Processing math: 0%

新型CFRP-UHPC组合管混凝土圆柱轴压性能

刘磊, 何真, 汪鹏, 蔡新华, 韩笛扬, 罗滔

刘磊, 何真, 汪鹏, 等. 新型CFRP-UHPC组合管混凝土圆柱轴压性能[J]. 复合材料学报, 2023, 40(4): 2390-2404. DOI: 10.13801/j.cnki.fhclxb.20220623.003
引用本文: 刘磊, 何真, 汪鹏, 等. 新型CFRP-UHPC组合管混凝土圆柱轴压性能[J]. 复合材料学报, 2023, 40(4): 2390-2404. DOI: 10.13801/j.cnki.fhclxb.20220623.003
LIU Lei, HE Zhen, WANG Peng, et al. Axial compression behavior of novel concrete-filled circular CFRP-UHPC composite tubular columns[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2390-2404. DOI: 10.13801/j.cnki.fhclxb.20220623.003
Citation: LIU Lei, HE Zhen, WANG Peng, et al. Axial compression behavior of novel concrete-filled circular CFRP-UHPC composite tubular columns[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2390-2404. DOI: 10.13801/j.cnki.fhclxb.20220623.003

新型CFRP-UHPC组合管混凝土圆柱轴压性能

基金项目: 国家“973”重点基础研究发展计划(2015 CB655101);山东省自然科学基金项目(ZR2021 ME002)
详细信息
    通讯作者:

    何真,博士,教授,博士生导师,研究方向为水泥化学和新型低碳水工材料 E-mail: hezhen@whu.edu.cn

  • 中图分类号: TU398.9;TU375.3;TU317.1

Axial compression behavior of novel concrete-filled circular CFRP-UHPC composite tubular columns

Funds: National Key Basic Research Program of China (973 Program) (2015 CB655101); Natural Science Foundation of Shandong Province of China (ZR2021 ME002)
  • 摘要: 为研究超高性能混凝土(UHPC)管替代碳纤维增强聚合物(CFRP)-钢管混凝土组合柱中钢管的可行性,提出一种外部缠绕CFRP的UHPC预制管、内部现浇填充普通混凝土的新型CFRP-UHPC组合管混凝土(Concrete-filled CFRP-UHPC tube,CFFUT)柱。对10个CFFUT圆柱(包含2个对比柱)进行了单调轴压试验,研究了UHPC管壁厚度、CFRP环向包裹层数和核心混凝土强度等的影响规律。结果表明:CFRP-UHPC管可以有效提高组合柱的承载力、变形能力和延性;CFFUT圆柱破坏形态为核心混凝土压溃、UHPC管开裂和CFRP拉断,破坏后整体性较好,属延性破坏模式;CFFUT圆柱的极限承载力与UHPC管壁厚度、CFRP层数和核心混凝土强度呈正相关;延性系数随UHPC管壁厚度、CFRP层数增加而提高,随核心混凝土强度增加先提高后降低。揭示了CFFUT柱的界面增强作用机制,CFFUT柱极限承载力与同等截面普通混凝土柱相比提高93.9%~203.5%,且CFFUT柱极限承载力一定程度上与CFRP-钢管混凝土柱相当。建立了CFFUT圆柱轴压极限承载力理论计算模型,并通过有限元模拟验证,理论值、模拟值和试验结果吻合较好。
    Abstract: In order to study the feasibility of replacing steel tubes of concrete filled carbon fiber-reinforced polymer (CFRP)-steel tube columns with ultra high performance concrete (UHPC) tubes, a novel concrete-filled CFRP-UHPC tube (CFFUT) column was proposed. The CFFUT column consists of a combination of UHPC precast tubes externally wrapped with CFRP and an internal cast-in-place filled normal concrete. Ten CFFUT columns, including two contrast columns, were tested under monotonic axial compression, and the influences of UHPC tube thickness, CFRP layer numbers and filled concrete strength were investigated. The results show that CFRP-UHPC tube can effectively improve the bearing capacity, deformation capacity and ductility of composite columns. The failure of CFFUT column is mainly manifested as the collapse of filled concrete, cracking of UHPC tube and rupture of CFRP. The integrity of CFFUT column is good after failure, and it belongs to ductility failure mode. The ultimate bearing capacity of CFFUT column is positively correlated with the thickness of UHPC tube, the number of CFRP layers and the strength of filled concrete. Ductility factor increases with the increase of UHPC tube thickness and CFRP layer number, and increases first and then decreases with the increase of filled concrete strength. The interface strengthening mechanism of CFFUT column is revealed. The ultimate bearing capacity of CFFUT columns is 93.9%-203.5% higher than that of normal concrete columns with the same section, and the ultimate bearing capacity of CFFUT columns is equivalent to that of concrete-filled CFRP- steel tube columns to a certain extent. The theoretical calculation model of ultimate bearing capacity is established and verified by finite element analysis. The calculated and simulated values are in good agreement with the test results.
  • 工程用水泥基复合材料(Engineered cementitious composites,ECC)是一种通过微观力学和断裂力学原理对材料体系进行系统设计和优化的短纤维乱向水泥基复合材料[1-2],国内外学者围绕ECC的受拉、受弯等基本力学性能开展了大量相关研究工作,并取得了众多优异成果[3-8]。然而ECC的抗拉强度仍然有限,用于结构加固时对构件的抗拉、抗弯承载力和抗裂性能的增强效果有限,仍需与性能优异的增强材料共同使用,为此,众多学者相继开展筋材、网材等用于增强ECC受力性能的研究。

    Fischer等[9]、Mihashi等[10]进行了钢筋增强ECC单轴拉伸试验,结果表明,钢筋增强ECC试件裂缝分布更加均匀,减小了裂缝宽度,提高了变形能力。郑宇宙等[11]、朱忠锋等[12]对纤维增强ECC复合材料进行了单轴拉伸试验,结果表明,增强材料可以明显改善ECC的受拉性能,其轴向刚度、极限承载力也得到了显著提高。但是已研究的增强材料中,采用普通钢筋时,ECC的优越性能不能完全发挥,使用纤维编织网增强材料又降低了经济性。而高强不锈钢绞线抗拉强度高,具有良好的耐腐蚀性能和经济性。相关学者对高强不锈钢绞线加固混凝土结构的研究表明,其能有效提高加固构件的抗弯、抗剪承载力和刚度[13-17]。目前该加固技术已成功应用于实际工程,并取得了优异的效果[18-19]

    综上分析,高强不锈钢绞线网是由不锈钢绞线编制而成,本身具有很强的耐腐蚀、抗锈蚀能力;ECC具有良好的裂缝分散能力,正常使用状态裂缝宽度很小[1-10],二者结合后,可以使ECC开裂后钢绞线不发生锈蚀,耐久性好。因此,朱俊涛等[20]提出了新型高性能复合材料“高强不锈钢绞线网增强ECC”。已对高强不锈钢绞线网与ECC的粘结锚固性能[21-22]进行了试验和理论研究,结果表明,在试验所得的粘结滑移曲线中,平均粘结应力达到峰值开始微下降至峰值的85%左右之后,即进入延性强化段,该阶段平均粘结应力不再降低,仅滑移量呈水平线增长,说明高强不锈钢绞线网与ECC具有良好的粘结锚固性能。为了尽快使该复合材料在实际工程中得到应用,本文对高强不锈钢绞线网增强ECC的受拉性能进行试验和理论研究。

    为了研究ECC抗拉强度、高强不锈钢绞线网受拉方向配筋率及高强不锈钢绞线网增强ECC试件宽度三个影响因素对高强不锈钢绞线增强ECC抗拉性能的影响,共设计了9组试件,每组3个共27个试件,各组试件参数见表1。为了避免试件在加载过程中在变截面处应力集中破坏,本试验受拉试件均采用哑铃型试件,试件变截面处为弧形,试件示意图如图1所示。试验中ECC的两种配合比见刘伟康[5]研究成果,试件标准养护28天。对预留的ECC受拉薄板试件(280 mm×40 mm×15 mm)进行拉伸试验,得到两种ECC配合比的抗拉性能,各组试件的ECC抗拉性能见表2。高强不锈钢绞线直径均为2.4 mm,对其进行拉伸试验(3根),得到高强不锈钢绞线应力-应变曲线如图2所示。

    表  1  高强不锈钢绞线网增强工程水泥基复合材料(ECC)试件参数
    Table  1.  Parameters of engineered cementitious composites(ECC) reinforced by high-strength stainless steel wire mesh specimens
    Group numberTest section width bc /mmSteel strand spacing/mmReinforcement ratio of steel strand
    TC12 80 50 0.0028
    TC22 70 40 0.0032
    TC32 60 30 0.0037
    TC42 50 20 0.0048
    TC52 90 30 0.0037
    TD12 80 50 0.0028
    TD22 70 40 0.0032
    TD32 60 30 0.0037
    TD42 50 20 0.0048
    下载: 导出CSV 
    | 显示表格
    图  1  高强不锈钢绞线网增强ECC试件设计详图(虚线表示钢绞线)
    Figure  1.  Design details of ECC reinforced by high-strength stainless steel wire mesh specimens (Dotted line indicates steel strand)
    表  2  ECC受拉试验结果
    Table  2.  Tensile test results of ECC
    Group numberTensile strength/MPaUltimate tensile strainCracking stress/MPaCracking strain
    TC12 3.53 0.0179 2.45 0.000204
    TC22 3.53 0.0179 2.45 0.000204
    TC32 3.53 0.0179 2.45 0.000204
    TC42 3.53 0.0179 2.45 0.000204
    TC52 3.53 0.0179 2.45 0.000204
    TD12 3.46 0.0297 2.39 0.000189
    TD22 3.46 0.0297 2.39 0.000189
    TD32 3.46 0.0297 2.39 0.000189
    TD42 3.46 0.0297 2.39 0.000189
    下载: 导出CSV 
    | 显示表格
    图  2  高强不锈钢绞线应力-应变曲线
    Figure  2.  Stress-strain curves of high-strength stainless steel strand

    单轴拉伸试验采用100 kN电液伺服万能试验机。试验加载采用位移控制,加载速率为0.2 mm/min。试件正反面分别粘贴应变片,测试区段两侧面分别布置量程为30 mm的位移计。

    高强不锈钢绞线网增强ECC试件受拉试验的加载装置如图3(a)所示。当荷载达到极限荷载的25%~30%时,在试件接近中间位置表面出现一条细微裂缝(如图3(b)所示),宽度仅为0.02 mm。随着荷载的增加,试件表面不断出现新的裂缝,已有的裂缝宽度缓慢增大;当荷载增加到极限荷载的85%~90%,裂缝数量达到饱和状态(如图3(c)所示),试件表面布满相互平行的细微裂缝,此时各试件的最大裂缝宽度为0.2~0.28 mm,该状态的荷载远远超过了规范GB 50010—2010[23]规定的正常使用极限状态。继续加载,试件表面不再出现新裂缝,已有裂缝变宽。达到极限荷载时,试件表面的某条裂缝发展成主裂缝,同时伴随着明显的纤维拔出和断裂声,随后主裂缝处的纵向高强不锈钢绞线拉断。试件破坏形态如图3(d)所示。

    图  3  高强不锈钢绞线网增强ECC试件受拉破坏过程
    Figure  3.  Tensile failure process of ECC reinforced by high-strength stainless steel wire mesh specimens

    分析上述试验现象发现,高强不锈钢绞线的加入增加了ECC裂缝分散能力,其机制主要是钢绞线表面的螺旋进一步限制了ECC裂缝的开展,使受拉试件在达到极限承载力的85%~90%时,最大裂缝宽度依然满足规范GB 50010—2010[23]中正常使用极限状态裂缝要求。充分表明了本文研究的新型复合材料高强不锈钢绞线网增强ECC具有良好的抗裂性能;验证了高强不锈钢筋网和ECC具有很好的粘结性能。

    各组高强不锈钢绞线网增强ECC试件拉伸试验结果见表3 (试验值均取同一组试件的平均值,应力为试验拉力除以受力面积)。

    表  3  高强不锈钢绞线网增强ECC试件拉伸试验结果
    Table  3.  Tensile test results of ECC reinforced by high-strength stainless steel wire mesh specimens
    Group numberCracking stress/MPaCracking strainUltimate tensile stress/MPaUltimate tensile strainElastic modulus/MPa
    TC12 2.20 0.000156 7.09 0.030874 14 471
    TC22 2.25 0.000162 7.94 0.034056 14 122
    TC32 2.41 0.000171 8.77 0.030581 14 492
    TC42 2.56 0.000182 10.65 0.034815 14 578
    TC52 2.54 0.000181 8.82 0.033683 14 642
    TD12 1.97 0.000145 6.41 0.031929 14 216
    TD22 1.99 0.000149 7.81 0.043660 14 727
    TD32 2.07 0.000139 8.62 0.041116 14 460
    TD42 2.19 0.000159 10.30 0.035051 14 496
    下载: 导出CSV 
    | 显示表格

    对比表3中TC32组和TC52组试件,结果表明,增大截面宽度对受拉试件的开裂应力和极限应力几乎没有影响。

    对比表3中TC12~TC42及TD12~TD42试件的试验结果可知,随着高强不锈钢绞线配筋率的增大,受拉试件的开裂应力略有增大,极限应力明显增大。

    对比表3中TC12组与TD12组、TC22组与TD22组、TC32组与TD32组及TC42组与TD42组试件结果可知,随着ECC抗拉强度的增大,受拉试件的开裂应力和极限应力均明显增大。

    高强不锈钢绞线网增强ECC试件在单轴荷载作用下的受拉应力-应变曲线如图4所示。可知,高强不锈钢绞线网增强ECC试件受拉应力-应变曲线呈现出明显的两阶段特征,故可将其分为两个阶段:(1)可表征为弹性阶段,从试件开始加载到试件开裂为止,为峰值的25%~30%。在该阶段ECC和不锈钢绞线均处于弹性工作状态;应力-应变曲线接近为直线;(2)可表征为弹塑性阶段,对应于试件ECC开裂至完全破坏(纵向高强不锈钢绞线拉断)。该阶段应力-应变曲线为非线性关系,试件表现出明显的弹塑性性质。此阶段主要是ECC裂缝出现和发展,由于裂缝处的聚乙烯醇(PVA)纤维尚未从水泥基中拔出或拉断,而高强不锈钢绞线表面的螺旋增大了与ECC的粘结力。因此,该阶段ECC和高强不锈钢绞线依然共同承担拉力,亦是高强不锈钢绞线网增强ECC受拉的主要阶段。由图4还可以看出,极限应力是开裂应力的3~5倍,极限应变为开裂应变的200倍以上,达到3%~5%,超过了本文采用的ECC和高强不锈钢绞线本身的极限拉应变,显示了该新型高性能复合材料优越的变形能力。

    图  4  高强不锈钢绞线网增强ECC试件受拉应力-应变曲线
    Figure  4.  Tensile stress-strain curves of ECC reinforced by high-strength stainless steel wire mesh specimens

    图4可知,高强不锈钢绞线网增强ECC受拉应力-应变曲线可分为弹性阶段(OA段)和应变硬化阶段(AB段)。弹性阶段即认为应力-应变为线性关系;弹塑性(应变硬化)阶段应力由ECC和钢绞线共同承担,其本构模型由二者应力-应变关系组合而成。同时考虑该阶段高强不锈钢绞线网和ECC可能产生相对滑移,用γ表示钢绞线的应力发挥系数。本文提出了高强不锈钢绞线网增强ECC受拉本构模型,如图5所示。其表达式如下:

    图  5  高强不锈钢绞线网增强ECC受拉应力-应变曲线模型
    Figure  5.  Tensile stress-strain curve model of ECC reinforced by high-strength stainless steel wire mesh
    σse={Eseεse(εse (1)

    式中:σseσse,crσse,u分别为高强不锈钢绞线网增强ECC试件的受拉应力、开裂应力和极限拉应力;σeσs分别为ECC和高强不锈钢绞线的应力;Ese为高强不锈钢绞线网增强ECC的弹性模量;εseεse,crεse,u分别为高强不锈钢绞线网增强ECC试件的受拉应变、开裂应变和极限拉应变;γ为高强不锈钢绞线的应力发挥系数;ρs为高强不锈钢绞线的配筋率。

    高强不锈钢绞线网增强ECC受拉试件开裂前,由高强不锈钢绞线和ECC共同承担外部荷载;该阶段高强不锈钢绞线网与ECC间无滑移。根据应变协调原理得出弹性阶段高强不锈钢绞线网增强ECC受拉试件的弹性模量Ese如下式:

    {E_{\rm{se}}} = {E_{\rm{e}}} + {E_{\rm{s}}}\frac{{{A_{\rm{s}}}}}{{{A_{\rm{se}}}}} (2)

    式中:EeEs分别为ECC和高强不锈钢绞线的弹性模量;AseAs分别为高强不锈钢绞线网增强ECC和高强不锈钢绞线的截面面积。

    首先建立高强不锈钢绞线受拉本构模型。对本试验得到的高强不锈钢绞线应力-应变曲线(图2)采用三次多项式进行拟合,如下式:

    \frac{{{\sigma _{\rm{s}}}}}{{{\sigma _{\rm{s,u}}}}} = a\frac{{{\varepsilon _{\rm{s}}}}}{{{\varepsilon _{\rm{s,u}}}}} + (3 - 2a){\left( {\frac{{{\varepsilon _{\rm{s}}}}}{{{\varepsilon _{\rm{s,u}}}}}} \right)^2} + (a - 2){\left( {\frac{{{\varepsilon _{\rm{s}}}}}{{{\varepsilon _{\rm{s,u}}}}}} \right)^3}\tag{3a} (3a)

    式中:σs,u为高强不锈钢绞线的极限拉应力;εsεs,u分别为高强不锈钢绞线应变和极限拉应变。

    根据式(3a),基于最小二乘法对试验数据进行回归分析,得到待定常数a的值。对三组数据进行拟合,其值分别为3.37、3.26和3.36。由拟合结果可知,各组值较接近,故可取其平均值a=3.33。将a代入式(3a),则有:

    \frac{{{\sigma _{\rm{s}}}}}{{{\sigma _{\rm{s,u}}}}} = 3.33\frac{{{\varepsilon _{\rm{s}}}}}{{{\varepsilon _{\rm{s,u}}}}} - 3.66{\left( {\frac{{{\varepsilon _{\rm{s}}}}}{{{\varepsilon _{\rm{s,u}}}}}} \right)^2} + 1.33{\left( {\frac{{{\varepsilon _{\rm{s}}}}}{{{\varepsilon _{\rm{s,u}}}}}} \right)^3}\tag{3b} (3b)

    ECC的受拉应力-应变关系采用刘伟康[5]的研究成果,如下式:

    \!\!\!\!\!\!\quad{\sigma _{\rm{e}}} = \left\{ {\begin{array}{*{20}{l}} {\dfrac{{{\sigma _{\rm{e,cr}}}}}{{{\varepsilon _{\rm{e,cr}}}}}{\varepsilon _{\rm{e}}}}&{\;\;\left( {{\varepsilon _{\rm{e}}} \leqslant {\varepsilon _{\rm{e,cr}}}} \right)}\\ {\left( {0.31\dfrac{{{\varepsilon _{\rm{e}}}}}{{{\varepsilon _{\rm{e,u}}}}} + 0.69} \right){\sigma _{\rm{e,u}}}}&{\left( {{\varepsilon _{\rm{e,cr}}} \leqslant {\varepsilon _{\rm{e}}} \leqslant {\varepsilon _{\rm{e,u}}}} \right)} \end{array}} \right. (4)

    式中:σe,crσe,u为ECC的开裂应力和极限拉应力;εeεe,crεe,u为ECC的应变、开裂应变和极限拉应变。

    将式(2)、式(3b)和式(4)代入式(1),则高强不锈钢绞线网增强ECC受拉本构关系可表示为

    {\sigma _{\rm{se}}}{\rm{ = }}\left\{ {\begin{array}{*{20}{l}} {\left( {{E_{\rm{e}}} + {E_{\rm{s}}}\dfrac{{{A_{\rm{s}}}}}{{{A_{\rm{se}}}}}} \right){\varepsilon _{\rm{se}}}} \\ \begin{array}{l} \!\!\!\!\!\!\!\!\gamma \left[ {{\rm{3}}{\rm{.33}}\dfrac{{{\varepsilon _{\rm{se}}}}}{{{\varepsilon _{\rm{se,u}}}}}{\rm{ - 3}}{\rm{.66}}{{\left( {\dfrac{{{\varepsilon _{\rm{se}}}}}{{{\varepsilon _{\rm{se,u}}}}}} \right)}^2}{\rm{ + 1}}{\rm{.33}}{{\left( {\dfrac{{{\varepsilon _{\rm{se}}}}}{{{\varepsilon _{\rm{se,u}}}}}} \right)}^3}} \right]{\sigma _{\rm{s,u}}}\dfrac{{{A_{\rm{s}}}}}{{{A_{\rm{se}}}}} +\\ \!\! \left( {{\rm{0}}{\rm{.31}}\dfrac{{{\varepsilon _{\rm{se}}}}}{{{\varepsilon _{\rm{se,u}}}}} + 0.69} \right){\sigma _{\rm{e,u}}} \\ \end{array} \end{array}} \right. (5)

    基于应变协调,高强不锈钢绞线网增强ECC的开裂应变与ECC相等,即εse,cr=εe,cr;同时高强不锈钢绞线网增强ECC受拉试件的破坏形态为纵向高强不锈钢绞线拉断破坏,其极限应变主要取决于高强不锈钢绞线的极限应变大小,即εse,u=εs,u

    分别将开裂状态和破坏状态的应变值代入式(5),利用MATLAB软件进行分析,得到式(5)中高强不锈钢绞线应力发挥系数γ的值,如表4所示。可知,各组值较接近,故取其平均值(0.725)作为式(5)中γ的值。

    表  4  高强不锈钢绞线应力发挥系数γ取值
    Table  4.  Value of stress development coefficient γ of high-strength stainless steel strand
    Group numberγR2
    TC12 0.73 0.9267
    TC22 0.72 0.9459
    TC32 0.76 0.9607
    TD12 0.71 0.9157
    TD22 0.72 0.9755
    TD32 0.71 0.9325
    下载: 导出CSV 
    | 显示表格

    基于高强不锈钢绞线网增强ECC受拉试件的本构关系模型(式(5)),推导出高强不锈钢绞线网增强ECC受拉试件的开裂应力和极限拉应力即抗拉强度的计算公式:

    \left\{ {\begin{array}{*{20}{l}} {{\sigma _{\rm{se,cr}}} = \left( {{E_{\rm{e}}} + {E_{\rm{s}}}\dfrac{{{A_{\rm{s}}}}}{{{A_{\rm{se}}}}}} \right){\varepsilon _{\rm{se,cr}}}} \\ {{f_{\rm{se,u}}} = 0.725{\sigma _{\rm{s,u}}}\dfrac{{{A_{\rm{s}}}}}{{{A_{\rm{se}}}}} + {\sigma _{\rm{e,u}}}} \end{array}} \right. (6)

    式中,fse,u为高强不锈钢绞线网增强ECC受拉试件的极限应力,即抗拉强度。

    为验证本文提出的高强不锈钢绞线网增强ECC受拉本构模型,将试验得出的应力-应变曲线与式(5)计算的应力-应变曲线进行对比,如图6所示。将试验得出的开裂应力和极限拉应力(抗拉强度)与式(6)计算的结果进行对比,如表5所示。

    表  5  试验与式(6)计算得到的高强不锈钢绞线网增强ECC试件开裂应力和极限应力的对比
    Table  5.  Comparison of cracking stress and ultimate tensile stress of ECC reinforced by high-strength stainless steel wire mesh specimens obtained by test and equation (6)
    Group numberCracking stress/MPaUltimate tensile stress/MPa
    TCRTCR
    TC12 2.20 2.26 0.97 7.09 6.79 1.04
    TC22 2.25 2.27 0.99 7.94 7.25 1.10
    TC32 2.41 2.28 1.06 8.77 7.87 1.11
    TC42 2.56 2.30 1.11 10.65 9.19 1.16
    TC52 2.54 2.28 1.11 8.82 7.87 1.12
    TD12 1.97 1.94 1.01 6.41 6.58 0.97
    TD22 1.99 1.95 1.02 7.81 7.03 1.11
    TD32 2.07 1.96 1.06 8.62 7.63 1.13
    TD42 2.19 1.98 1.11 10.30 8.90 1.16
    Notes: T—Test value; C—Calculated value; RT/C.
    下载: 导出CSV 
    | 显示表格
    图  6  高强不锈钢绞线网增强ECC受拉本构模型验证
    Figure  6.  Verification of tensile constitutive model of ECC reinforced by high-strength stainless steel wire mesh

    图6可看出,本文提出的本构模型与试验应力-应变曲线整体趋势完全一致。其中,本文所提的受拉本构关系曲线的弹性阶段与试验值基本重合,符合良好;其弹塑性阶段与试验曲线弯曲度均吻合较好(TD42稍有差别),仅试验在ECC开裂后,荷载有微小波动,属于正常情况。因此,本文提出的高强不锈钢绞线网增强ECC受拉本构模型能较准确地预测受拉应力-应变关系全曲线。表5中的高强不锈钢绞线网增强ECC受拉试件的开裂应力试验值与计算值比值的平均值为1.05,标准差为0.05,变异系数为0.05;极限应力试验值与计算值比值的平均值为1.10,标准差为0.06,变异系数为0.05,说明本文提出的式(6)计算结果和试验值吻合良好。

    综上所述,本文提出的高强不锈钢绞线网增强ECC受拉本构模型和开裂应力、抗拉强度计算公式可用于反映高强不锈钢绞线网增强ECC受拉状态的应力-应变关系和分析其受拉性能。

    对高强不锈钢绞线网增强工程水泥基复合材料(Engineered cementitious composites,EEC) 的受拉性能进行试验和理论研究,提出了其受拉本构关系模型。

    (1)高强不锈钢绞线表面的螺旋进一步限制了ECC裂缝的开展,增加了ECC裂缝的分散能力,使受拉试件在达到极限承载力的85%时,最大裂缝宽度依然小于规范GB 50010—2010[23]中正常使用极限状态裂缝要求。充分显示了高强不锈钢绞线网增强ECC的良好抗裂性能。

    (2)高强不锈钢绞线网增强ECC受拉应力-应变曲线分为弹性阶段和弹塑性阶段,弹塑性阶段是其主要受拉阶段,该阶段是ECC和钢绞线共同受拉至钢绞线拉断,极限应变可达到3%~5%,显示了该新型复合材料优越的变形能力。

    (3)随着ECC抗拉强度提高和纵向钢绞线配筋率增大,高强不锈钢绞线网增强ECC的开裂应力和极限拉应力(抗拉强度)均增大。

    (4)所建立的受拉本构模型及模型参数计算公式与试验结果吻合良好,能够较好地反映高强不锈钢绞线网增强ECC的受拉应力-应变关系,预测其受力状态;所提出的高强不锈钢绞线网增强ECC受拉开裂应力、抗拉强度的计算公式与试验结果吻合良好,可以用于分析该新型复合材料受拉性能。

  • 图  1   碳纤维增强聚合物(CFRP)-超高性能混凝土(UHPC)组合管混凝土(CFFUT)柱示意图

    Figure  1.   Sketch of concrete-filled carbon fiber-reinforcedpolymer (CFRP)-ultra-high performance concrete (UHPC) tube (CFFUT) columns

    图  2   CFFUT柱制作流程

    Figure  2.   Preparation of CFFUT columns

    图  3   测量元件布置及加载装置

    Figure  3.   Measurement instruments and test setup

    N—Axial compressive force

    图  4   CFFUT柱试件典型破坏模式

    Figure  4.   Typical failure modes of CFFUT column specimens

    图  5   CFFUT柱典型轴向荷载-位移(P-Δ)曲线

    Figure  5.   Typical axial load-deformation (P-Δ) curve of CFFUT columns

    P0—Axial load of first crack of UHPC; Δ0—Axial displacement of first crack of UHPC

    图  6   不同CFRP层数柱试件P-Δ曲线

    Figure  6.   P-Δ curves of CFFUT specimens with different CFRP layer numbers

    图  7   CFFUT柱极限承载力Pu与CFRP层数ncf的关系

    Figure  7.   Relationship between bearing capacity Pu of CFFUT columns and CFRP layer numbers ncf

    图  8   不同UHPC管壁厚度CFFUT柱试件P-Δ曲线

    Figure  8.   P-Δ curves of CFFUT specimens with different UHPC tube thickness

    图  9   CFFUT柱Pu与UHPC管壁厚度tu的关系

    Figure  9.   Relationship between Pu of CFFUT columns and UHPC tube thickness tu

    图  10   不同核心混凝土强度CFFUT柱P-Δ曲线

    Figure  10.   P-Δ curves of CFFUT column specimens with different filled concrete strength

    图  11   CFFUT柱Pu与核心混凝土强度的关系

    Figure  11.   Relationship between Pu of CFFUT columns and filled concrete strength

    图  12   不同组合柱位移延性系数:(a) 类型A;(b) 类型B

    Figure  12.   Definition of ductility factor for different composite columns: (a) Type A; (b) Type B

    Δ1—Axial displacement at the intersection of peak load and initial tangent modulus; Δcu—Ultimate displacement; Et—Initial tangent modulus

    图  13   CFRP-UHPC-普通混凝土(NC)界面概念图

    Figure  13.   Schematic diagram of CFRP-UHPC-normal concrete (NC) interface

    图  14   UHPC-NC界面

    Figure  14.   Interface of UHPC- NC

    图  15   CFFUT柱与CFRP-钢管混凝土柱(CFFST)的承载力比较

    Figure  15.   Comparison of bearing capacity between CFFUT columns and concrete-filled CFRP-steel tube (CFFST) columns

    fequ—Equivalent compressive strength; ts—Thickness of steel tube; tcf—Thickness of CFRP

    图  16   CFFUT柱轴心受力示意图

    Figure  16.   Schematic diagram of CFFUT columns under uniaxial compression

    σf—Radial compressive stress of CFRP; σur—Radial compressive stress of UHPC; σuh—Circumferential tensile stress of UHPC; σcf—Circumferential tensile stress of CFRP; σc—Axial compressive stress of concrete; σuc—Axial compressive stress of UHPC

    图  17   CFFUT柱有限元模型

    Figure  17.   Finite element model of CFFUT column

    图  18   典型CFFUT柱试验和有限元破坏模式对比

    Figure  18.   Comparison of failure modes between test and FEM result of typical CFFUT column

    图  19   CFRP、UHPC和混凝土的损伤云图

    Figure  19.   Damage cloud map of CFRP, UHPC and concrete

    DAMAGEFT—Tensile damage of fiber; DAMAGEC—Compressive damage

    图  20   CFRP、UHPC和混凝土的等效塑性应变

    Figure  20.   Equivalent plastic strain of CFRP, UHPC and concrete

    PEEQ—Equivalent plastic strain

    图  21   CFFUT柱计算值Nu、模拟值Nu,FE与试验结果Pu的比较

    Figure  21.   Comparison of calculated values Nu, simulated values Nu,FE and test results Pu of CFFUT columns

    表  1   试件编号及参数

    Table  1   Number and parameters of specimens

    No.tu/mmncffcu/MPafc/MPafts/MPaE/GPaPu/kNαΔu/mmβμ
    MA-0-0 32.8 28.9 2.62 26.5 724.0 1.000 2.429 1.000 1.14
    MA-0-U12.5 12.5 0 32.8 28.9 2.62 26.5 977.0 1.349 4.213 1.734 1.31
    MA-F0100-U12.5 12.5 1 32.8 28.9 2.62 26.5 1403.8 1.939 8.164 3.361 1.45
    MA-F0100-U20 20.0 1 32.8 28.9 2.62 26.5 1476.0 2.039 7.577 3.119 1.52
    MA-F0100-U30 30.0 1 32.8 28.9 2.62 26.5 1650.2 2.279 5.823 2.397 1.59
    MA-F0200-U12.5 12.5 2 32.8 28.9 2.62 26.5 1811.8 2.502 11.295 4.650 1.55
    MA-F0200-U30 30.0 2 32.8 28.9 2.62 26.5 2197.6 3.035 8.929 3.676 1.64
    MA-F0200-U12.5-C50 12.5 2 53.5 47.3 3.69 32.0 2186.0 3.019 9.697 3.992 1.59
    MA-F0200-U12.5-C80 12.5 2 90.4 69.6 4.13 36.8 2418.0 3.340 9.214 3.793 1.66
    MA-F0200-U12.5-C100 12.5 2 118.0 105.7 6.65 44.1 2664.2 3.680 5.424 2.233 1.31
    Notes: tu—Thickness of UHPC tube; ncf—Number of CFRP layers; fcu—Cubic compressive strength of filled concrete; fc—Axial compressive strength of filled concrete; fts—Splitting tensile strength of filled concrete; E—Elastic modulus of filled concrete; Pu—Ultimate load; α—Ratio of ultimate load between CFFUT column and contrast column (MA-0-0) ; Δu—Ultimate displacement; β—Ratio of ultimate displacement between CFFUT column and contrast column (MA-0-0); μ—Ductility factor. The letter MA denotes the monotonic axial load condition, the letter F denotes the number of CFRP layers, the letter U denotes the thickness of UHPC tube, the letter C denotes the nominal filled concrete strength, omitted when C30 filled concrete is used. For example, the MA-F0200-U12.5-C50 indicates that the load condition of specimen is monotonic axial compression, the number of CFRP layers is 2, the thickness of UHPC tube is 12.5 mm, and the nominal filled concrete strength is 50 MPa.
    下载: 导出CSV

    表  2   混凝土和UHPC配合比

    Table  2   Mixture proportion of concrete and UHPC kg·m−3

    TypeCementSilica fumeFly ashCAGGFAGGWaterSPSteel fiber
    C30 280 70 1043 826 175 5.1
    C50 363 80 1055 738 155 9.0
    C80 455 40 1080 665 150 9.9
    C100 787 126 136 1050 189 26.0
    UHPC 787 126 136 1050 189 26.0 195
    Notes: CAGG—Coarse aggregate; FAGG—Fine aggregate; SP—Superplasticizer.
    下载: 导出CSV

    表  3   CFFUT柱计算值Nu、模拟值 Nu,FE与试验值Pu的比较

    Table  3   Comparison of calculated values Nu, simulated values Nu,FE and test results Pu of CFFUT columns

    No.Nu/kNNu,FE/kNNu/PuNu,FE/Pu
    MA-F0100-U12.51350.01362.40.960.97
    MA- F0100-U201615.71499.41.091.02
    MA- F0100-U301917.11523.91.160.92
    MA-F0200-U12.51671.51875.10.921.03
    MA- F0200-U302238.62116.11.020.96
    MA-F0200-U12.5-C501897.20.87
    MA-F0200-U12.5-C802170.70.90
    MA-F0200-U12.5-C1002613.50.98
    下载: 导出CSV
  • [1]

    XIAO Y, HE W H, MAO X Y, et al. Confinement design of CFT columns for improved seismic performance[C]//Proceedings of the International Workshop on Steel and Concrete Composite Construction (IWSCCC-2003). Taipei, 2003: 217-226.

    [2] 王庆利, 赵颖华, 顾威. 圆截面CFRP-钢复合管混凝土结构的研究[J]. 沈阳建筑工程学院学报(自然科学版), 2003, 19(4):272-274.

    WANG Qingli, ZHAO Yinghua, GU Wei. Presumption on the concrete filled circular CFRP-steel composite tube structures[J]. Journal of Shenyang Jianzhu University (Natural Science),2003,19(4):272-274(in Chinese).

    [3]

    XIAO Y, HE W H, CHOI K K. Confined concrete-filled tubular columns[J]. Journal of Structural Engineering,2005,131(3):488-497. DOI: 10.1061/(ASCE)0733-9445(2005)131:3(488)

    [4]

    PARK J W, HONG Y K, HONG G S, et al. Design formulas of concrete filled circular steel tubes reinforced by carbon fiber reinforced plastic sheets[J]. Procedia Engineering,2011,14(1):2916-2922.

    [5]

    SUNDARRAJA M C, PRABHU G G. Experimental study on CFST members strengthened by CFRP composites under compression[J]. Journal of Constructional Steel Research,2012,72:75-83. DOI: 10.1016/j.jcsr.2011.10.014

    [6]

    TAO Z, HAN L H, ZHUANG J P. Axial loading behavior of CFRP strengthened concrete-filled steel tubular stub columns[J]. Advances in Structural Engineering,2007,10(1):37-46. DOI: 10.1260/136943307780150814

    [7]

    OSTROWSKI K, DUDEK M, SADOWSKI L. Compressive behaviour of concrete-filled carbon fiber-reinforced polymer steel composite tube columns made of high performance concrete[J]. Composite Structures,2020,234:111668. DOI: 10.1016/j.compstruct.2019.111668

    [8] 郭莹, 许天祥, 刘界鹏. 圆CFRP-钢复合管约束高强混凝土短柱轴压试验研究[J]. 建筑结构学报, 2019, 40(5):124-131. DOI: 10.14006/j.jzjgxb.2019.05.012

    GUO Ying, XU Tianxiang, LIU Jiepeng. Experimental study on axial behavior of circular CFRP-steel composite tubed high-strength concrete stub columns[J]. Journal of Building Structures,2019,40(5):124-131(in Chinese). DOI: 10.14006/j.jzjgxb.2019.05.012

    [9] 焦楚杰, 李松, 崔力仕, 等. CFRP约束钢管-活性粉末混凝土短柱轴压性能[J]. 复合材料学报, 2021, 38(2):439-448. DOI: 10.13801/j.cnki.fhclxb.20200608.003

    JIAO Chujie, LI Song, CUI Lishi, et al. Axial compression behaviour of CFRP confined reactive power concrete filled steel tube stub columns[J]. Acta Materiae Compositae Sinica,2021,38(2):439-448(in Chinese). DOI: 10.13801/j.cnki.fhclxb.20200608.003

    [10]

    TOUTANJI H. Design equations for concrete columns confined with hybrid composite materials[J]. Advanced Composite Materials,2001,10(2-3):127-138. DOI: 10.1163/156855101753396609

    [11] 于峰. PVC-FRP管混凝土柱力学性能的试验研究与理论分析[D]. 西安: 西安建筑科技大学, 2007.

    YU Feng. Experimental study and theoretical analysis on mechanical behavior of PVC-FRP confined concrete column[D]. Xi'an: Xi'an University of Architecture and Technology, 2007(in Chinese).

    [12]

    JIANG S F, MA S L, WU Z Q. Experimental study and theoretical analysis on slender concrete-filled CFRP-PVC tubular columns[J]. Construction and Building Materials,2014,53:475-487. DOI: 10.1016/j.conbuildmat.2013.11.089

    [13]

    FAKHARIFAR M, CHEN G D. Compressive behavior of FRP-confined concrete-filled PVC tubular columns[J]. Composite Structures,2016,141:91-109. DOI: 10.1016/j.compstruct.2016.01.004

    [14]

    GAO C, HUANG L, YAN L B, et al. Strength and ductility improvement of recycled aggregate concrete by polyester FRP-PVC tube confinement[J]. Composites Part B: Engineering,2019,162:178-197. DOI: 10.1016/j.compositesb.2018.10.102

    [15]

    ZHANG H Q, HADI M N S. Geogrid-confined pervious geopolymer concrete piles with FRP-PVC confined concrete core: Concept and behaviour[J]. Construction and Building Materials,2019,211:12-25. DOI: 10.1016/j.conbuildmat.2019.03.231

    [16] 李晓飞, 黄紫青, 蒋治鑫, 等. 轴压下CFRP-钢管约束混凝土柱试验研究[J]. 广西大学学报(自然科学版), 2019, 44(1):68-76.

    LI Xiaofei, HUANG Ziqing, JIANG Zhixin, et al. Experimental study on axial compression of CFRP-steel tube confined concrete short column[J]. Journal of Guangxi University (Natural Science Edition),2019,44(1):68-76(in Chinese).

    [17] 赵筠, 师海霞, 路新瀛. 超高性能混凝土基本性能与试验方法[M]. 北京: 中国建材工业出版社, 2019.

    ZHAO Jun, SHI Haixia, LU Xinying. Fundamental characteristics and test methods of ultra-high performance concrete[M]. Beijing: China Building Materials Press, 2019(in Chinese).

    [18]

    SUN C S, BABARINDE O, FARZANA N, et al. Use of UHPC jackets in coastal bridge piles[C]//The 2nd International Interactive Symposium on Ultra-high Performance Concrete. Albany, 2019.

    [19]

    XIE J, FU Q, YAN J B. Compressive behaviour of stub concrete column strengthened with ultra-high performance concrete jacket[J]. Construction and Building Materials,2019,204:643-658. DOI: 10.1016/j.conbuildmat.2019.01.220

    [20]

    HADI M N S, ALGBURI A H M, SHEIKH M N, et al. Axial and flexural behaviour of circular reinforced concrete columns strengthened with reactive powder concrete jacket and fibre reinforced polymer wrapping[J]. Construction and Building Materials,2018,172:717-727. DOI: 10.1016/j.conbuildmat.2018.03.196

    [21] 吴香国. 基于耐久性的超高性能纤维改性混凝土叠合墩柱设计概念[J]. 华北水利水电学院学报, 2012, 33(6):73-77.

    WU Xiangguo. Design conception of ultra-high-performance fiber reinforced concrete hybrid pier with durability consideration[J]. Journal of North China Institute of Water Conservancy and Hydroelectric Power,2012,33(6):73-77(in Chinese).

    [22] 林上顺, 黄卿维, 陈宝春, 等. 跨海大桥U-RC组合桥墩设计[J]. 交通运输工程学报, 2017, 17(4):55-65. DOI: 10.3969/j.issn.1671-1637.2017.04.006

    LIN Shangshun, HUANG Qinwei, CHEN Baochun, et al. Design of U-RC composite pier of sea-crossing bridge[J]. Journal of Traffic and Transportation Engineering,2017,17(4):55-65(in Chinese). DOI: 10.3969/j.issn.1671-1637.2017.04.006

    [23] 杨医博, 杨凯越, 吴志浩, 等. 配筋超高性能混凝土用作免拆模板对短柱力学性能影响的实验研究[J]. 材料导报, 2017, 31(12):120-124. DOI: 10.11896/j.issn.1005-023X.2017.023.017

    YANG Yibo, YANG Kaiyue, WU Zhihao, et al. An experimental study on the influence of reinforced ultra-high performance concrete permanent template to short column's mechanical property[J]. Materials Reports,2017,31(12):120-124(in Chinese). DOI: 10.11896/j.issn.1005-023X.2017.023.017

    [24] 单波, 刘志, 肖岩, 等. RPC预制管混凝土组合柱组合效应试验研究[J]. 湖南大学学报(自然科学版), 2017, 44(3):88-96. DOI: 10.16339/j.cnki.hdxbzkb.2017.03.011

    SHAN Bo, LIU Zhi, XIAO Yan, et al. Experimental research on composite action of concrete-filled RPC tube under axial load[J]. Journal of Hunan University (Natural Sciences),2017,44(3):88-96(in Chinese). DOI: 10.16339/j.cnki.hdxbzkb.2017.03.011

    [25]

    TIAN H W, ZHOU Z, ZHANG Y, et al. Axial behavior of reinforced concrete column with ultra-high performance concrete stay-in-place formwork[J]. Engineering Structures,2020,210:110403. DOI: 10.1016/j.engstruct.2020.110403

    [26]

    WILLE K, EI-TAWIL S, NAAMAN A E. Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading[J]. Cement and Concrete Composites,2014,48:53-66. DOI: 10.1016/j.cemconcomp.2013.12.015

    [27] 王俊颜, 郭君渊, 肖汝诚, 等. 高应变强化超高性能混凝土的裂缝控制机理和研究[J]. 土木工程学报, 2017, 50(11):10-17.

    WANG Junyan, GUO Junyuan, XIAO Rucheng, et al. Study on crack control mechanism of strain-hardening ultra-high performance concrete[J]. China Civil Engineering Journal,2017,50(11):10-17(in Chinese).

    [28] 王庆利. CFRP-钢管混凝土[M]. 北京: 科学出版社, 2017.

    WANG Qingli. Concrete filled CFRP-Steel tube[M]. Beijing: Science Press, 2017(in Chinese).

    [29] 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Architecture & Building Press, 2019(in Chinese).

    [30] 中国建筑材料联合会. 超高性能混凝土基本性能与试验方法: T/CBMF 37—2018/T/CCPA 7—2018[S]. 北京: 中国建材工业出版社, 2018.

    China Building Materials Federation. Fundamental characteristics and test methods of ultra-high performance concrete: T/CBMF 37—2018/T/CCPA 7—2018[S]. Beijing: China Building Materials Press, 2018(in Chinese).

    [31] 中国工程建设标准化协会. 碳纤维片材加固混凝土结构技术规程: CECS 146: 2003[S]. 北京: 中国计划出版社, 2003.

    China Engineering Construction Standardization Association. Technical specification for strengthening concrete structures with carbon fiber reinforced polymer laminate: CECS 146: 2003[S]. Beijing: China Planning Press, 2003(in Chinese).

    [32]

    CUI C, SHEIKH S A. Experimental study of normal and high strength concrete confined with fiber reinforced polymers[J]. Journal of Composites for Construction,2010,14(5):553-561. DOI: 10.1061/(ASCE)CC.1943-5614.0000116

    [33]

    AALETI S, SRITHARAN S. Quantifying bonding characteristics between UHPC and normal-strength concrete for bridge deck application[J]. Journal of Bridge Engineering,2019,24(6):04019041. DOI: 10.1061/(ASCE)BE.1943-5592.0001404

    [34]

    ZHANG Y, ZHU P, LIAO Z Q, et al. Interfacial bond properties between normal strength concrete substrate and ultra-high performance concrete as a repair material[J]. Construction and Building Materials,2020,235:117431. DOI: 10.1016/j.conbuildmat.2019.117431

    [35]

    FENG S, XIAO H G, LIU R, et al. The bond properties between ultra-high-performance concrete and normal strength concrete substrate: Bond macro-performance and overlay transition zone microstructure[J]. Cement and Concrete Composites,2022,128:104436. DOI: 10.1016/j.cemconcomp.2022.104436

    [36] 朱和国, 张爱文. 复合材料原理[M]. 北京: 国防工业出版社, 2013.

    ZHU Heguo, ZHANG Aiwen. The fundamental principles of composites[M]. Beijing: National Defense Industry Press, 2013(in Chinese).

    [37] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB/T 50010—2010[S]. 北京: 中国建筑工业出版社, 2010.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for design of concrete structures: GB/T 50010—2010[S]. Beijing: China Architecture & Building Press, 2010(in Chinese).

  • 期刊类型引用(16)

    1. 王新玲,李世伟,金蕾蕾,范家俊. 高强不锈钢绞线网/ECC约束高强混凝土受压本构模型. 工程力学. 2023(09): 153-160 . 百度学术
    2. 王新玲,罗鹏程,钱文文,李可. 高强不锈钢绞线网增强工程水泥基复合材料薄板受弯承载力研究. 建筑结构学报. 2022(01): 164-172 . 百度学术
    3. 姚淇耀,陆宸宇,彭林欣,滕晓丹,罗月静. 氯盐侵蚀作用下BFRP筋增强海砂ECC的拉伸及弯曲性能试验. 复合材料学报. 2022(03): 1215-1227 . 本站查看
    4. 朱俊涛,张凯,邹旭岩,李可,张普. 钢绞线与水泥基复合材料局部黏结滑移模型. 哈尔滨工程大学学报. 2022(04): 541-548 . 百度学术
    5. 王新玲,李赟璞,李苗浩夫,范家俊. 高强不锈钢绞线网增强ECC加固RC短柱轴心受压试验. 复合材料学报. 2022(05): 2308-2317 . 本站查看
    6. 朱俊涛,张凯,王新玲,李可. 高强钢绞线网增强ECC与混凝土界面黏结-滑移关系研究. 工程力学. 2022(09): 204-214 . 百度学术
    7. 李可,王宇,李志强,朱俊涛. 高强钢绞线网增强ECC加固无损RC梁受弯承载力研究. 建筑结构学报. 2022(12): 82-90 . 百度学术
    8. 李可,李思辰,周擎威,王新玲. 高强钢绞线与工程水泥基复合材料黏结性能试验. 沈阳工业大学学报. 2022(06): 706-713 . 百度学术
    9. 惠迎新,王文炜,朱忠锋. FRP-ECC复合约束混凝土圆柱反复受压力学性能. 复合材料学报. 2022(11): 5586-5598 . 本站查看
    10. 王新玲,陈永杰,钱文文,李可,朱俊涛. 高强不锈钢绞线网增强工程水泥基复合材料弯曲性能试验. 复合材料学报. 2021(04): 1292-1301 . 本站查看
    11. 王春红,左祺,支中祥,徐磊,SARANI Zakaria,SHERAZ Hussain Siddique Yousfani. 聚乙烯醇乳液改性对汉麻秸秆纤维/水泥基复合材料性能的影响. 复合材料学报. 2021(05): 1567-1575 . 本站查看
    12. 朱俊涛,赵奎,邹旭岩,王新玲,李可,张哲. 高强不锈钢绞线网在ECC中的搭接性能. 土木与环境工程学报(中英文). 2021(03): 174-182 . 百度学术
    13. 朱俊涛,侯晶强,王新玲,李可. 基于损伤演化的钢绞线网/ECC黏结滑移关系. 华中科技大学学报(自然科学版). 2021(06): 103-108 . 百度学术
    14. 范建伟,李可,王新玲. 高性能复合材料“高强钢绞线/ECC”板受弯试验分析. 建筑科学. 2021(09): 130-136 . 百度学术
    15. 王新玲,卫垚鑫,范建伟,朱俊涛. 新型复合材料“高强钢绞线网/ECC约束素混凝土”受压性能试验研究. 复合材料学报. 2021(11): 3904-3911 . 本站查看
    16. 王新玲,赵要康,周擎威,朱俊涛. 高强不锈钢绞线与ECC黏结滑移性能研究. 华中科技大学学报(自然科学版). 2020(12): 108-113 . 百度学术

    其他类型引用(2)

图(21)  /  表(3)
计量
  • 文章访问数:  1414
  • HTML全文浏览量:  652
  • PDF下载量:  110
  • 被引次数: 18
出版历程
  • 收稿日期:  2022-04-21
  • 修回日期:  2022-06-12
  • 录用日期:  2022-06-13
  • 网络出版日期:  2022-06-23
  • 刊出日期:  2023-04-14

目录

/

返回文章
返回