复合材料加筋板的屈曲与后屈曲研究综述

胡媛媛, 张桂嘉, 陈普会, 童明波, 王芳丽

胡媛媛, 张桂嘉, 陈普会, 等. 复合材料加筋板的屈曲与后屈曲研究综述[J]. 复合材料学报, 2025, 42(5): 2349-2368. DOI: 10.13801/j.cnki.fhclxb.20241030.003
引用本文: 胡媛媛, 张桂嘉, 陈普会, 等. 复合材料加筋板的屈曲与后屈曲研究综述[J]. 复合材料学报, 2025, 42(5): 2349-2368. DOI: 10.13801/j.cnki.fhclxb.20241030.003
HU Yuanyuan, ZHANG Guijia, CHEN Puhui, et al. Review on buckling and post-buckling of stiffened composite panels[J]. Acta Materiae Compositae Sinica, 2025, 42(5): 2349-2368. DOI: 10.13801/j.cnki.fhclxb.20241030.003
Citation: HU Yuanyuan, ZHANG Guijia, CHEN Puhui, et al. Review on buckling and post-buckling of stiffened composite panels[J]. Acta Materiae Compositae Sinica, 2025, 42(5): 2349-2368. DOI: 10.13801/j.cnki.fhclxb.20241030.003

复合材料加筋板的屈曲与后屈曲研究综述

基金项目: 航空科学基金 (20230009052004)
详细信息
    通讯作者:

    童明波,博士,教授,博士生导师,研究方向为复合材料飞机结构设计与分析 E-mail: tongw@nuaa.edu.cn

  • 中图分类号: TB332

Review on buckling and post-buckling of stiffened composite panels

Funds: Aeronautical Science Foundation of China (20230009052004)
  • 摘要:

    复合材料加筋板因其卓越的轻质、高强度和高刚度特性,在航空航天领域的飞机承力构件中得到了广泛应用。随着对材料性能要求的不断提升,深入理解这类结构的屈曲与后屈曲行为变得尤为重要。本文综述了国内外复合材料加筋板屈曲及后屈曲性能的研究进展,系统归纳了理论方法、有限元仿真技术及实验研究方法。研究表明:加筋板的几何参数(如加筋高度和间距)及层合板的铺层顺序显著影响其屈曲性能;同时,考虑材料非线性和几何非线性对准确预测后屈曲行为至关重要。此外,本文探讨了预测复合材料加筋板屈曲和后屈曲失效模式及载荷的关键技术难点。通过分析现有研究的局限性,本文指出了未来可能的研究方向,为复合材料加筋板的屈曲与后屈曲研究及其工程应用提供了理论基础和实践指导。

     

    Abstract:

    Composite stiffened panels are widely used in aircraft load-bearing components in the aerospace field due to their excellent lightweight, high strength and high stiffness properties. With the continuous improvement of material performance requirements, it is particularly important to have a deep understanding of the buckling and post-buckling behavior of such structures. This article reviews the research progress on buckling and post-buckling properties of composite stiffened panels, and systematically summarizes theoretical approach, finite element simulation technology and experimental research methods. Studies have shown that the geometric parameters (such as height and spacing of stiffeners) and lay-up sequence of stiffened panels significantly affect the buckling performance. At the same time, considering material nonlinearity and geometric nonlinearity is crucial to accurately predict post-buckling behavior. In addition, this article explores the key technical difficulties in predicting buckling and post-buckling failure modes and loads of composite stiffened panels. By analyzing the limitations of existing researches, this article points out possible future research directions, providing a theoretical basis and practical guidance for buckling and post-buckling research on composite stiffened panels and their engineering applications.

     

  • 随着超高速飞行器马赫数的不断提升,对飞行器电缆罩等结构件的质量、力学承载性能、抗静电性能和防热性能等都提出了更为苛刻的要求[1]。传统的飞行器耐高温与承载部件大多采用金属材料,并在表面涂覆涂层来实现防热,这种结构存在质量大、隔热差及耐用性难保证等缺点,难以满足结构-功能一体化的设计需求[2-3]。纤维增强树脂基复合材料由于其丰富的结构设计性、优异的热-力性能和低成本加工与维护等优势,已成为耐高温领域的理想候选材料[4-5]

    为满足纤维增强树脂基复合材料高承载-功能一体化的使用需求,通常采取纤维混杂和使用三维纺织结构的方式[6-7]。例如,碳纤维(CF)和玻璃纤维(GF)混杂不仅能在力学性能上实现互补,提高其承载效率,还可以对纤维进行合理的排布和编织,获得更低的电阻率和导热系数[8-9]。此外,2.5D机织复合材料作为一种新型三维纺织结构复合材料,其纬纱平行排列,经纱在垂直于纬纱的方向以一定角度进行交织。在受力过程中,结构中的经纱可以阻碍裂纹的扩展,有效阻止分层现象发生[10-11]。在使用过程中,2.5D机织复合材料常处于极端热环境下,由高温引起的热应力集中和热变形过大常常导致复合材料提前失效,因此,研究2.5D机织复合材料的热-力学行为具有重要的理论和实践意义[12-13]

    近几十年来,热固性树脂的快速发展,大大加快了纤维增强树脂基复合材料高温力学性能的研究。Ruggles-Wrenn等[14]研究了二维层合和三维正交机织碳/聚酰亚胺复合材料在329℃下的拉伸-压缩疲劳行为。Zhao等[15]围绕2.5D机织碳/双马来酰亚胺树脂(简称为双马树脂)复合材料进行了常温和高温下纬向拉伸疲劳研究,分析了温度和疲劳载荷分别对2.5D机织碳/双马复合材料性能的影响。Song等[16]探究了温度对2.5D机织碳/双马复合材料拉伸性能影响,并分析了其微观损伤模式和高温下的损伤机制。Dang等[17]探究了2.5D机织碳/环氧复合材料温度效应下的弯曲失效机制,发现室温和高温下2.5D机织碳/环氧复合材料的主要破坏机制均包括纤维的断裂、基体开裂和界面脱粘,但高温下因基体软化,试样损伤更加严重。曹淼[18]为研究2.5D机织碳/环氧复合材料的热氧稳定性和层间性能,开展了不同老化时间下的层间剪切和冲击后弯曲力学性能测试,并分析了其力学性能随老化时间退化规律。Rathore等[19]研究了温度对碳-玻纤/环氧层合复合材料弯曲性能的影响,随着温度的升高,复合材料的强度和刚度都持续下降,且碳纤维铺层数更多的复合材料力学性能下降速度更快。于洋等[20]研究了高温老化对三维正交碳-玻纤/双马复合材料的三点弯曲和层间剪切力学性能影响,结果发现Z向纱线可以有效阻挡层间裂纹的扩展,减缓材料的老化速率。目前,学者们针对2.5D机织复合材料的热-力学行为研究主要围绕非混杂结构,而关于2.5D机织混杂结构复合材料在高温环境下的损伤及混杂协同机制的研究还鲜有报道[21-22]

    本文设计制备了2.5D机织碳纤维-玻璃纤维/双马来酰亚胺树脂复合材料(简称为2.5D机织混杂复合材料),并根据复合材料的动态热机械性能设定了力学性能测试温度上限,开展了不同温度场(25℃、150℃、240℃、300℃)下2.5D机织混杂复合材料的三点弯曲和层间剪切力学性能测试。借助光学显微镜和扫描电镜对试样的断口形貌进行了观测,阐明了2.5D机织混杂复合材料的高温力学行为及损伤机制,以期为三维纺织复合材料的多功能-承载一体化设计和应用提供数据依据。

    2.5D机织混杂复合材料增强体选用日本东丽公司生产的T300-3 K型碳纤维和南京玻璃纤维研究设计院生产的E型玻璃纤维,并通过多层角联织机完成织造,基体选用航天材料及工艺研究所研制的R801双马树脂。其中,复合材料截面和预制体结构示意图如图1所示,碳纤维、玻璃纤维和双马树脂性能如表1所示。此外,2.5D机织混杂复合材料增强体的混杂方式为夹芯混杂,整个结构一共有6层,中间4层为玻璃纤维,顶层和底层为碳纤维,增强体编织参数如表2所示。并采用树脂传递模塑工艺(RTM)制备2.5D机织混杂复合材料,树脂注射温度为100℃,固化工艺为:170℃ 2 h、210℃ 3 h、230℃ 3 h,常温冷却,并利用下式计算复合材料的纤维体积分数,结果见表2

    Vf=1MmρabH
    (1)

    式中:Vf为纤维体积含量(vol%);M为复合材料质量(g);m为增强体质量(g);ρ为双马树脂密度(g·cm−3);abH分别对应着复合材料的长(mm)、宽(mm)、厚(mm)。

    图  1  2.5D机织混杂复合材料截面和预制体结构示意图
    Figure  1.  Schematic diagram of 2.5D woven hybrid composite material section and precast structure
    表  1  复合材料各组分性能参数
    Table  1.  Performance parameters of each component of composite materials
    MaterialTypeTensile strength/MPaTensile modulus/GPaElongation at break/%Density/(g·cm−3)
    Carbon fiber (CF)T300-3 K35302302.11.8
    Glass fiber (GF)E3400 734.82.54
    BismaleimideR801 90 4.22.51.25
    下载: 导出CSV 
    | 显示表格
    表  2  2.5D机织混杂复合材料参数
    Table  2.  2.5D woven hybrid composite material parameters
    YarnFiber linear
    density/tex
    LayerPreformed unit
    density/(yarn·cm−1)
    Composite
    thickness/mm
    Fiber volume
    fraction/vol%
    Warp (CF)200281.8549.87
    Warp (GF)14448
    Weft (CF)20034
    Weft (GF)14448
    下载: 导出CSV 
    | 显示表格

    采用DMA Q800型动态热机械分析仪(DMA)对复合材料动态热机械性能进行测试。试样尺寸为50 mm×10 mm×1.85 mm (长×宽×厚),加载方式为三点弯曲,测试频率为1 Hz,升温速率为5℃/min,测试温度范围为25℃(室温)~350℃。最终根据复合材料热力学性能设定三点弯曲和层间剪切性能测试温度。

    复合材料三点弯曲力学性能测试参照标准GB/T 1449—2005[23],试样尺寸为70 mm×10 mm×1.85 mm (长×宽×厚),加载速率为1 mm/min,经向加载,测试跨距为54 mm。弯曲强度σ3b、弯曲模量E的计算公式如下所示:

    σ3b=3PL2WH2
    (2)
    E=KL34WH3
    (3)

    式中:P为最大弯曲载荷(N);L为三点弯曲的测试跨距(mm);W为复合材料试样的宽度(mm);H为复合材料的厚度(mm);K为三点弯曲载荷-位移曲线的斜率值。

    复合材料层间剪切力学性能测试参照标准JC/T 773—2010[24],试样尺寸为20 mm×10 mm×1.85 mm (长×宽×厚),加载速率为1 mm/min,经向加载,测试跨距为10 mm,层间剪切强度τm计算公式如下所示:

    τm=3P4WH
    (4)

    复合材料的三点弯曲和层间剪切实验均在MTS Criterion C44电子万能试验机(美特斯工业系统(中国)有限公司)上进行,实验温度为25、150、240和300℃。其中,高温下的力学性能测试需借助高温炉进行加热,升热速率为10℃/min,当温度达到设定温度时,保温30 min,使试样受热均匀。每个温度下测试3个试样,取平均值。试样形状尺寸和实验加载图如图2所示。

    图  2  高温力学性能测试设备及加载方式
    Figure  2.  High temperature mechanical properties test equipment and loading method

    采用深圳超眼的DM4带屏显微镜和日本日立SU8100型场发射扫描电子显微镜(SEM)对三点弯曲和层间剪切加载后试样的宏细观损伤形貌进行观测。

    图3为2.5D机织混杂复合材料的DMA曲线,其在高温下的动态力学性能可通过储能模量和损耗因子来表征,其中,储能模量反映材料刚度,损耗因子反映材料形变过程能量耗损大小[25]。测试结果表明,随着温度的升高,2.5D机织混杂复合材料的储能模量逐渐降低,损耗因子先增后减。当温度为300℃时,储能模量保留率仍有72.32%,表现出优异的耐高温性能。当温度升高到304℃左右时,储能模量开始急剧下降,此时的温度为复合材料的玻璃化转变温度(Tg)。基于此,将2.5D机织混杂复合材料三点弯曲和层间剪切力学性能最高测试温度设为300℃。

    图  3  2.5D机织混杂复合材料DMA曲线
    Figure  3.  DMA curves of 2.5D woven hybrid composite

    图4(a)为不同温度下2.5D机织混杂复合材料的三点弯曲载荷-位移曲线。可以看出,2.5D机织混杂复合材料表现出明显的温度效应,随着温度升高,曲线的斜率以及峰值载荷都逐渐下降。在25℃下,初始阶段曲线呈线性上升,在第一次达到峰值载荷后略有下降,这代表试样开始出现损伤,但此时复合材料并未失效,随着载荷重新分配,曲线再次上升。在150℃和240℃高温场中,复合材料载荷-位移曲线与室温下相似,载荷在达到峰值后,也未完全失效,但同室温下相比,载荷波动更加缓和,塑性特征更加显著。在300℃下,此时温度接近复合材料的玻璃化转变温度,树脂开始从玻璃态向高弹态转变,纤维/基体界面结合力减弱,应力传递效率降低,曲线斜率及峰值载荷有明显下降[19]

    图  4  不同温度下2.5D机织混杂复合材料三点弯曲力学性能:(a) 载荷-位移曲线;(b) 弯曲强度和弯曲模量
    Figure  4.  Three-point bending mechanical properties of 2.5D woven hybrid composites at different temperatures: (a) Load-displacement curves; (b) Flexural strength and flexural modulus

    图4(b)为不同温度下2.5D机织混杂复合材料的弯曲强度和模量。可以看出,随着温度升高,2.5D机织混杂复合材料的弯曲强度和模量逐渐下降。复合材料在150、240和300℃下的平均弯曲强度分别为261.20、251.63和237.30 MPa,相较于25℃下试样的弯曲强度(308.43 MPa)分别降低了15.31%、18.42%和23.06%;150、240和300℃下的平均弯曲模量分别为27.98、21.14和9.33 GPa,相较于25℃下试样的弯曲模量(31.11 GPa)分别降低了10.06%、32.05%和70.01%。可以看出,相较于弯曲模量,弯曲强度对温度的敏感性更低。

    图5为不同温度下2.5D机织混杂复合材料三点弯曲测试后受压面、受拉面和侧面的损伤形貌。可以看出,随着温度升高,试样受压面和受拉面上的损伤逐渐减弱,从侧面观察到试样的损伤主要集中在试样的上半部分并沿经纱方向扩展,主要的损伤模式包括纱线断裂、基体裂纹、纤维/基体脱粘和分层等。

    图  5  不同温度下2.5 D机织混杂复合材料弯曲损伤宏观形貌
    Figure  5.  Macromorphologies of bending damage of 2.5 D woven hybrid composites at different temperatures

    在25℃下,2.5D机织混杂复合材料表面受损严重,树脂发生脆性失效,典型的破坏模式是受压面的纤维剪切断裂和受拉面的基体开裂。侧面可以看到基体出现细微裂纹、纤维扭结断裂及树脂与纤维束间发生轻微脱粘。其中,纤维的断裂主要集中在复合材料的顶层,这是由于CF断裂应变较低,在弯曲载荷作用下比GF更容易出现损伤。试样底层未发生明显破坏,表现出较好的抗拉性能。随着温度升高(150℃),载荷对试样表面的损伤相对减弱,基体破坏面积减少,在试样的侧面可以看到基体裂纹数量增多且伴有层间裂纹并沿着经纱方向扩展。在240℃下,试样侧面的基体裂纹继续扩张并向厚度方向延展,中间层GF出现局部扭结带,纤维/基体界面脱粘现象更加显著。在300℃下,复合材料韧性增强,试样受拉面仅有局部微裂纹产生,没有出现明显的纤维断裂。但由于复合材料界面粘结强度降低,试样出现了更大面积的脱粘现象。

    为进一步研究2.5D机织混杂复合材料在不同温度下的弯曲破坏模式和损伤特征,使用SEM对试样进行细观损伤形貌观测,如图6所示。可以看出,温度对2.5D机织混杂复合材料的损伤影响显著。在25℃下,可以观察到树脂基体的开裂及纤维束的剪切断裂,且断面较整齐,具有明显的脆性特征。在150℃下,断口中存在明显纤维抽拔,纤维上树脂呈鳞片状附着在其表面,界面剥离特征明显。240℃下,复合材料逐渐表现出塑性特性,可见局部基体发生塑性开裂,界面强度降低,纤维发生扭转和开裂。在300℃下,由于分子热运动加剧,基体软化,复合材料的界面结合状况更差,微裂纹沿复合材料的经纱和纬纱方向扩散,纤维与基体分离严重。

    图  6  不同温度下2.5D机织混杂复合材料弯曲损伤SEM图像
    Figure  6.  SEM images of bending damage of 2.5D woven hybrid composites at different temperatures

    由以上研究可以看出,2.5D机织混杂复合材料在弯曲载荷作用下,试样上侧承受压缩应力,下侧承受拉伸应力,同时伴随着面内剪切作用,复合材料弯曲受力示意图如图7(a)所示。因此,当2.5D机织混杂复合材料受到弯曲载荷时,上侧受压缩应力作用发生局部损伤。随着载荷的增加,纤维束上的纤维微裂纹增加并且不断地沿着轴向扩展。同时,下侧基体受拉开裂,整个破坏是从受压面外侧到受拉面内侧的渐进过程,屈曲状态相反的经纱起主要的承载作用,如图7(b)所示。当温度升至300℃时,由于树脂基体软化,界面黏附力降低,更容易出现脱粘现象。同时,由于软化后的树脂对内部纤维的保护,试样没有明显的纤维断裂,承载主体由纤维向树脂基体转变[26]。此外,纤维和基体热膨胀系数存在一定差异,且碳纤维热膨胀系数(−1×10−6~1×10−6 K−1)和双马树脂热膨胀系数(4.4×10−5 K−1)差异比玻璃纤维(5×10−6~12×10−6 K−1)和双马树脂差异更大。随着温度升高,纤维比树脂以更慢的速率膨胀,会在界面处产生热应力并出现损伤,且碳纤维和双马树脂间的界面损伤更加严重[19, 27]。在弯曲载荷的作用下,损伤开始相互结合并扩展,最终导致复合材料高温下的失效,如图7(c)所示。

    图  7  2.5D机织混杂复合材料弯曲受力及损伤示意图:(a) 受力图;(b) 25℃损伤示意图;(c) 300℃损伤示意图
    Figure  7.  Schematic diagram of bending force and damage of 2.5D woven hybrid composites: (a) Force diagram; (b) Schematic diagram of damage at 25℃; (c) Schematic diagram of damage at 300℃

    短梁剪切测试被广泛用于表征材料层间剪切行为,在测试时通过缩小试样弯曲跨厚比来增加内部剪切应力,使试样发生层间破坏从而获得层间剪切强度[28]图8(a)为不同温度下2.5D机织混杂复合材料层间剪切载荷-位移曲线。可以发现,随着温度的升高,纤维和基体间的结合作用减弱,试样抗剪切性能逐渐下降,4条曲线的峰值载荷和斜率逐渐减小并呈塑性断裂特征。在25℃下,试样初始阶段载荷-位移曲线呈近似线性关系,纤维/基体界面保持良好的力学性能。载荷达到峰值后会小幅度下降,这代表试样可能出现了基体开裂和纤维断裂损伤。但试样并未失效,继续加载过程中由于损伤累积,应力呈波动下降直至最终失效,表现出较好的断裂韧性。在150℃和240℃下,试样载荷-位移曲线同室温下相似,此时测试温度没有达到复合材料的玻璃化转变温度,纤维和树脂基体的性能并未受到严重影响。在300℃下,2.5D机织混杂复合材料层间剪切力学性能下降较为明显,这是由于复合材料失效主要由纤维和基体的界面状态决定。此时温度接近复合材料的玻璃化转变温度,基体出现软化,并且由于纤维与其外围树脂热膨胀系数差异导致纤维/基体界面处的的应力传递效率进一步降低。

    图  8  不同温度下2.5D机织混杂复合材料层间剪切力学性能:(a) 载荷-位移曲线;(b) 剪切强度
    Figure  8.  Interlayer shear mechanical properties of 2.5D woven hybrid composites at different temperatures: (a) Load-displacement curves; (b) Shear strength

    不同温度下复合材料的层间剪切强度如图8(b)所示,可知,2.5D机织混杂复合材料层间剪切强度随温度升高不断下降,说明温度对试样层间剪切性能有着显著影响。复合材料在150、240和300℃下的平均弯曲强度分别为30.53、29.72和26.03 MPa,相较于25℃下试样的层间剪切强度(32.11 MPa)分别降低了4.92%、7.47%和18.93%。试样在各温度场下的剪切强度变化不大,表现出优异的层间剪切性能。

    图9为不同温度下2.5D机织混杂复合材料层间剪切测试后的侧面损伤形貌。可以看出,短梁试样上半部分受压出现纱线与基体界面开裂,下半部分呈拉伸破坏并存在明显的分层现象。随着温度升高,界面退化引起损伤范围增大,导致试样最终失效。主要的损伤模式为纱线断裂、基体开裂、界面脱粘及分层等。

    在25℃下,由于剪切应力作用,基体产生微裂纹并在材料内部传播,在纤维/基体界面处发生应力集中,引起分层和基体开裂。由于试样接结经纱在厚度和面内方向的分布,抑制了分层的扩展。试样未出现明显弯折,表明复合材料内部损伤并不严重。在150℃下,试样底部出现了明显的纤维断裂和大面积的界面开裂,其中,CF的断口较为平整,而GF抽拔现象比较严重。在240℃下,试样出现了大面积的界面脱粘和开裂现象,并集中在受压面和受拉面处。在300℃下,基体抵抗变形的能力减弱,试样发生塑性变形。由于纤维和基体的主要作用分别是承载和传递载荷,软化的基体不能有效将来自压头的压应力传递给纤维束,使纤维与树脂界面脱粘和分层破坏进一步加重,层间裂纹、层内横向裂纹和层内纵向裂纹交织在一起,并由表面向内部扩展。

    图  9  不同温度下2.5D机织混杂复合材料层间剪切侧面损伤形貌
    Figure  9.  Morphology of 2.5D woven hybrid composites with interlayer shear side damage at different temperatures

    为进一步研究2.5D机织混杂复合材料在不同温度条件下层间剪切破坏模式和损伤特征,使用SEM对试样进行细观损伤形貌的观测,如图10所示。可以看出,2.5D机织混杂复合材料的失效模式随着温度的升高发生了较大的改变。在25℃下,复合材料表现出较大的脆性,试样断口附近存在大量基体碎屑。同时,纤维表面附有较多树脂,表现出良好的界面黏结性能。在150℃下,纤维表面相对光滑,树脂较少,此时树脂开始软化,界面结合作用减弱。在240℃下,复合材料的界面结合状况更差,纤维束与树脂接触面分离,大量纤维断裂。在300℃下,基体对纤维的黏附力下降,可以清楚地看到纤维的抽拔以及纤维从基体上剥离的轨迹。

    图  10  不同温度下2.5D机织混杂复合材料层间剪切损伤SEM图像
    Figure  10.  SEM images of interlaminar shear damage of 2.5D woven hybrid composites at different temperatures

    短梁法在测定2.5D机织混杂复合材料层间剪切强度时,不仅存在层间剪切应力,还有弯曲应力、横向剪切应力和局部挤压应力等[29],如图11(a)所示。室温下,2.5D机织混杂复合材料试样上侧受压缩应力作用,基体内部出现微小裂纹,纤维产生扭结而断裂,下侧在拉伸应力和剪切应力作用下发生脱粘,进而表现出分层破坏。由于复合材料内部纤维与基体界面黏结良好,有效地阻止了裂纹的扩展和分层破坏,试样失效部分较少,如图11(b)所示。在300℃高温环境下,由于纤维/基体界面性能减弱,软化的基体不能将弯曲载荷及时有效传递给增强体纤维束,在剪切应力作用下更容易产生分层破坏,复合材料损伤区域增大。同时,高温下基体抵抗变形的能力减弱,试样发生塑性变形,纤维弯折程度加大,进而出现应力集中,造成纱线断裂。此外,下侧经纱在拉伸应力作用下会向内收缩,并对相邻纬纱产生挤压,导致其发生相应的挤压破坏,如图11(c)所示。界面开裂区域多、失效部分少,增强体承载大部分剪切应力,与基体之间的应力差异增大,树脂裂纹沿经纱方向扩展。

    图  11  2.5D机织混杂复合材料层间剪切受力及损伤示意图:(a) 受力图;(b) 25℃损伤示意图;(c) 300℃损伤示意图
    Figure  11.  Schematic diagram of interlaminar shear force and damage of 2.5D woven hybrid composites: (a) Force diagram; (b) Schematic diagram of damage at 25℃; (c) Schematic diagram of damage at 300℃

    (1) 2.5D机织碳纤维-玻璃纤维/双马来酰亚胺树脂复合材料具有优异的耐高温性能。通过DMA测得该复合材料玻璃化转变温度Tg为304℃,当测试温度升至300℃时,其储能模量保留率仍有72.32%,表现出良好的热稳定性。

    (2) 2.5D机织碳纤维-玻璃纤维/双马来酰亚胺树脂复合材料具有明显的温度效应。温度上升导致纤维/基体界面结合力减弱,复合材料的弯曲强度、弯曲模量和层间剪切强度逐渐下降,承载主体由纤维向树脂基体转变。

    (3) 2.5D机织碳纤维-玻璃纤维/双马来酰亚胺树脂复合材料的三点弯曲失效为压缩应力、拉伸应力和剪切应力耦合作用下的结果,整个破坏是一个从受压面外侧到受拉面内侧的渐进过程。弯曲载荷下,2.5D机织混杂复合材料的室温破坏模式以局部的纤维断裂和基体开裂为主,而高温破坏模式则以纤维/基体界面脱粘为主导。

    (4) 2.5D机织碳纤维-玻璃纤维/双马来酰亚胺树脂复合材料的层间剪切失效为层间剪切应力、弯曲应力、横向剪切应力和局部挤压应力多力耦合作用下的结果。剪切载荷下,2.5D机织混杂复合材料的室温破坏模式主要为分层破坏。而随着温度升高,树脂由脆性失效变为韧性失效,复合材料也因基体软化出现塑性变形,基体开裂、界面脱粘及分层破坏决定了材料的最终失效。

  • 图  1   工程算法流程图[11]

    Figure  1.   Flowchart of engineering calculation method[11]

    图  2   有效宽度处理:(a)试验曲板横截面;(b)等效横截面[21]

    Figure  2.   Effective width approach: (a) Test curved panel cross section;(b) Equivalent cross section[21]

    图  3   帽型加筋板3种蒙皮有效宽度[22]

    Figure  3.   Three skin effective widths for omega-stiffened panel[22]

    图  4   加筋板筋条种类

    Figure  4.   Types of stiffeners for stiffened panels

    图  5   后屈曲渐进损伤分析流程图

    Figure  5.   Flowchart of post-buckling progressive damage analysis

    图  6   双线性本构模型[36]

    tn—Normal stress component; ts, tt—Shear stress component; δn, δs, δt—Interface separation deformation displacement; D—Damage coefficient

    Figure  6.   Bilinear constitutive model[36]

    图  7   冲击损伤有限元模型[59]

    Figure  7.   Finite element model of impact damage[59]

    图  8   压缩试验夹具示意图(左)、刀口夹具(右)[64]

    Figure  8.   Schematic diagram of compression test fixture (left), knife edge fixture (right) [64]

    图  9   压缩试验夹具示意图[10]

    Figure  9.   Schematic diagram of compression test fixture[10]

    图  10   剪切试验夹具示意图[10]

    Figure  10.   Schematic diagram of shear test fixture[10]

    图  11   剪切试验夹具现场图[67]

    Figure  11.   Field diagram of shear test fixture[67]

    图  12   压剪混合试验夹具示意图

    F—Force; T1—Shear load; T2—Compression load

    Figure  12.   Schematic diagram of compression-shear test fixture

    图  13   破坏模式:(a)工字型;(b) J型;(c) T型[72]

    Figure  13.   Failure mode: (a) I-type; (b) J-type; (c) T-type[72]

    图  14   数字图像相关(DIC)测量的屈曲模态:(a)未屈曲;(b)局部屈曲;(c)局部屈曲;(d)屈曲模式转变[73]

    Figure  14.   Buckling modes measured by digital image correlation (DIC): (a) Before buckling; (b) Local buckling; (c) Local buckling; (d) Buckling mode transition[73]

    图  15   加筋板剪切破坏[72]

    Figure  15.   Shear failure of stiffened panel[72]

    图  16   加筋板冲击损伤[60]

    Figure  16.   Impact damage of stiffened panel[60]

    图  17   含冲击损伤加筋板的破坏现象:(a)筋条侧;(b)蒙皮侧[60]

    Figure  17.   Failure phenomenon of stiffened panel with impact damage: (a) Stiffeners side; (b) Skin side[60]

    图  18   开裂模式:(a)厚度1.2 mm、载荷60 kN;(b)厚度1.5 mm、载荷80 kN[98]

    Figure  18.   Cracking modes: (a) Thickness 1.2 mm, load-60 kN; (b) Thickness 1.5 mm, load-80 kN[98]

    表  1   Camanho和Matthews的材料性能折减模型[29]

    Table  1   Material property reduction model of Camanho and Matthews[29]

    Failure mode Degradation coefficient
    Fiber tensile failure E11d=0.07E11
    Fiber compression failure E11d=0.14E11
    Matrix tensile/shear failure E22d=0.2E22
    G12d=0.2G12, G23d=0.2G23
    Matrix compression/shear failure E22d=0.4E22
    G12d=0.4G12, G23d=0.4G23
    Notes: E11 and E22 are the elastic moduli in the fiber and matrix directions; G12 and G23 are the shear moduli; d stands for degradation.
    下载: 导出CSV

    表  2   Chang和Lessard的材料性能折减模型[30]

    Table  2   Material property reduction model of Chang and Lessard[30]

    Failure mode Degradation coefficient
    Fiber failure E11d=0, E22d=0, G12d=0
    Matrix failure E22d=0, ν21d=0
    Fiber-matrix shear failure G12d=0, ν12d=0, ν21d=0
    Notes: E11d and E22d are the elastic moduli in the fiber and matrix directions after degradation; G12d is the shear moduli after degradation; ν12d and ν21d are poisson’s ratios after degradation.
    下载: 导出CSV
  • [1]

    CHAGRAOUI H, LAZGHAB T, SOULA M. Buckling optimization and post-buckling analysis of omega sub-stiffened composite panels using different cohesive interface properties[J]. Thin-Walled Structures, 2023, 189: 110944. DOI: 10.1016/j.tws.2023.110944

    [2]

    WANG Y, WANG F, JIA S, et al. Experimental and numerical studies on the stability behavior of composite panels stiffened by tilting hat-stringers[J]. Composite Structures, 2017, 174: 187-195. DOI: 10.1016/j.compstruct.2017.04.039

    [3]

    ABRAMOVICH H, WELLER T. Buckling and postbuckling behavior of laminated composite stringer stiffened curved panels under axial compression: Experiments and design guidelines[J]. Journal of Mechanics of Materials and Structures, 2009, 4(7): 1187-1207.

    [4] 王海燕, 段世慧, 孙侠生. 复合材料加筋板后屈曲设计技术欧盟研究综述[J]. 航空工程进展, 2015, 6(2): 139-148. DOI: 10.3969/j.issn.1674-8190.2015.02.002

    WANG Haiyan, DUAN Shihui, SUN Xiasheng. Review on the EU research projects of design and analysis of stiffened composite panels including post-buckling[J]. Advances in Aeronautical Science and Engineering, 2015, 6(2): 139-148(in Chinese). DOI: 10.3969/j.issn.1674-8190.2015.02.002

    [5] 朱菊芬, 陈浩然, 陈绍杰, 等. 复合材料加筋板后屈曲强度工程分析方法探讨[J]. 航空学报, 1991(12): 639-642. DOI: 10.3321/j.issn:1000-6893.1991.12.019

    ZHU Jufen, CHEN Haoran, CHEN Shaojie, et al. Engineering method research of post-buckling[J]. Acta Aeronautica et Astronautica Sinica, 1991(12): 639-642(in Chinese). DOI: 10.3321/j.issn:1000-6893.1991.12.019

    [6] 张雅倩, 刘轶轩, 吴泳芙, 等. 反对称铺设复合材料层合板非线性后屈曲分析[J]. 应用力学学报, 2023, 40(4): 778-787.

    ZHANG Yaqian, LIU Yixuan, WU Yongfu, et al. Nonlinear post-buckling analysis of composite laminates with antisymmetric angle-ply[J]. Chinese Journal of Applied Mechanics, 2023, 40(4): 778-787(in Chinese).

    [7] 钟博, 王新峰, 于健. 石英纤维与碳纤维混杂加筋壁板剪切后屈曲性能研究[J]. 南京航空航天大学学报, 2023, 55(6): 1111-1117.

    ZHONG Bo, WANG Xinfeng, YU Jian. Shear post-buckling behavior of quartz fiber and carbon fiber hybrid stiffened panels[J]. Journal of Nanjing University of Aernautics & Astrnautics, 2023, 55(6): 1111-1117(in Chinese).

    [8]

    FENG Y, WANG W, LU S, et al. Axial compressive performances of stiffened composite panels: Experimental and numerical study[J]. Alexandria Engineering Journal, 2023, 71: 115-130. DOI: 10.1016/j.aej.2023.03.047

    [9]

    FENG Y, MA B, CUI R, et al. Effects of hygrothermal environment on the buckling and postbuckling performances of stiffened composite panels under axial compression[J]. Composite Structures, 2020, 242: 112132. DOI: 10.1016/j.compstruct.2020.112132

    [10] 邹建超. 纤维复合材料冲击后压缩/剪切的损伤机理及性能预测研究[D]. 大连: 大连理工大学, 2023.

    ZOU Jianchao. Study on damage mechanism and performance prediction of fiber composites under compression/shear after impact[D]. Dalian: Dalian University of Technology, 2023(in Chinese).

    [11] 孙振亚. 基于人工神经网络的复合材料加筋板失效行为预测研究[D]. 大连: 大连理工大学, 2022.

    SUN Zhenya. Prediction of failure behavior of composite stiffened panels using artificial neural network[D]. Dalian: Dalian University of Technology, 2022(in Chinese).

    [12] 王彬文, 艾森, 张国凡, 等. 考虑不确定性的复合材料加筋壁板后屈曲分析模型验证方法[J]. 航空学报, 2020, 41(8): 280-287.

    WANG Binwen, AI Sen, ZHANG Guofan, et al. Validation method for post-buckling analysis model of stiffened composite panel considering uncertainties[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 223987(in Chinese).

    [13]

    FENG Y, LIU S, ZHANG T, et al. Experimental and theoretical investigation on the shear performance of stiffened composite panel with I-shaped stiffeners[J]. Composite Structures, 2022, 284: 115234. DOI: 10.1016/j.compstruct.2022.115234

    [14] 杨钧超, 柴亚南, 陈向明, 等. 复合材料加筋板剪切屈曲与后屈曲承载特性[J]. 科学技术与工程, 2019, 19(7): 289-293. DOI: 10.3969/j.issn.1671-1815.2019.07.048

    YANG Junchao, CHAI Yanan, CHEN Xiangming, et al. Shear buckling and post-buckling behavior of composite stiffened panels[J]. Science Technology and Engineering, 2019, 19(7): 289-293(in Chinese). DOI: 10.3969/j.issn.1671-1815.2019.07.048

    [15]

    HAYATDAVOODI A, SHANMUGAM N E. Web buckling and ultimate strength of composite plate girders subjected to shear and bending[J]. International Journal of Structural Stability and Dynamics, 2015, 1450047.

    [16]

    HAYATDAVOODI A, NAZARI M, JAVADI PORDESARI A. Investigation on the collapse behavior of diagonal stiffened composite plate girders subjected to shear loading[J]. International Journal of Steel Structures, 2020, 20(2): 386-399. DOI: 10.1007/s13296-019-00291-7

    [17] 高志刚, 冯宇, 马斌麟, 等. 航空复合材料加筋板压缩屈曲及后屈曲力学性能[J]. 航空材料学报, 2020, 40(1): 53-61. DOI: 10.11868/j.issn.1005-5053.2019.000067

    GAO Zhigang, FENG Yu, MA Binlin, et al. Compressive bucking and post-bucking mechanical properties of aeronautic composite stiffened panel[J]. Journal of Aeronautical Materials, 2020, 40(1): 53-61(in Chinese). DOI: 10.11868/j.issn.1005-5053.2019.000067

    [18] 王菲菲, 崔德刚, 熊强, 等. 复合材料加筋板后屈曲承载能力工程分析方法[J]. 北京航空航天大学学报, 2013, 39(4): 494-497.

    WANG Feifei, CUI Degang, XIONG Qiang, et al. Engineering analysis of post-buckling loading capability for composite stiffened panels[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(4): 494-497(in Chinese).

    [19] 高伟, 刘存, 陈顺强. 变厚度复合材料加筋板轴压试验及分析方法[J]. 航空学报, 2022, 43(11): 148-156.

    GAO Wei, LIU Cun, CHEN Shunqiang. Axial compression test and analysis method of composite stiffened plates with variable thickness[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(11): 148-156 (in Chinese).

    [20] 王春寿, 张笑宇, 詹志新, 等. 复合材料厚板结构压缩稳定性和承载能力分析[J]. 北京航空航天大学学报, 2025, 51(1): 94-101.

    WANG Chunshou, ZHANG Xiaoyu, ZHAN Zhixin, et al. The analysis of compression stability and load capacity of the thick composite plate structures[J]. Journal of Beijing University of Aeronautics and Astronautics, 2025, 51(1): 94-101(in Chinese).

    [21]

    PEVZNER P, ABRAMOVICH H, WELLER T. Calculation of the collapse load of an axially compressed laminated composite stringer-stiffened curved panel–An engineering approach[J]. Composite Structures, 2008, 83(4): 341-353. DOI: 10.1016/j.compstruct.2007.05.001

    [22] 黄晓笛. 复合材料帽形加筋壁板轴压承载能力工程分析[D]. 大连: 大连理工大学, 2023.

    HUANG Xiaodi. Engineering analysis of axial compression load bearing capacity of composite omega stiffened panels[D]. Dalian: Dalian University of Technology, 2023(in Chinese).

    [23]

    ZHAO W, KAPANIA R K. Buckling analysis of unitized curvilinearly stiffened composite panels[J]. Composite Structures, 2016, 135: 365-382. DOI: 10.1016/j.compstruct.2015.09.041

    [24]

    FERREIRA F P V, TSAVDARIDIS K D, MARTINS C H, et al. Buckling and post-buckling analyses of composite cellular beams[J]. Composite Structures, 2021, 262: 113616. DOI: 10.1016/j.compstruct.2021.113616

    [25] 袁坚锋. 基于显式有限元的复合材料加筋板后屈曲分析方法研究[J]. 机械设计与制造工程, 2021, 50(4): 73-76. DOI: 10.3969/j.issn.2095-509X.2021.04.016

    YUAN Jianfeng. Research on post-buckling for composite stiffened panel based on explicit FEM[J]. Machine Design and Manufacturing Engineering, 2021, 50(4): 73-76(in Chinese). DOI: 10.3969/j.issn.2095-509X.2021.04.016

    [26] 刘存, 张磊, 杨卫平. 舰载机壁板剪切后屈曲承载能力预测与试验验证[J]. 航空学报, 2019, 40(4): 49-57.

    LIU Cun, ZHANG Lei, YANG Weiping. Post-buckling study and test verification of carrier-based aircraft wing stiffened panels under shear load[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4): 49-57(in Chinese).

    [27] 张连青. 压剪组合载荷下复合材料壁板屈曲性能及后屈曲承载能力分析[D]. 哈尔滨: 哈尔滨工业大学, 2021.

    ZHANG Lianqing. Analysis of buckling behavior and post-buckling bearing capacity of composite panels under combined compression and shear loads[D]. Harbin: Harbin Institute of Technology, 2021(in Chinese).

    [28] 林国伟, 李新祥. 复合材料加筋板后屈曲分析方法及实验验证[J]. 航空材料学报, 2021, 41(4): 149-156. DOI: 10.11868/j.issn.1005-5053.2021.000013

    LIN Guowei, LI Xinxiang. Post-buckling analysis method of stiffened composite panels and test verification[J]. Journal of Aeronautical Materials, 2021, 41(4): 149-156(in Chinese). DOI: 10.11868/j.issn.1005-5053.2021.000013

    [29]

    CAMANHO P P, MATTHEWS F L. A progressive damage model for mechanically fastened joints in composite laminates[J]. Journal of Composite Materials, 1999, 33(24): 2248-2280. DOI: 10.1177/002199839903302402

    [30]

    CHANG F K, LESSARD L B. Damage tolerance of laminated composites containing an open hole and subjected to compressive loadings: Part I—Analysis[J]. Journal of Composite Materials, 1991, 25(1): 2-43. DOI: 10.1177/002199839102500101

    [31] 崔进, 肖文莹, 李想. 船体复合材料帽型加筋板渐进破坏分析[J]. 舰船科学技术, 2021, 43(3): 20-25. DOI: 10.3404/j.issn.1672-7649.2021.02.004

    CUI Jin, XIAO Wenying, LI Xiang. Progressive failure of hat-stringer-stiffened composite panel in the hull[J]. Ship Science and Technology, 2021, 43(3): 20-25(in Chinese). DOI: 10.3404/j.issn.1672-7649.2021.02.004

    [32] 邹华民. 含初始分层缺陷复合材料加筋壁板承载性能分析[D]. 大连: 大连理工大学, 2018.

    ZOU Huamin. Bearing capacity analysis of composite stiffened panels with initial delamination defects [D]. Dalian: Dalian University of Technology, 2018(in Chinese).

    [33] 邹华民, 崔向斌, 任明法, 等. 含初始脱粘缺陷复合材料加筋壁板渐进压溃过程的数值模拟[J]. 玻璃钢/复合材料, 2017(11): 12-18.

    ZOU Huamin, CUI Xiangbin, REN Mingfa, et al. Numerical simulation on progressive collapse process of composite stiffened panel with initial debonding defect[J]. Fiber Reinforced Plastics/Composites, 2017(11): 12-18(in Chinese).

    [34] 韩庆, 宋恩鹏, 陆华, 等. 复合材料加筋结构后屈曲的自开发程序[J]. 复合材料学报, 2017, 34(7): 1443-1450.

    HAN Qing, SONG Enpeng, LU Hua, et al. Self-developed program for post-buckling of composite stiffened structures[J]. Acta Materiae Compositae Sinica, 2017, 34(7): 1443-1450(in Chinese).

    [35]

    ORIFICI A C, HERSZBERG I, THOMSON R S. Review of methodologies for composite material modelling incorporating failure[J]. Composite Structures, 2008, 86(1): 194-210.

    [36] 王涛. 基于筋元界面的复合材料帽型加筋板失效分析[D]. 大连: 大连理工大学, 2023.

    WANG Tao. Failure analysis of composite hat-stiffened panels based on interface failure behavior of stiffener element [D]. Dalian: Dalian University of Technology, 2023(in Chinese).

    [37] 李乐坤, 张铁军, 支乐, 等. 湿热环境下复合材料加筋壁板压缩屈曲与后屈曲行为的有限元模拟[J]. 机械工程材料, 2023, 47(8): 93-99. DOI: 10.11973/jxgccl202308015

    LI Lekun, ZHANG Tiejun, ZHI Le, et al. Finite element modelling for buckling and post-buckling behavior of composite stiffened panel during compression in hygrothermal environment[J]. Materials for Mechanical Engineering, 2023, 47(8): 93-99(in Chinese). DOI: 10.11973/jxgccl202308015

    [38]

    JI R, ZHAO L, WANG K, et al. Effects of debonding defects on the postbuckling and failure behaviors of composite stiffened panel under uniaxial compression[J]. Composite Structures, 2021, 256: 113121. DOI: 10.1016/j.compstruct.2020.113121

    [39]

    YE Y, ZHU W, JIANG J, et al. Computational modelling of post-buckling behavior of composite T-stiffened panels with different bonding methods[J]. Composites Part B: Engineering, 2019, 166: 247-256. DOI: 10.1016/j.compositesb.2018.11.137

    [40] 胡波涛, 柴亚南, 陈向明, 等. 后屈曲复合材料加筋板筋条-蒙皮界面失效表征[J]. 机械强度, 2019, 41(6): 1473-1479.

    HU Botao, CHAI Yanan, CHEN Xiangming, et al. Stiffener-skin interface failure characterization of the stiffened composite panel at post-buckling stage[J]. Journal of Mechanical Strength, 2019, 41(6): 1473-1479(in Chinese).

    [41]

    VAN DOOREN K, BISAGNI C. Design, analysis and testing of thermoplastic welded stiffened panels to investigate skin-stringer separation in post-buckling[J]. Composites Part B: Engineering, 2023, 267: 111033. DOI: 10.1016/j.compositesb.2023.111033

    [42]

    VAN DOOREN K S, TIJS B H A H, WALESON J E A, et al. Skin-stringer separation in post-buckling of butt-joint stiffened thermoplastic composite panels[J]. Composite Structures, 2023, 304: 116294. DOI: 10.1016/j.compstruct.2022.116294

    [43]

    BERTOLINI J, CASTANIÉ B, BARRAU J J, et al. An experimental and numerical study on omega stringer debonding[J]. Composite Structures, 2008, 86(1): 233-242.

    [44]

    RAIMONDO A, DOESBURG S A, BISAGNI C. Numerical study of quasi-static and fatigue delamination growth in a post-buckled composite stiffened panel[J]. Composites Part B: Engineering, 2020, 182: 107589. DOI: 10.1016/j.compositesb.2019.107589

    [45] 田甜, 张帆, 许健. 复合材料加筋壁板压缩试验研究与仿真分析[J]. 科技创新与应用, 2018(5): 45-46.

    TIAN Tian, ZHANG Fan, XU Jian. Compression test research and simulation analysis of composite stiffened panel[J]. Technology Innovation and Application, 2018(5): 45-46(in Chinese).

    [46] 杜洪雨, 奚晓波, 孟力华, 等. 含分层损伤的复合材料层压板后屈曲及低周疲劳分层扩展有限元模拟研究[J]. 玻璃钢/复合材料, 2018(6): 39-43.

    DU Hongyu, XI Xiaobo, MENG Lihua, et al. Finite element analysis of post-buckled delamination of composite laminate with preliminary debond subjected to static and fatigue loads[J]. Fiber Reinforced Plastics/Composites, 2018(6): 39-43(in Chinese).

    [47]

    DÁVILA C G, BISAGNI C. Fatigue life and damage tolerance of postbuckled composite stiffened structures with initial delamination[J]. Composite Structures, 2017, 161: 73-84. DOI: 10.1016/j.compstruct.2016.11.033

    [48] 唐劼尧, 柏敏建. 轴压载荷下复合材料蜂窝夹芯板的稳定性研究[J]. 兵器装备工程学报, 2020, 41(9): 242-246. DOI: 10.11809/bqzbgcxb2020.09.045

    TANG Jieyao, BAI Minjian. Stability evaluation on composite honeycomb sandwich panels subjected to compressive loadings[J]. Journal of Ordnance Equipment Engineering, 2020, 41(9): 242-246(in Chinese). DOI: 10.11809/bqzbgcxb2020.09.045

    [49] 李晓文, 朱兆一, 李妍, 等. 船舶复合材料加筋板屈曲和后屈曲行为研究[J]. 中国造船, 2020, 61(3): 186-194. DOI: 10.3969/j.issn.1000-4882.2020.03.020

    LI Xiaowen, ZHU Zhaoyi, LI Yan, et al. Research on buckling and post buckling behavior of composite stiffened panel for ships[J]. Ship Building of China, 2020, 61(3): 186-194(in Chinese). DOI: 10.3969/j.issn.1000-4882.2020.03.020

    [50]

    KOLANU N R, RAJU G, RAMJI M. Experimental and numerical studies on the buckling and post-buckling behavior of single blade-stiffened CFRP panels[J]. Composite Structures, 2018, 196: 135-154. DOI: 10.1016/j.compstruct.2018.05.015

    [51] 孙中雷, 张国凡, 李军鹏. 轴压载荷下复合材料加筋板后屈曲承载能力研究[J]. 航空计算技术, 2016, 46(3): 63-66. DOI: 10.3969/j.issn.1671-654X.2016.03.016

    SUN Zhonglei, ZHANG Guofan, LI Junpeng. Study on loading capacity of composite panels under uniaxial compression[J]. Aeronautical Computing Technique, 2016, 46(3): 63-66(in Chinese). DOI: 10.3969/j.issn.1671-654X.2016.03.016

    [52] 张修路, 黄文超, 方采文, 等. 飞机复合材料加筋壁板结构屈曲和后屈曲研究[J]. 计算机仿真, 2020, 37(12): 230-234, 408. DOI: 10.3969/j.issn.1006-9348.2020.12.048

    ZHANG Xiulu, HUANG Wenchao, FANG Caiwen, et al. The investigation on buckling and post buckling of aircraft composite panel structure[J]. Computer Simulation, 2020, 37(12): 230-234, 408(in Chinese). DOI: 10.3969/j.issn.1006-9348.2020.12.048

    [53] 林国伟, 李新祥. 复合材料壁板后屈曲分析失效准则的适用性研究[J]. 机械强度, 2020, 42(3): 565-572.

    LIN Guowei, LI Xinxiang. Applicability investigation of failure criterion for post-buckling analysis of stiffened composite panels[J]. Journal of Mechanical Strength, 2020, 42(3): 565-572(in Chinese).

    [54]

    LIAN C, WANG P, ZHANG K, et al. Experimental and numerical research on the calculation methods for buckling and post-buckling of aircraft tail inclined stiffened panel under compression load[J]. Aerospace Science and Technology, 2024, 146: 108930. DOI: 10.1016/j.ast.2024.108930

    [55]

    LIAN C, WANG P, CHEN X, et al. Experimental and numerical research on the analysis methods for buckling and post-buckling of inclined stiffened panel under shear load[J]. Thin-Walled Structures, 2024, 195: 111374. DOI: 10.1016/j.tws.2023.111374

    [56] 王维阳, 李伟, 曹奇凯. 复合材料加筋板轴压后屈曲及承载有限元分析[J]. 计算机仿真, 2022, 39(5): 474-479. DOI: 10.3969/j.issn.1006-9348.2022.05.095

    WANG Weiyang, LI Wei, CAO Qikai. Finite element analysis of post-buckling and bearing capability of composite stiffened plates under axial compression[J]. Computer Simulation, 2022, 39(5): 474-479(in Chinese). DOI: 10.3969/j.issn.1006-9348.2022.05.095

    [57] 李小乐. 含开口复合材料层合板的剪切承载及后屈曲渐进损伤研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    LI Xiaole. Bearing characteristics and post-buckling progressive failure behavior of composite laminate with cutout under shear load [D]. Harbin: Harbin Institute of Technology, 2019(in Chinese).

    [58]

    SUN W, GUAN Z, LI Z, et al. Modelling and simulating of the compressive behavior of T-stiffened composite panels subjected to stiffener impact[J]. Composite Structures, 2018, 186: 221-232. DOI: 10.1016/j.compstruct.2017.11.079

    [59] 黎汉华. 复合材料格栅加筋结构损伤对力学性能影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.

    LI Hanhua. Influence of damage on mechanical properties of composite grid reinforced structure[D]. Harbin: Harbin Institute of Technology, 2021(in Chinese).

    [60] 杨钧超, 王雪明, 陈向明, 等. 低速冲击损伤对复材加筋板压缩性能的影响[J]. 航空学报, 2023, 44(20): 248-263. DOI: 10.7527/S1000-6893.2023.28498

    YANG Junchao, WANG Xueming, CHEN Xiangming, et al. Effect of low-velocity impact damage on compressive properties of composite stiffened panels[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(20): 248-263(in Chinese). DOI: 10.7527/S1000-6893.2023.28498

    [61] 杨钧超, 陈向明, 邹鹏, 等. 复合材料层合板剪切稳定性试验及强度预测[J]. 复合材料学报, 2023, 40(3): 1707-1717.

    YANG Junchao, CHEN Xiangming, ZOU Peng, et al. Shear stability test and strength prediction of composite laminates[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1707-1717(in Chinese).

    [62]

    MASOOD S N, VISHAKH R, VISWAMURTHY S R, et al. Influence of stiffener configuration on post-buckled response of composite panels with impact damages[J]. Composite Structures, 2018, 194: 433-444. DOI: 10.1016/j.compstruct.2018.04.005

    [63]

    WU Q, HU S, TANG X, et al. Compressive buckling and post-buckling behaviors of J-type composite stiffened panel before and after impact load[J]. Composite Structures, 2023, 304: 116339. DOI: 10.1016/j.compstruct.2022.116339

    [64] 胡少杰. J型复合材料加筋板压缩屈曲及后屈曲行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2022.

    HU Shaojie. Research on compression buckling and post-buckling behavior of J-type composite stiffened plate[D]. Harbin: Harbin Institute of Technology, 2022(in Chinese).

    [65]

    WANG X M, CAO W, DENG C H, et al. Experimental and numerical analysis for the post-buckling behavior of stiffened composite panels with impact damage[J]. Composite Structures, 2015, 133: 840-846. DOI: 10.1016/j.compstruct.2015.08.019

    [66] 付新卫, 刘瑞同, 戴瑛. 夹具对复合材料加筋板剪切试验屈曲载荷的影响[J]. 力学季刊, 2011, 32(4): 563-569.

    FU Xinwei, LIU Ruitong, DAI Ying. Effects of support fixture on the buckling loads in shear test of stiffened composites plate[J]. Chinese Quarterly of Mechanics, 2011, 32(4): 563-569(in Chinese).

    [67]

    WANG Y, ZHU S. Effect of stringer design on the stability of stiffened composite panel under in-plane shear: An experimental study[J]. International Journal of Aeronautical and Space Sciences, 2021, 22(3): 590-601. DOI: 10.1007/s42405-020-00332-0

    [68]

    YILDIRIM E G, ÜNAL R. A review on post-buckling behaviors of composites: Crippling phenomenon kompozitlerin son burkulma davranışı üzerine bir i̇nceleme: burkulma sonrası dayanım olgusu[J]. 2024.

    [69] 刘达. 加筋板屈曲及后屈曲行为的相移编码条纹投影测量方法研究[D]. 大连: 大连理工大学, 2022.

    LIU Da. Study on measurement method of buckling and post-buckling behavior of stiffened panels via phase-shift coding fringe projection profilometry[D]. Dalian: Dalian University of Technology, 2022(in Chinese).

    [70] 胡嘉桐, 余明. 国产T800H复合材料加筋壁板压缩破坏试验研究及数值仿真分析[J]. 机械设计与研究, 2022, 38(6): 98-103, 109.

    HU Jiatong, YU Ming. Destruction test and numerical simulation analysis of homegrown T800H composite stiffened panel under compression[J]. Machine Design and Research, 2022, 38(6): 98-103, 109(in Chinese).

    [71] 高伟, 刘存, 张文军, 等. 不同长桁截面复合材料加筋板轴压屈曲分析[J]. 力学与实践, 2022, 44(5): 1143-1150. DOI: 10.6052/1000-0879-21-521

    GAO Wei, LIU Cun, ZHANG Wenjun, et al. Axial compression buckling of stiffened panel of composite materials with different stringer section[J]. Mechanics in Engineering, 2022, 44(5): 1143-1150(in Chinese). DOI: 10.6052/1000-0879-21-521

    [72] 张国凡. 复合材料加筋壁板结构屈曲承载特性研究[D]. 西安: 西北工业大学, 2020.

    ZHANG Guofan. Study on buckling behavior of stiffened composite panels[D]. Xi'an: Northwestern Polytechnical University, 2020(in Chinese).

    [73] 阳奥, 陈普会, 孔斌, 等. 数字图像相关技术在复合材料加筋曲板压缩试验中的应用[J]. 复合材料学报, 2020, 37(10): 2439-2451.

    YANG Ao, CHEN Puhui, KONG Bin, et al. Application of digital image correlation technology in compression test of stringer stiffened composite curved panels[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2439-2451(in Chinese).

    [74] 王彩英, 白瑞祥, 雷振坤. 工字型加筋复合材料壁板的压缩屈曲行为实验研究[J]. 实验力学, 2018, 33(5): 725-733. DOI: 10.7520/1001-4888-18-030

    WANG Caiying, BAI Ruixiang, LEI Zhenkun. Experimental study on compression buckling behavior of I-shaped rib stiffened composite panel[J]. Journal of Experimental Mechanics, 2018, 33(5): 725-733(in Chinese). DOI: 10.7520/1001-4888-18-030

    [75]

    LAURIN F, CHARRIER J S, LÉVÊQUE D, et al. Determination of the properties of composite materials thanks to digital image correlation measurements[J]. Procedia IUTAM, 2012, 4: 106-115. DOI: 10.1016/j.piutam.2012.05.012

    [76]

    NADEEM MASOOD S, VISWAMURTHY S R, GADDIKERI K M. Composites airframe panel design for post-buckling – An experimental investigation[J]. Composite Structures, 2020, 241: 112104. DOI: 10.1016/j.compstruct.2020.112104

    [77] 汪厚冰, 李新祥, 魏景超, 等. 复合材料曲面帽形加筋壁板在内压-轴压联合载荷下的屈曲及承载性能[J]. 航空制造技术, 2020, 63(18): 55-64, 81.

    WANG Houbing, LI Xinxiang, WEI Jingchao, et al. Buckling and post-buckling of curved hat-stiffened composite panels under combined internal pressure and axial compression[J]. Aeronautical Manufacturing Technology, 2020, 63(18): 55-64, 81(in Chinese).

    [78] 汪厚冰, 陈昊, 雷安民, 等. 复合材料帽形加筋壁板轴压屈曲与后屈曲性能[J]. 复合材料学报, 2018, 35(8): 2014-2022.

    WANG Houbing, CHEN Hao, LEI Anmin, et al. Buckling and post-buckling performance of hat-stiffened composite panels under axial compression load[J]. Acta Materiae Compositae Sinica, 2018, 35(8): 2014-2022(in Chinese).

    [79]

    MO Y, GE D, HE B. Experiment and optimization of the hat-stringer-stiffened composite panels under axial compression[J]. Composites Part B: Engineering, 2016, 84: 285-293. DOI: 10.1016/j.compositesb.2015.08.039

    [80] 张浩宇, 何宇廷, 冯宇, 等. 先进复合材料薄壁加筋板轴压屈曲特性及后屈曲承载性能[J]. 航空材料学报, 2016, 36(4): 55-63. DOI: 10.11868/j.issn.1005-5053.2016.4.008

    ZHANG Haoyu, HE Yuting, FENG Yu, et al. Buckling and post-buckling performance of advanced composite stiffened panel under compression[J]. Journal of Aeronautical Materials, 2016, 36(4): 55-63(in Chinese). DOI: 10.11868/j.issn.1005-5053.2016.4.008

    [81] 谭翔飞, 何宇廷, 冯宇, 等. 航空碳纤维树脂基复合材料加筋板压缩屈曲及后屈曲性能[J]. 航空动力学报, 2016, 31(10): 2359-2369.

    TAN Xiangfei, HE Yuting, FENG Yu, et al. Buckling and post-buckling performance of aeronautic carbon fiber reinforced resin composite stiffened panel under compression[J]. Journal of Aerospace Power, 2016, 31(10): 2359-2369(in Chinese).

    [82]

    ZHU S, YAN J, CHEN Z, et al. Effect of the stiffener stiffness on the buckling and post-buckling behavior of stiffened composite panels–Experimental investigation[J]. Composite Structures, 2015, 120: 334-345. DOI: 10.1016/j.compstruct.2014.10.021

    [83] 石经纬, 赵娟, 刘传军, 等. 复合材料翼面壁板剪切稳定性[J]. 复合材料学报, 2020, 37(7): 1590-1600.

    SHI Jingwei, ZHAO Juan, LIU Chuanjun, et al. Stability of composite stiffened panels in plane shear[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1590-1600(in Chinese).

    [84] 谭翔飞, 何宇廷, 冯宇, 等. 航空复合材料加筋板剪切稳定性及后屈曲承载性能[J]. 复合材料学报, 2018, 35(2): 320-331.

    TAN Xiangfei, HE Yuting, FENG Yu, et al. Stability and post-buckling carrying capacity of aeronautic composite stiffened panel under shear loading[J]. Acta Materiae Compositae Sinica, 2018, 35(2): 320-331(in Chinese).

    [85] 张国凡, 孙侠生, 孙中雷. 复合材料加筋壁板剪切破坏试验与后屈曲分析[J]. 机械科学与技术, 2016, 35(8): 1280-1285.

    ZHANG Guofan, SUN Xiasheng, SUN Zhonglei. Failure test and post-buckling analysis of composite stiffened panels under shear load[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(8): 1280-1285(in Chinese).

    [86]

    RAY B C. Temperature effect during humid ageing on interfaces of glass and carbon fibers reinforced epoxy composites[J]. Journal of Colloid and Interface Science, 2006, 298(1): 111-117. DOI: 10.1016/j.jcis.2005.12.023

    [87]

    CHEN L, ZHUO Y, XU R, et al. Buckling and post-buckling characteristics of stiffened panels under compression-shear load[J]. Journal of Physics: Conference Series, IOP Publishing, 2022, 2403(1): 012008. DOI: 10.1088/1742-6596/2403/1/012008

    [88] 党乐, 郑洁, 杜凯, 等. 复合材料多墙盒段弯扭耦合下的屈曲和后屈曲[J]. 力学季刊, 2022, 43(2): 271-280.

    DANG Le, ZHENG Jie, DU Kai, et al. Buckling and post buckling of composite multi-wall box section under bending-torsion coupled loads[J]. Chinese Quarterly of Mechanics, 2022, 43(2): 271-280(in Chinese).

    [89] 袁菲, 柴亚南, 张阿盈. 复合材料多墙盒段后屈曲的破坏预测方法[J]. 机械强度, 2018, 40(5): 1090-1096.

    YUAN Fei, CHAI Yanan, ZHANG A'ying. Prediction and damage analysis of the postbuckling for multi-spar composite box[J]. Journal of Mechanical Strength, 2018, 40(5): 1090-1096(in Chinese).

    [90]

    BISAGNI C, DÁVILA C G. Experimental investigation of the postbuckling response and collapse of a single-stringer specimen[J]. Composite Structures, 2014, 108: 493-503. DOI: 10.1016/j.compstruct.2013.09.018

    [91]

    LIU X, HAN K, BAI R, et al. Buckling measurement and numerical analysis of M-type ribs stiffened composite panel[J]. Thin-Walled Structures, 2014, 85: 117-124. DOI: 10.1016/j.tws.2014.08.008

    [92]

    FENG Y, ZHANG H, TAN X, et al. Effect of impact damage positions on the buckling and post-buckling behaviors of stiffened composite panel[J]. Composite Structures, 2016, 155: 184-196. DOI: 10.1016/j.compstruct.2016.08.012

    [93]

    SUN W, GUAN Z, OUYANG T, et al. Effect of stiffener damage caused by low velocity impact on compressive buckling and failure modes of T-stiffened composite panels[J]. Composite Structures, 2018, 184: 198-210. DOI: 10.1016/j.compstruct.2017.09.084

    [94]

    MEEKS C, GREENHALGH E, FALZON B G. Stiffener debonding mechanisms in post-buckled CFRP aerospace panels[J]. Composites Part A: Applied Science and Manufacturing, 2005, 36(7): 934-946. DOI: 10.1016/j.compositesa.2004.12.003

    [95]

    TAN R, XU J, GUAN Z, et al. Experimental study on effect of impact locations on damage formation and compression behavior of stiffened composite panels with L-shaped stiffener[J]. Thin-Walled Structures, 2020, 150: 106707. DOI: 10.1016/j.tws.2020.106707

    [96]

    FENG Y, HE Y, TAN X, et al. Experimental investigation on different positional impact damages and shear-after-impact (SAI) behaviors of stiffened composite panels[J]. Composite Structures, 2017, 178: 232-245. DOI: 10.1016/j.compstruct.2017.06.053

    [97] 肖浩, 胡伟平, 张淼, 等. 薄板的后屈曲损伤分析与疲劳寿命预估[J]. 北京航空航天大学学报, 2015, 41(3): 523-529.

    XIAO Hao, HU Weiping, ZHANG Miao, et al. Post-buckling damage analysis and fatigue life prediction of thin plate[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(3): 523-529(in Chinese).

    [98] 张彦军, 朱亮, 杨卫平, 等. 舰载机机身加筋壁板屈曲疲劳试验[J]. 航空学报, 2019, 40(4): 40-48.

    ZHANG Yanjun, ZHU Liang, YANG Weiping, et al. Buckling fatigue test of fuselage stiffened panel for carrier-based aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4): 40-48(in Chinese).

    [99] 薛景川, 贺恭泰, 宋湘臣, 等. 薄壁结构剪切屈曲疲劳研究[J]. 航空学报, 1989(12): 607-613. DOI: 10.3321/j.issn:1000-6893.1989.12.008

    XUE Jingchuan, HE Gongtai, SONG Xiangchen, et al. A study of shear-buckling fatigue for thin-walled structures[J]. Acta Aeronautica et Astronautica Sinica, 1989(12): 607-613(in Chinese). DOI: 10.3321/j.issn:1000-6893.1989.12.008

    [100] 成传贤. 飞机壁板屈曲疲劳试验与结果分析[J]. 机械强度, 1988(3): 48-51, 47.

    CHENG Chuanxian. Buckling fatigue testing and analysis of results of aircraft plate[J]. Mechanical Strength, 1988(3): 48-51, 47(in Chinese).

    [101] 苏少普, 常文魁, 陈先民. 飞机典型壁板结构剪切屈曲疲劳试验与分析方法[J]. 航空学报, 2022, 43(5): 274-283.

    SU Shaopu, CHANG Wenkui, CHEN Xianmin. Fatigue buckling test and analytical approach of aircraft typical panel structures[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5): 274-283(in Chinese).

  • 期刊类型引用(1)

    1. 李新娅,王宁,卢佳浩,张鹏,夏兆鹏,侯耒. 基于改进Weibull模型的高强缝合锚钉缝线强度预测. 现代纺织技术. 2024(06): 52-60 . 百度学术

    其他类型引用(1)

  • 目的 

    复合材料具有轻质、高强度和高刚度、抗疲劳、耐高温、成型工艺优良且成本低等优势,如今广泛应用于航空航天领域。复合材料加筋板是飞机机身的主要部件,筋条能够显著提高层合板的屈曲性能。加筋板的主要失效模式是屈曲,但在结构屈曲后并未完全丧失承载能力,为了能够充分利用复合材料加筋板结构的后屈曲承载能力,研究学者们对屈曲与后屈曲行为做了大量研究。本文对近年来有关复合材料加筋板屈曲与后屈曲问题的研究进行了综述,系统地描述了加筋板屈曲后屈曲的处理方法。

    方法 

    本文从复合材料加筋板结构在工程中最常用的三种方法展开介绍:第一部分为常用理论方法介绍及具体公式,并提供有效宽度的处理方法;第二部分详细介绍有限元方法的分析过程,并分别对复合材料加筋板的层内层间模拟方法展开综述;第三部分分别从夹具设计、加载类型以及屈曲疲劳三个方面介绍了屈曲与后屈曲的试验方法。最后分别对三种方法进行优缺点的总结,并对该领域的研究进行了展望。

    结果 

    理论方法在初步设计阶段具有不可替代的重要性。通过层板理论延伸的分析模型以及工程经验得到的计算公式,可以快速获得加筋板的屈曲与后屈曲载荷,其中最重要的步骤是如何正确地简化模型,这对于加筋板的初步设计具有极高的参考价值。但理论模型和经验公式精度有限,无法完全模拟实际情况,且忽略了复合材料的缺陷。有限元方法能够针对复杂几何形状、特殊边界情况进行求解,选择合适的损伤、失效准则,能够准确模拟加筋板的损伤、失效过程,并得到加筋板的屈曲载荷和极限载荷。其中,渐进损伤分析(Progressive Damage Analysis,PDA)方法是预测复合材料层合板失效过程的有效工具。根据不同情况选取适当的层间损伤模型及失效准则,能够使得有限元分析结果更加精确。试验是研究复合材料加筋板屈曲与后屈曲行为不可或缺的手段。针对不同的载荷类型,包括面内载荷(压缩、剪切、压剪混合)和冲击载荷,通过精心设计的试验夹具、合适的加载方式和先进的试验设备,研究人员能够准确直观地测得加筋板的屈曲/后屈曲失效模式以及关键载荷参数。

    结论 

    深入研究加筋板的屈曲与后屈曲性能,挖掘后屈曲承载能力,能够进一步实现飞机轻量化的目标。理论方法通常用理论分析模型及既定公式对加筋板的屈曲和破坏载荷进行计算。其中工程算法速度较快,但精度较低,没办法考虑复杂的边界条件。因此通常用于加筋板初步设计阶段,为设计人员提供一个大致的范围以供参考。有限元方法可以对各种复杂的加筋板外形以及边界条件进行模拟,选取合适的失效准则和建模方法,可以较为准确地预测出加筋板屈曲和后屈曲载荷。合理地使用有限元工具可以减少试验的成本,一般可用于后期设计及验证阶段。试验可以清晰直观地观测到加筋板受载时的失效过程及破坏模式,可以用于最终试验验证以及对有限元方法进行修正。随着科技的飞速发展,未来复合材料加筋板的屈曲与后屈曲分析方法将持续发展,特别是在数值仿真精度的提高、理论模型的完善以及多尺度分析技术的融合等方面,将有显著进展。

图(18)  /  表(2)
计量
  • 文章访问数:  150
  • HTML全文浏览量:  179
  • PDF下载量:  39
  • 被引次数: 2
出版历程
  • 收稿日期:  2024-08-13
  • 修回日期:  2024-10-06
  • 录用日期:  2024-10-22
  • 网络出版日期:  2024-10-31
  • 发布日期:  2024-10-30
  • 刊出日期:  2025-05-14

目录

/

返回文章
返回