-86, 104(in Chinese).

    [38]

    ZHANG T, XU Y, LI H, et al. Interfacial adhesion between carbon fibers and nylon 6: Effect of fiber surface chemistry and grafting of nano-SiO2[J]. Composites Part A: Applied Science and Manufacturing, 2019, 121: 157-168. DOI: 10.1016/j.compositesa.2019.03.029

    [39]

    LUO L, FEI J, DUAN X, et al. Chemically grafting APS onto MnO2 nanosheets as a new interphase for improving interfacial properties in carbon fiber composites[J]. Tribology International, 2019, 134: 145-153. DOI: 10.1016/j.triboint.2019.01.044

    [40]

    LAVAGNA L, MASSELLA D, PAVESE M. Preparation of hierarchical material by chemical grafting of carbon nanotubes onto carbon fibers[J]. Diamond and Related Materials, 2017, 80: 118-124. DOI: 10.1016/j.diamond.2017.10.013

    [41]

    GAO B, ZHANG J, HAO Z, et al. In-situ modification of carbon fibers with hyperbranched polyglycerol via anionic ring-opening polymerization for use in high-performance composites[J]. Carbon, 2017, 123: 548-557. DOI: 10.1016/j.carbon.2017.08.008

    [42]

    GERZESKI H R, SPRAGUE A, HU J J, et al. Growth of contiguous graphite fins from thermally conductive graphite fibers[J]. Carbon, 2014, 69: 424-436. DOI: 10.1016/j.carbon.2013.12.045

    [43]

    LYU P, FENG Y Y, ZHANG P, et al. Increasing the interfacial strength in carbon fiber/epoxy composites by controlling the orientation and length of carbon nanotubes grown on the fibers[J]. Carbon, 2011, 49: 4665-4673. DOI: 10.1016/j.carbon.2011.06.064

    [44] 关蓉波, 杨永岗, 郑经堂, 等. 上浆剂对 CF/EP 界面粘结的影响[J]. 纤维复合材料, 2002, 23(1): 23-26.

    GUAN Rongbo, YANG Yonggang, ZHENG Jingtang, et al. The effect of sizing agents on CF/EP interface bonding[J]. Fiber Composites, 2002, 23(1): 23-26(in Chinese).

    [45]

    LI S X, YANG C L, YAO L L, et al. Use a polyurethane sizing agent to improve the interfacial properties of carbon fiber-reinforced polyurethane composites[J]. New Carbon Materials, 2023, 38(2): 385-390. DOI: 10.1016/S1872-5805(23)60705-X

    [46]

    MECHTCHERINE V, MICHEL A, LIEBSCHER M, et al. Mineral-impregnated carbon fiber composites as novel reinforcement for concrete construction: Material and automation perspectives[J]. Automation in Construction, 2020, 110: 103002.

    [47]

    HOMORO O, MICHEL M, BARANGER T N. Pull-out response of glass yarn from ettringite matrix: Effect of pre-impregnation and embedded length[J]. Composites Science and Technology, 2019, 170: 174-182. DOI: 10.1016/j.compscitech.2018.11.045

    [48]

    SCHNEIDER K, MICHEL A, LIEBSCHER M, et al. Mineral-impregnated carbon fibre reinforcement for high temperature resistance of thin-walled concrete structures[J]. Cement and Concrete Composites, 2019, 97: 68-77.

    [49]

    DONNINI J, LANCIONI G, CORINALDESI V. Failure modes in FRCM systems with dry and pre-impregnated carbon yarns: Experiments and modeling[J]. Composites Part B: Engineering, 2018, 140: 57-67. DOI: 10.1016/j.compositesb.2017.12.024

    [50]

    DONNINI J, CORINALDESI V. Mechanical characterization of different FRCM systems for structural reinforcement[J]. Construction and Building Materials, 2017, 145: 565-575. DOI: 10.1016/j.conbuildmat.2017.04.051

    [51]

    NADIV R, PELED A, MECHTCHERINE V, et al. Micro- and nanoparticle mineral coating for enhanced properties of carbon multifilament yarn cement-based composites[J]. Composites Part B: Engineering, 2017, 111: 179-189. DOI: 10.1016/j.compositesb.2016.12.005

    [52]

    LI D, LU C, WANG L, et al. A reconsideration of the relationship between structural features and mechanical properties of carbon fibers[J]. Materials Science and Engineering, 2017, 685: 65-70.

    [53]

    LI Z R, WANG J B, TONG Y J, et al. Anodic oxidation on structural evolution and tensile properties of polyacrylonitrile based carbon fibers with different surface morphology[J]. Journal of Materials Science & Technology, 2012, 28(12): 1123-1129.

    [54]

    QIN X Y, LU Y G, XIAO H, et al. A comparison of the effect of graphitization on microstructure and properties of polyacrylonitrile and mesophase pitch-based carbon fiber[J]. Carbon, 2012, 50: 4459-4469. DOI: 10.1016/j.carbon.2012.05.024

    [55]

    YAO L B, YANG W M, LI S Y, et al. Graphitization of PAN-based carbon fibers by CO2 laser irradiation[J]. Carbon Letters, 2017, 24(1): 97-102.

    [56]

    BALDAN A. Adhesively-bonded joints and repairs in metallic alloys, polymers and composite materials: Adhesives, adhesion theories and surface pretreatment[J]. Journal of Maters Science, 2004, 39(1): 1-49. DOI: 10.1023/B:JMSC.0000007726.58758.e4

    [57]

    GRIFFITH A A. The phenomena of rupture and flow in solids[J]. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 1921, 221: 163-198.

    [58]

    BENNETT S, JOHNSON D, JOHNSON W. Strength-structure relationships in PAN-based carbon fibres[J]. Journal of Materials Science, 1983, 18: 3337-3347.

    [59]

    BENNETT S, JOHNSON D. Electron-microscope studies of structural heterogeneity in PAN-based carbon fibres[J]. Carbon, 1979, 17: 25-39.

    [60]

    JOHNSON D. Structure-property relationships in carbon fibres[J]. Journal of Physics D: Applied Physics, 1987, 20: 286.

    [61]

    CHEN M, GAO P, GENG F, et al. Mechanical and smart properties of carbon fiber and graphite conductive concrete for internal damage monitoring of structure[J]. Construction & Building Materials, 2017, 142: 320-327.

    [62] 陈宇良, 李堂, 姜锐, 等. 碳纤维再生混凝土复合受剪力学性能试验[J]. 复合材料学报, 2023, 40(7): 4107-4116.

    CHEN Yuliang, LI Tang, JIANG Rui, et al. Composite shear mechanical properties of carbon fiber recycled aggregate concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4107-4116(in Chinese).

    [63] 曹雅娴, 侯慧芳, 刘曙光, 等. PVA纤维混凝土力学性能增长规律研究[J]. 混凝土与水泥制品, 2021(5): 56-59.

    CAO Yaxian, HOU Huifang, LIU Shuguang, et al. Study on the growth law of mechanical properties of PVA fiber concrete[J]. China Concrete and Cement Products, 2021(5): 56-59(in Chinese).

    [64] 肖良丽, 陈宇标, 刘彦, 等. 玻璃纤维增强塑料筋混杂纤维混凝土梁抗弯性能研究[J]. 武汉科技大学学报, 2021, 44(4): 295-303.

    XIAO Liangli, CHEN Yubiao, LIU Yan, et al. Flexural performance of concrete beams reinforced with GFRP bars and hybrid fibers[J]. Journal of Wuhan University of Science and Technology, 2021, 44(4): 295-303(in Chinese).

    [65]

    WANG C, JIAO G S, LI B L, et al. Dispersion of carbon fibers and conductivity of carbon fiber-reinforced cement-based composites[J]. Ceramics International, 2017, 43(17): 15122-15132. DOI: 10.1016/j.ceramint.2017.08.041

    [66]

    ATIYEH M, AYDIN E. Carbon-fiber enriched cement-based composites for better sustainability[J]. Materials, 2020, 13(8): 1899. DOI: 10.3390/ma13081899

    [67]

    BELLI A, MOBILI A, BELLEZZE T, et al. Commercial and recycled carbon-based fillers and fibers for self-sensing cement-based composites: Comparison of mechanical strength, durability, and piezoresistive behavior[J]. Journal of Building Engineering, 2023, 73: 106836. DOI: 10.1016/j.jobe.2023.106836

    [68] 尚国秀. 碳纤维水泥基复合材料纤维分散性及导电性能试验研究[D]. 郑州: 郑州大学, 2015.

    SHANG Guoxiu. Experimental study on fiber dispersion and conductivity of carbon fiber cement-based composite materials[D]. Zhengzhou: Zhengzhou University, 2015(in Chinese).

    [69]

    GAO J, SHA A, WANG Z, et al. Characterization of carbon fiber distribution in cement-based composites by computed tomography[J]. Construction and Building Materials, 2018, 177: 134-147. DOI: 10.1016/j.conbuildmat.2018.05.114

    [70] 韩朝锋, 薛有松, 张东生, 等. 碳纤维复合材料电导特性和力电耦合行为研究进展[J]. 复合材料学报, 2023, 40(6): 3136-3152.

    HAN Chaofeng, XUE Yousong, ZHANG Dongsheng, et al. Research progress on electrical property and electromechanical coupling behaviors of carbon fiber composites[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3136-3152(in Chinese).

    [71] 黄世峰, 徐东宇, 徐荣华, 等. 碳纤维/ 水泥基复合材料微观结构及机敏特性[J]. 复合材料学报, 2006, 23(4): 95-99.

    HUANG Shifeng, XU Dongyu, XU Ronghua, et al. Microcosmic and smart properties of carbon fiber cement-based composites[J]. Acta Materiae Compositae Sinica, 2006, 23(4): 95-99(in Chinese).

    [72] 赵晓华, 李国宝, 王玉林, 等. 碳纤维增强水泥基复合材料的压阻效应[J]. 复合材料学报, 2011, 28(5): 214-219.

    ZHAO Xiaohua, LI Guobao, WANG Yulin, et al. Piezoresistivity of carbon fiber reinforced cement-matrix composites[J]. Acta Materiae Compositae Sinica, 2011, 28(5): 214-219(in Chinese).

    [73] 陶冶王之, 张大伟, 陈冠浩. 碳纤维织物增强水泥基复合材料拉拔过程力阻响应和等效分层破坏模型[J]. 复合材料学报, 2022, 39(11): 5170-5180.

    TAOYE Wangzhi, ZHANG Dawei, CHEN Guanhao. Piezoresistive response of carbon fibric reinforced cementitious matrix during pull-out test and the establishment of equivalent delamination failure model[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5170-5180(in Chinese).

    [74]

    WEI J, ZHANG Q, ZHAO L, et al. Enhanced thermoelectric properties of carbon fiber reinforced cement composites[J]. Ceramics International, 2016, 42(10): 11568-11573. DOI: 10.1016/j.ceramint.2016.04.014

    [75]

    LIU K, LU L, WANG F, et al. Theoretical and experimental study on multi-phase model of thermal conductivity for fiber reinforced concrete[J]. Construction and Building Materials, 2017, 148: 465-475.

    [76] 黄平, 郭丹. 界面力学(精)[M]. 北京: 清华大学出版社, 2013: І.

    HUANG Ping, GUO Dan. Interface mechanics (Precision)[M]. Beijing: Tsinghua University Press, 2013: І(in Chinese).

    [77] 沈荣熹, 崔琪, 李清海. 新型纤维增强水泥基复合材料[M]. 北京: 中国建材工业出版社, 2004: 55.

    SHEN Rongxi, CUI Qi, LI Qinghai. New fiber-reinforced cement-based composite materials[M]. Beijing: China Building Materials Industry Press, 2004: 55(in Chinese).

    [78]

    ZHANG W, DENG X, SUI G, et al. Improving interfacial and mechanical properties of carbon nanotube-sized carbon fiber/epoxy composites[J]. Carbon, 2019, 145: 629-639. DOI: 10.1016/j.carbon.2019.01.063

    [79]

    LEE Y, KANG S T, KIM J K. Pullout behavior of inclined steel fiber in an ultra-high strength cementitious matrix[J]. Construction and Building Materials, 2010, 24(10): 2030-2041. DOI: 10.1016/j.conbuildmat.2010.03.009

    [80]

    WANG Y, HU S, SUN X. Experimental investigation on the elastic modulus and fracture properties of basalt fiber-reinforced fly ash geopolymer concrete[J]. Construction and Building Materials, 2022, 338: 127570. DOI: 10.1016/j.conbuildmat.2022.127570

    [81]

    CUI H, JIN Z, ZHENG D, et al. Effect of carbon fibers grafted with carbon nanotubes on mechanical properties of cement-based composites[J]. Construction and Building Materials, 2018, 181: 713-720. DOI: 10.1016/j.conbuildmat.2018.06.049

    [82]

    STYNOSKI P, MONDAL P, MARSH C. Effects of silica additives on fracture properties of carbon nanotube and carbon fiber reinforced Portland cement mortar[J]. Cement & Concrete Composites, 2015, 55: 232-240.

    [83]

    WEI J, ZHANG Q, ZHAO L, et al. Enhanced thermoelectric properties of carbon fiber reinforced cement composites[J]. Ceramics International, 2016, 42(10): 11568-11573.

    [84]

    HAN W, CHOI W K, AN K H, et al. Effects of crack resistance properties of ozone-treated carbon fibers-reinforced nylon-6 matrix composites[J]. Journal of the Korean Industrial & Engineering Chemistry, 2013, 24(4): 363-369.

    [85]

    PARK O K, KIM W Y, KIM S M, et al. Effect of oxygen plasma treatment on he mechanical properties of carbon nanotube fibers[J]. Materials Letters, 2015, 156: 17-20. DOI: 10.1016/j.matlet.2015.04.141

    [86]

    LU Z, YIN R, YAO J, et al. Surface modification of polyethylene fiber by ozonation and its influence on the mechanical properties of strain-hardening cementitious composites[J]. Composites Part B: Engineering, 2019, 177: 107446. DOI: 10.1016/j.compositesb.2019.107446

    [87]

    HUANG S, CHENG X, GUO X, et al. Ethanol plasma-induced polymerization of carbon fiber surface for improving mechanical properties of carbon fiber-reinforced lightweight oil well cement[J]. Applied Surface Science, 2019, 497: 143765. DOI: 10.1016/j.apsusc.2019.143765

    [88]

    DENG C, JIANG J J, LIU L, et al. Influence of carbon nanotubes coatings onto carbon fiber by oxidative treatments combined with electrophoretic deposition on interfacial properties of carbon fiber composite[J]. Applied Surface Science, 2015, 357: 1274-1280. DOI: 10.1016/j.apsusc.2015.09.178

    [89]

    WANG C F, LI J, SUN S F, et al. Electrophoretic deposition of graphene oxide on continuous carbon fibers for reinforcement of both tensile and interfacial strength[J]. Composites Science & Technology, 2016, 135: 46-53.

    [90]

    LU M, XIAO H, LIU M, et al. Improved interfacial strength of SiO2 coated carbon fiber in cement matrix[J]. Cement and Concrete Composites, 2018, 91: 21-28.

    [91]

    LU M, XIAO H, LIU M, et al. Carbon fiber surface nano-modification and enhanced mechanical properties of fiber reinforced cementitious composites[J]. Construction and Building Materials, 2023, 370: 130701. DOI: 10.1016/j.conbuildmat.2023.130701

    [92]

    OZTURK M, CHUNG D D L. Enhancing the electromagnetic interference shielding effectiveness of carbon-fiber reinforced cement paste by coating the carbon fiber with nickel[J]. Journal of Building Engineering, 2021, 41: 102757. DOI: 10.1016/j.jobe.2021.102757

    [93]

    DEHGHANPOUR H. Electrical and microstructural characterization of carbon nanotube-carbon fiber added cementitious conductive surface coating[J]. Construction and Building Materials, 2023, 406: 133449. DOI: 10.1016/j.conbuildmat.2023.133449

    [94]

    YANG T, HAN E, WANG X D, et al. Surface decoration of polyimide fiber with carbon nanotubes and its application for mechanical enhancement of phosphoric acid-based geopolymers[J]. Applied Surface Science, 2017, 416: 200-212. DOI: 10.1016/j.apsusc.2017.04.166

    [95] 袁玉环, 左进霞, 彭聪, 等. 聚氨酯/纳米SiO2改性碳纤维增强环氧树脂复合材料界面性能[J]. 复合材料学报, 2023, 40(11): 6073-6086.

    YUAN Yuhuan, ZUO Jinxia, PENG Cong, et al. Interfacial properties of polyurethane/nano-SiO2 modified carbon fiber epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6073-6086(in Chinese).

    [96]

    COHEN Z, PELED A. Controlled telescopic reinforcement system of fabric-cement composites—Durability concerns[J]. Cement & Concrete Research, 2010, 40(10): 1495-1506.

    [97]

    IVANIC A, LUBEJ S, RUDOLF R, et al. Bond behavior of carbon-fiber yarn embedded in cement mortar[J]. Science & Engineering of Composite Materials, 2011, 18(3): 181-186.

    [98]

    ZHU M C. Bond behavior and degradation mechanisms of multi-functional fabric reinforced cementitious matrix (MFRCM) composites used for ICCP-SS[D]. Sapporo: Hokkaido University, 2020.

    [99]

    DONNINI J, CORINALDESI V, NANNI A. Mechanical properties of FRCM using carbon fabrics with different coating treatments[J]. Composites Part B: Engineering, 2016, 88: 220-228.

    [100]

    DVORKIN D, POURSAEE A, PELED A, et al. Influence of bundle coating on the tensile behavior, bonding, cracking and fluid transport of fabric cement-based composites[J]. Cement and Concrete Composites, 2013, 42: 9-19. DOI: 10.1016/j.cemconcomp.2013.05.005

    [101]

    SCHEFFLER C, GAO S L, PLONKA R, et al. Interphase modification of alkali-resistant glass fibres and carbon fibres for textile reinforced concrete I: Fibre properties and durability[J]. Composites Science and Technology, 2009, 69(3-4): 531-538. DOI: 10.1016/j.compscitech.2008.11.027

    [102]

    SCHEFFLER C, FORSTER T, MADER E, et al. Aging of alkali-resistant glass and basalt fibers in alkaline solutions: Evaluation of the failure stress by Weibull distribution function[J]. Journal of Non-Crystalline Solids, 2009, 355(52-54): 2588-2595. DOI: 10.1016/j.jnoncrysol.2009.09.018

    [103]

    MECHTCHERINE V, MICHEL A, LIEBSCHER M, et al. Mineral-impregnated carbon fiber composites as novel reinforcement for concrete construction: Material and automation perspectives[J]. Automation in Construction, 2020, 110: 103002. DOI: 10.1016/j.autcon.2019.103002

    [104]

    ERNEST B M, LLUIS G, LUIS M, et al. Mechanical properties of pre-stressed fabric-reinforced cementitious matrix composite (PFRCM)[J]. Construction and Building Materials, 2018, 191: 228-241. DOI: 10.1016/j.conbuildmat.2018.09.210

    [105]

    ISLA F, RUANO G, LUCCIONI B. Analysis of steel fibers pull-out. Experimental study[J]. Construction and Building Materials, 2015, 100: 183-193. DOI: 10.1016/j.conbuildmat.2015.09.034

    [106]

    BADANOIU A, JONAS H. Cementitious composites reinforced with continuous carbon fibres for strengthening of concrete structures[J]. Cement and Concrete Composites, 2003, 25(3): 387-394. DOI: 10.1016/S0958-9465(02)00054-9

    [107] 袁晓敏. 碳纤维表面处理技术对CFRP界面特性影响研究[D]. 济南: 山东大学, 2019.

    YUAN Xiaomin. Surface treatment research of carbon fiber and its effect on the interfacial propertiess of CFRP[D]. Jinan: Shandong University, 2019(in Chinese).

    [108] 刘浏. 碳纤维表面处理及其复合材料性能研究[D]. 长春: 长春工业大学, 2019.

    LIU Liu. Research on carbon fiber surface treatment and composite material properties[D]. Changchun: Changchun University of Technology, 2019(in Chinese).

    [109] 徐志明. 碳纤维表面负载GO/CNTs体系构建及其界面性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    XU Zhiming. Construction of GO/CNTs system loaded on carbon fiber surface and study of its interfacial properties[D]. Harbin: Harbin Institute of Technology, 2018(in Chinese).

    [110] 赵广东. 碳纤维表面化学修饰及其与SiBCN陶瓷基体的界面结合特性[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    ZHAO Guangdong. Chemical modification of carbon fiber surface and its interface bonding characteristics with SiBCN ceramic matrix[D] Harbin: Harbin Institute of Technology, 2017(in Chinese).

    [111] 王彩凤. 碳纤维表面多尺度组元构筑及其复合材料界面性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    WANG Caifeng. Multiscale component construction on carbon fiber surface and study on interface properties of composite materials[D]. Harbin: Harbin Institute of Technology, 2017(in Chinese).

    [112]

    LI H, LIEBSCHER M, MICHEL A, et al. Oxygen plasma modification of carbon fiber rovings for enhanced interaction toward mineral-based impregnation materials and concrete matrices[J]. Construction and Building Materials, 2021, 273: 121950. DOI: 10.1016/j.conbuildmat.2020.121950

    [113]

    SCHNEIDER K, LIEBOLDT M, LIEBSCHER M, et al. Mineral-based coating of plasma-treated carbon fibre rovings for carbon concrete composites with enhanced mechanical performance[J]. Materials, 2017, 10: 360.

    [114]

    LI H, LIEBSCHER M, RANJBARIAN M, et al. Electrochemical modification of carbon fiber yarns in cementitious pore solution for an enhanced interaction towards concrete matrices[J]. Applied Surface Science, 2019, 487: 52-58. DOI: 10.1016/j.apsusc.2019.04.246

    [115]

    SHARD A G. Practical guides for X-ray photoelectron spectroscopy: Quantitative XPS[J]. Journal of Vacuum Science & Technology A, 2020, 38: 041201.

    [116]

    SELLITTI C, KOENIG J, ISHIDA H. Surface characterization of graphitized carbon fibers by attenuated total reflection Fourier transform infrared spectroscopy[J]. Carbon, 1990, 28: 221-228.

    [117]

    BARHOUM A, GARCIA-BETANCOURT M L, RAJIER H, et al. Physicochemical characterization of nanomaterials: Polymorph, composition, wettability, and thermal stability[M]. Emerging Applications of Nanoparticles and Architecture Nanostructures: Micro and Nano Technologies. Netherlands: Elsevier Science, 2018: 255-278.

    [118]

    HEO G H, PARK J G, SONG K C, et al. Mechanical properties of SiO2-coated carbon fiber-reinforced mortar composites with different fiber lengths and fiber volume fractions[J]. Advances in Civil Engineering, 2020, 2: 1-12.

    [119]

    LAVAGNA L, MUSSO S, FERRO G, et al. Cement-based composites containing functionalized carbon fibers[J]. Cement and Concrete Composites, 2018, 88: 165-171. DOI: 10.1016/j.cemconcomp.2018.02.007

    [120]

    ZENG J, ZHAO G, LIU J, et al. Interaction between thermal stabilization temperature program, oxidation reaction, and mechanical properties of polyacrylonitrile (PAN) based carbon fibers[J]. Diamond and Related Materials, 2024, 141: 110588.

    [121]

    NEWBURY D E, RITCHIE N W M. Performing elemental microanalysis with high accuracy and high precision by scanning electron microscopy/silicon drift detector energy-dispersive X-ray spectrometry (SEM/SDD-EDS)[J]. Journal of Materials Science, 2015, 50(2): 493-518.

    [122]

    LI H, YANG J, WANG L, et al. Multiscale assessment of performance of limestone calcined clay cement (LC3) reinforced with virgin and recycled carbon fibers[J]. Construction and Building Materials, 2023, 406: 133228. DOI: 10.1016/j.conbuildmat.2023.133228

    [123]

    LI H, LIEBSCHER M, MICUSIK M, et al. Role of pH value on electrophoretic deposition of nano-silica onto carbon fibers for a tailored bond behavior with cementitious matrices[J]. Applied Surface Science, 2022, 600: 154000. DOI: 10.1016/j.apsusc.2022.154000

    [124]

    LEE S H, LEE S M, ROH J S. Microstructure of milled polyacrylonitrile-based carbon fiber analyzed by micro-Raman spectroscopy and TEM[J]. Materials, 2021, 14(16): 4711. DOI: 10.3390/ma14164711

    [125]

    LI D, LU C, WU G, et al. Heat-induced internal strain relaxation and its effect on the microstructure of polyacrylonitrile-based carbon fiber[J]. Journal of Materials Science & Technology, 2014, 30(10): 1051-1058.

    [126] 吕梦圆. 纳米二氧化硅与纤维改性水泥基复合材料的强韧化研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.

    LYU Mengyuan. Research on the strengthening and toughening of nano-SiO2 and fiber modified cement-based composites[D]. Harbin: Harbin Institute of Technology, 2021(in Chinese).

    [127]

    PI Z, XIAO H, LIU R, et al. Effects of brass coating and nano-SiO2 coating on steel fiber-matrix interfacial properties of cement-based composite[J]. Composites Part B: Engineering, 2020, 189: 107904. DOI: 10.1016/j.compositesb.2020.107904

    [128]

    WANG C, LI J, SUN S, et al. Controlled growth of silver nanoparticles on carbon fibers for reinforcement of both tensile and interfacial strength[J]. RSC Advances, 2016, 6(17): 14016-14026. DOI: 10.1039/C5RA22032G

    [129]

    SPEIGHT J G. 4-thermodynamics of water[M]. Natural Water Remediation: Chemistry and Technology. Oxford: Butterworth-Heinemann, 2020: 131-163.

    [130]

    MA J, JIANG L, DAN Y, et al. Study on the inter-laminar shear properties of carbon fiber reinforced epoxy composite materials with different interface structures[J]. Materials & Design, 2022, 214: 110417.

    [131]

    YING J W, XIE Z M, JIANG Z J, et al. Microscale fracture and creep analysis of 3D porous graphene-based cementitious material by nanoindentation test and energy-based method[J]. Construction and Building Materials, 2023, 409: 133992.

    [132]

    GAUTHAM S, SASMAL S. Constitutive relations of nanoscale hydration products present in engineered cementitious composites from machine learning assisted experimental nanoindentation[J]. Journal of Building Engineering, 2023, 75: 106912.

    [133]

    XU W, TANG Z, XIE Y, et al. Recent advances and insights in nanoindentation technique in the characterization of cement-based materials[J]. Journal of Building Engineering, 2023, 80: 108022. DOI: 10.1016/j.jobe.2023.108022

    [134]

    PEREZ-MARTIN H, MACKENZIE P, BAIDAK A, et al. Microstructural and micromechanical property characterisation of CF/PEKK composites using nanoindentation[J]. Materials & Design, 2023, 234: 112359.

    [135]

    YU L, BAI S, GUAN X. Effect of graphene oxide on microstructure and micromechanical property of ultra-high performance concrete[J]. Cement and Concrete Composites, 2023, 138: 104964.

    [136]

    HE S, LI Z, YANG E H. Quantitative characterization of anisotropic properties of the interfacial transition zone (ITZ) between microfiber and cement paste[J]. Cement and Concrete Research, 2019, 122: 136-146. DOI: 10.1016/j.cemconres.2019.05.007

    [137] 陈丕钰. 碳纤维增强复合材料的电化学回收方法研究[D]. 深圳: 深圳大学, 2017.

    CHEN Piyu. Research on electrochemical recovery methods of carbon fiber reinforced composite materials[D]. Shenzhen: Shenzhen University, 2017(in Chinese).

    [138]

    HUGHES J D H. The carbon fibre/epoxy interface—A review[J]. Composites Science & Technology, 1991, 41(1): 13-45.

    [139]

    ASTM International. Standard test method for tensile strength and Young's modulus for high-modulus single-filament materials (Withdrawn 1998): ASTM D3379-75(1989)e1[S]. West Conshohocken: ASTM, 1989.

    [140]

    YANG L, CHEN Y, XU Z, et al. Ni, effect of surface modification of carbon fiber based on magnetron sputtering technology on tensile properties[J]. Carbon, 2023, 204: 377-386.

    [141]

    REDON C, LI V C, WU C, et al. Measuring and modifying interface properties of PVA fibers in ECC matrix[J]. Journal of Materials in Civil Engineering, 2001, 13(6): 399-406. DOI: 10.1061/(ASCE)0899-1561(2001)13:6(399)

    [142]

    LI H Y, ZHAO D, LIEBSCHER M, et al. An experimental and numerical study on the age depended bond-slip behavior between nano-silica modified carbon fibers and cementitious matrices[J]. Cement and Concrete Composites, 2022, 128: 104416. DOI: 10.1016/j.cemconcomp.2022.104416

    [143] 李晓娇. 纳米材料改性水泥基复合材料及其界面性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    LI Xiaojiao. Research on nanomaterial modified cementitious composite materials and their interface properties[D]. Harbin: Harbin Institute of Technology, 2015(in Chinese).

    [144] 杨浩楠. 膨胀剂—碳纤维水泥基材料力学特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    YANG Haonan. Effects of expansive agent and carbon fiber on the mechanical properties of carbon fiber cement-based composites[D]. Harbin: Harbin Institute of Technology, 2017(in Chinese).

    [145]

    KANAKUBO T, SHI H, WANG J. Influence of matrix strength on bridging performance of fiber-reinforced cementitious composite with bundled aramid fiber[J]. Journal of Composites Science, 2022, 6: 131.

    [146] 彭楚汗. 碳纤维/超高性能混凝土基体界面粘结性能及机制研究[D]. 广州: 华南理工大学, 2022.

    PENG Chuhan. Interface bonding between carbon fiber/ultra-high performance concrete matrix: Properties and mechanism[D]. Guangzhou: South China University of Technology, 2022(in Chinese).

    [147]

    HEMMATIAN A, JALALI M, NADERPOUR H, et al. Machine learning prediction of fiber pull-out and bond-slip in fiber-reinforced cementitious composites[J]. Journal of Building Engineering, 2023, 63: 105474.

  • 期刊类型引用(18)

    1. 李佳楠,姜亚明,项赫,杨晨. 高性能纤维增强树脂基复合材料湿热老化研究进展. 化工新型材料. 2024(01): 1-7 . 百度学术
    2. 史俊伟,杨柳,王文贵,荀国立,信泽坤. 孔隙对碳纤维/环氧树脂复合材料剪切性能和破坏模式的影响. 复合材料学报. 2024(09): 5039-5052 . 本站查看
    3. 刘鸿森,黄凯,黄金钊,韩晓剑,逯浩,骆杨,张莉,果立成. 考虑温度效应的复合材料紧固结构面外拉脱性能和失效机制. 复合材料学报. 2024(09): 4778-4790 . 本站查看
    4. 康沁莹,陈淑仙,崔潇俊,代振帮. 湿热环境对环氧树脂基复合材料拉伸性能的影响. 塑料工业. 2024(09): 117-124 . 百度学术
    5. 杨威,颜丙越,夏国巍,尹国华,段祺君,谢军. 纳米SiO_2改性玻璃纤维增强树脂的耐湿热老化性能. 绝缘材料. 2023(10): 50-58 . 百度学术
    6. 杜永,马玉娥. 湿热环境下碳纤维环氧树脂复合材料拉伸性能研究. 西北工业大学学报. 2022(01): 33-39 . 百度学术
    7. 白桃林,陈普会,孔斌,张雅会,蒋坤,甘建. 湿热环境下聚酰亚胺复合材料的拉脱性能研究. 航空工程进展. 2022(05): 78-85 . 百度学术
    8. 苏英贤,孙耀宁,刘伟,孙健,代礼葵. GFRP层合板在湿热环境和碱性腐蚀介质中的老化行为. 合成纤维. 2021(05): 52-57 . 百度学术
    9. 王德,张泰峰,高茜,杨晓华. 湿热环境下CFRP复合材料吸湿过程的仿真分析. 计算机仿真. 2021(07): 236-240 . 百度学术
    10. 张铁纯,张世秋,王轩,周春苹. 挖补修理复合材料夹芯结构侧向压缩性能研究. 航空科学技术. 2021(08): 1-11 . 百度学术
    11. 李过,孙耀宁,王国建,代礼葵. 不同环境因素作用下玻纤/环氧乙烯基酯复合材料的冲蚀行为. 材料导报. 2021(16): 16160-16165 . 百度学术
    12. 路鹏程,李志歆,邱运朋,王志平. 湿热环境对碳纤维增强聚苯硫醚层合板感应焊接接头性能的影响. 复合材料学报. 2021(09): 2807-2813 . 本站查看
    13. 王一靓,刘婷,左景奇,杨名波,吴祖胜. 特殊环境对玻璃纤维/EP复合材料典型力学性能的影响. 塑料工业. 2021(09): 110-114 . 百度学术
    14. 杨春浩,赵洋,肖瑶,行鸿彦,傅正财. 玻璃纤维复合材料在雷电冲击电流下的沿面损伤试验研究. 复合材料科学与工程. 2020(05): 47-52 . 百度学术
    15. 祁睿格,何春霞,晋强. 麦秸/聚氯乙烯复合材料新疆户外老化性能. 复合材料学报. 2020(07): 1539-1546 . 本站查看
    16. 王国建,孙耀宁,姜宏,李过,代礼葵. 湿热–高温循环老化对环氧乙烯基酯树脂/玻璃纤维复合材料性能影响. 工程塑料应用. 2020(09): 121-126+132 . 百度学术
    17. 代礼葵,孙耀宁,王国建. 玻璃纤维/环氧乙烯基酯树脂复合材料环境综合因素下的冲蚀行为及机制. 复合材料学报. 2019(09): 2059-2066 . 本站查看
    18. 王婷婷,张宝艳,闫鸿琛,石峰晖,马兆丹,李峰. 一种中温透波自黏性树脂及复合材料性能研究. 民用飞机设计与研究. 2019(04): 45-50 . 百度学术

    其他类型引用(7)

  • 目的 

    碳纤维增强水泥基复合材料(CFRCC)作为一种在建筑、基础设施和土木工程领域广泛应用的材料,具有高强度重量比、耐腐蚀性和耐久性等优点。在CFRCC中,界面是连接基体与增强相的关键桥梁,其性能直接影响着复合材料的粘结强度和宏观性能。然而,碳纤维的疏水性以及与水性悬浮液之间的结合行为不足,限制了其在水泥和其他矿物建筑材料中的应用。研究目的是深入探讨碳纤维增强水泥基复合材料(CFRCC)及其界面改性方法的研究现状和发展趋势。通过综合分析碳纤维、CFRCC和CFRCC界面的性能特点,以及总结国内外学者在CFRCC界面改性方面取得的成果,旨在揭示界面改性在提高CFRCC性能中的关键作用。还详细介绍了对碳纤维本身特性以及与水泥基质结合行为的表征方法,讨论各类方法在评估界面性能时的特点,并为未来研究和应用提供重要参考。

    方法 

    (1)本文详细介绍了碳纤维、CFRCC以及CFRCC界面的性能特点和存在的问题。纤维与基体的粘结强度不高是应用中遇到的难点问题,需要进一步对纤维与基体的界面性能进行深入研究,采取多种措施,例如使用分散剂,或者是进行表面改性,以改善界面性能,从而更好地发挥复合材料的力学和功能性。(2)介绍了近年来国内外学者对CFRCC及其界面改性方法的研究成果,包括氧化、电泳沉积、等离子体和接枝处理等表面改性方法,对比了各类方法在改性效果、操作难易程度、环保等方面的特点,并探讨了相关的机理分析。(3)介绍了研究碳纤维本身特性以及其与水泥基质结合行为的表征方法,包括微观表征方法、化学表征方法及力学表征方法,评价了各种表征方法在纤维改性方面的作用和相应的特点,并探讨了相关的机理分析。

    结论 

    提升CFRCC的界面性能对其整体性能提升和应用具有重要意义。本文系统探讨了CFRCC的结构和性质、界面改性方法以及改性后界面性能的表征方法及机理分析。针对CFRCC界面粘结强度不足、界面物理化学结合不牢固的问题,已有化学处理、表面修饰等方法可以有效改善,提高界面粘结力,从而提升CFRCC的力学性能和耐久性。各类表征方法的应用有助于深入理解界面改性的机理和影响因素,为CFRCC的性能优化和工程应用提供了重要基础。未来研究可从以下几个方面深入探讨:(1)进一步探索CFRCC的结构和性质,包括纤维取向、界面结合情况等,以为界面改性提供更多理论支持。(2)提升改性方法,包括优化工艺、降低生产成本、提高环保性,将改性技术与工程实际需求相结合。(3)发展操作便捷且易于标准化的试验方法,用于表征改性前后纤维与基体界面关键性能,以更全面地评估界面改性效果,为未来研究提供可靠数据支持。

图(9)  /  表(2)
计量
  • 文章访问数:  743
  • HTML全文浏览量:  304
  • PDF下载量:  383
  • 被引次数: 25
出版历程
  • 收稿日期:  2024-01-01
  • 修回日期:  2024-01-30
  • 录用日期:  2024-02-27
  • 网络出版日期:  2024-03-18
  • 刊出日期:  2024-10-14

目录

/

返回文章
返回