留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物质材料对微纳塑料吸附性能的研究进展

朱高坚 陈李栋 段晟 吴伟兵 戴红旗 卞辉洋

朱高坚, 陈李栋, 段晟, 等. 生物质材料对微纳塑料吸附性能的研究进展[J]. 复合材料学报, 2023, 40(2): 637-648. doi: 10.13801/j.cnki.fhclxb.20220621.001
引用本文: 朱高坚, 陈李栋, 段晟, 等. 生物质材料对微纳塑料吸附性能的研究进展[J]. 复合材料学报, 2023, 40(2): 637-648. doi: 10.13801/j.cnki.fhclxb.20220621.001
ZHU Gaojian, CHEN Lidong, DUAN Sheng, et al. Research progress on adsorption properties of biomass materials for micro/nano plastics[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 637-648. doi: 10.13801/j.cnki.fhclxb.20220621.001
Citation: ZHU Gaojian, CHEN Lidong, DUAN Sheng, et al. Research progress on adsorption properties of biomass materials for micro/nano plastics[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 637-648. doi: 10.13801/j.cnki.fhclxb.20220621.001

生物质材料对微纳塑料吸附性能的研究进展

doi: 10.13801/j.cnki.fhclxb.20220621.001
基金项目: 国家十三五重大科技专项子课题(2019YFC190106);国家林业和草原局植物纤维功能材料重点实验室开放基金(2020KFJJ02);江苏省高等学校大学生创新创业训练计划项目(202110298184H)
详细信息
    通讯作者:

    卞辉洋,博士,讲师,硕士生导师,研究方向为纳米纤维素制备及功能化应用  E-mail:hybian1992@njfu.edu.cn

  • 中图分类号: X52

Research progress on adsorption properties of biomass materials for micro/nano plastics

Funds: National Key Research and Development Project of the 13th Five-Year Plan (2019YFC190106); Foundation of National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials (2020KFJJ02); National College Students Innovation and Entrepreneurship Training Program (202110298184H)
  • 摘要: 废弃塑料在江河湖海中呈累积趋势,老化分解产生的微纳塑料严重污染水质,威胁生态环境和居民饮用水安全。传统处理方法,如物理絮凝、生物降解等,存在处理周期长、吸附效率低等问题。天然生物质含有大量的羟基、羧基等活性基团,对生物质进行物理处理或化学修饰改性能够改善孔隙结构和提高比表面积,可作为吸附微纳塑料的绿色材料。本文从微纳塑料的常规处理方法和基本特征出发,简要概况了不同类型微纳塑料对植物、动物和人体的潜在影响和危害,系统介绍了生物质材料(生物质炭、纤维素、甲壳素等)在微纳塑料吸附领域的研究现状,分析总结了生物质材料对微纳塑料的吸附行为、规律和作用机制,最后展望了生物质材料吸附微纳塑料的未来发展前景。

     

  • 图  1  微藻与微塑料之间的相互作用机制[23]

    EPS—Extracellular polymeric substances; ROS—Reactive oxygen species

    Figure  1.  Interaction mechanism between microalgae and microplastics[23]

    图  2  铁改性生物质炭材料对微纳塑料的吸附机制[42]

    Figure  2.  Adsorption mechanism of Fe-modified biochar on micro/nano plastics[42]

    图  3  (a)改性生物炭对微纳塑料的吸附机制;(b)热处理降解微纳塑料的机制[43]

    MBC—Magnetic biochar

    Figure  3.  (a) Adsorption mechanism of modified biochar on micro/nano plastics; (b) Mechanism of degradation of micro/nano plastics by heat treatment[43]

    图  4  改性纤维素材料对聚甲基丙烯酸甲酯(PMMA)、聚氯乙烯(PVC)和聚醋酸乙烯酯(PVAc) 3种微纳塑料的吸附效率[47]

    Figure  4.  Adsorption efficiency of modified cellulose materials on polymethyl methacrylate (PMMA), polyvinyl chloride (PVC) and polyvinyl acetate (PVAc)[47]

    图  5  采用表面敏感方法、石英晶体微天平与损耗监测(QCM-D)、结合图像分析和随机顺序吸附(RSA)模型定量评估聚苯乙烯(PS)纳米塑料的表面结合[49]

    Δf—Frequency; TEMPO-CNF—TEMPO oxidized cellulose nanofibrils; TEMPO—2, 2, 6, 6-tetramethylpiperidinyl-1-oxyl; CNF—Cellulose nanofibrils; RC—Regenrated cellulose; θmax—Actual surface coverage maximum; θ—Theoretical surface coverage maximum 0.547, which equals to ~5.8×10−7 circles mm−2; S—Stabile; P—Purified; Γ—Adsorbed mass per unit area (ng·cm−2); deff—Effective particle diameter; dRSA—Diameter of the occupied area; Φ—Diameter; t—Time

    Figure  5.  Quantitative assessment of surface binding of polystyrene (PS) nanoplastic particles using a surface-sensitive approach, quartz crystal microbalance with dissipation monitoring (QCM-D), coupled with image analysis and fittings with random sequential adsorption (RSA) model[49]

    图  6  壳聚糖纳米纤维海绵材料制备示意图[57]

    NF—Nanofiber; PEO—Polyoxyethylene; GA—Glutaraldehyde; ν/ν—Volume ratio

    Figure  6.  Schematic diagram of preparation of chitosan nanofiber sponge material[57]

    图  7  可回收的磁性微型潜艇材料吸附去除水中油和微塑料示意图 [60]

    Figure  7.  Schematic diagram of recoverable magnetic micro-submarine material adsorption to remove oil and microplastics in water[60]

    表  1  微纳塑料在淡水系统中的分布现状

    Table  1.   Distribution of micro/nano plastics in water

    RegionType of micro/nano plasticsAbundanceRef.
    Antarctica, Ross SeaPE, PP3.2×10−3-1.18 n·m−3[15]
    China, Three GorgesPE, PP, PS5.5×104-3.42×107 n·km−2[16]
    China, Lake TaihuPE, PET, PP1×104-6.8×106 n·km−2[17]
    Germany, Rhine RiverPS, PP, PVC1.45×105-3.07×106 n·km−2[18]
    USA, Chesapeake BayPE, PS5.5×102-2.6×105 n·km−2[19]
    Switzerland, Swiss LakePE, PP, PS1.1×104-2.2×105 n·km−2[20]
    Notes: PE—Polyethylene; PP—Polypropylene; PS—Polystyrene; PET—Poly(ethylene terephthalate); PVC—Polyvinyl chloride.
    下载: 导出CSV

    表  2  25℃下生物质材料对微纳塑料的吸附性能

    Table  2.   Adsorption properties of biomass materials on micro/nano plastics at 25℃

    Material Preparation method Type of
    MPs/NPs
    Concentration of MPs/NPs/(mg·L−1) Adsorption capacity/(mg·g−1) Adsorption mechanism Ref.
    Scotch pine/
    Spruce bark
    Pyrolysis/Steam activation PE 4000 200 Physical interception/
    Intra-particle diffusion
    [39]
    Aged corn cob H2SO4/HNO3 oxidation/Pyrolysis PS 1000 18 Surface diffusion [41]
    Modified magnetic biochar Mg/Zn modification PS 100 99.21 Electrostatic interaction [43]
    Modified cellulose powder PEI crosslinking PMMA,
    PVAc, PVC
    2000 881.8-900 Electrostatic interaction [47]
    Coffee grounds Purchase/Wash PS-NH2 100-125 4 Hydrogen bonding/
    Electrostatic interaction
    [48]
    Chitin/GO/
    Chitosan
    Freeze drying PS/PS-NH2,
    PS-COOH
    1 8.79 Hydrogen bonding/
    Electrostatic interaction/
    π-π interaction
    [56]
    Chitosan NF Directional freeze
    drying
    PET 1000 309.8 Physical interception/
    Intra-particle diffusion
    [57]
    Oat protein Freeze drying PS 1 6.58 Hydrophobic action/
    Intra-particle diffusion
    [59]
    Notes: MPs/NPs—Microplastics/Nanoplastics; PMMA—Polymethyl methacrylate; PVAc—Polyvinyl acetate; PEI—Polyethyleneimine; GO—Graphene oxide; NF—Nanofiber.
    下载: 导出CSV
  • [1] CHEN X, YAN N. A brief overview of renewable plastics[J]. Materials Today Sustainability,2020,7:100031.
    [2] WANG G, WANG J, XUE Q. Efficient utilization of waste plastics as raw material for metallic iron and syngas production by combining heat treatment pulverization and direct reduction[J]. Process Safety and Environmental Protection,2020,137:49-57. doi: 10.1016/j.psep.2020.02.017
    [3] MACLEOD M, ARP H P H, TEKMAN M B, et al. The global threat from plastic pollution[J]. Science,2021,373(6550):61-65. doi: 10.1126/science.abg5433
    [4] 韦曦萍. 不同混凝-超滤工艺下微塑料/有机物体系的膜污染行为研究[D]. 西安: 西安建筑科技大学, 2021.

    WEI Xiping. Study on membrane fouling behavior of microplastics/organics under different coagulation ultrafiltration processes[D]. Xi'an: Xi'an University of Architecture and Technology, 2021(in Chinese).
    [5] 刘江峡, 刘欢, 刘清泉, 等. 多层级孔材料及水体微塑料处理的研究进展[J]. 合成材料老化与应用, 2020, 49(2):103-108.

    LIU Jiangxia, LIU Huan, LIU Qingquan, et al. Research progress of hierarchical porous materials and treatment of water microplastics pollution[J]. Synthetic Materials Aging and Application,2020,49(2):103-108(in Chinese).
    [6] RAJALA K, GRÖNFORS O, HESAMPOUR M, et al. Removal of microplastics from secondary wastewater treatment plant effluent by coagulation/flocculation with iron, aluminum and polyamine-based chemicals[J]. Water Research,2020,183:116045. doi: 10.1016/j.watres.2020.116045
    [7] ARIZA-TARAZONA M C, VILLARREAL-CHIU J F, BARBIERI V, et al. New strategy for microplastic degradation: Green photocatalysis using a protein-based porous N-TiO2 semiconductor[J]. Ceramics International,2019,45(7):9618-9624. doi: 10.1016/j.ceramint.2018.10.208
    [8] ZHENG B, LI B, WAN H, et al. Coral-inspired environmental durability aerogels for micron-size plastic particles removal in the aquatic environment[J]. Journal of Hazardous Materials,2022,431:128611.
    [9] KARIM M E, SANJEE S A, MAHMUD S, et al. Microplastics pollution in Bangladesh: Current scenario and future research perspective[J]. Chemistry and Ecology,2020,36(1):83-99. doi: 10.1080/02757540.2019.1688309
    [10] LAPOINTE M, FARNER J M, HERNANDEZ L M, et al. Understanding and improving microplastic removal during water treatment: Impact of coagulation and flocculation[J]. Environmental Science & Technology,2020,54(14):8719-8727.
    [11] XU Q, HUANG Q S, LUO T Y, et al. Coagulation removal and photocatalytic degradation of microplastics in urban waters[J]. Chemical Engineering Journal,2021,416:129123. doi: 10.1016/j.cej.2021.129123
    [12] ZHANG X L, CHEN J X, LI J. The removal of microplastics in the wastewater treatment process and their potential impact on anaerobic digestion due to pollutants association[J]. Chemosphere,2020,251:126360. doi: 10.1016/j.chemosphere.2020.126360
    [13] SIGHICELLI M, PIETRELLI L, LECCE F, et al. Microplastic pollution in the surface waters of Italian Subalpine Lakes[J]. Environmental Pollution,2018,236:645-651. doi: 10.1016/j.envpol.2018.02.008
    [14] LI P, LAI Y, LI Q, et al. Total organic carbon as a quantita-tive index of micro and nanoplastic pollution[J]. Analytical Chemistry,2022,94(2):740-747. doi: 10.1021/acs.analchem.1c03114
    [15] CINCINELLI A, SCOPETANI C, CHELAZZI D, et al. Microplastic in the surface waters of the Ross Sea (Antarctica): Occurrence, distribution and characterization by FTIR[J]. Chemosphere,2017,175:391-400. doi: 10.1016/j.chemosphere.2017.02.024
    [16] ZHANG K, XIONG X, HU H, et al. Occurrence and characteristics of microplastic pollution in Xiangxi Bay of Three Gorges Reservoir, China[J]. Environmental Science & Technology,2017,51(7):3794-3801.
    [17] SU L, XUE Y, LI L, et al. Microplastics in Taihu Lake, China[J]. Environmental Pollution,2016,216:711-719. doi: 10.1016/j.envpol.2016.06.036
    [18] MANI T, HAUK A, WALTER U, et al. Microplastics profile along the Rhine River[J]. Scientific Reports,2015,5:17988.
    [19] YONKOS L T, FRIEDEL E A, PEREZ-REYES A C, et al. Microplastics in four estuarine rivers in the Chesapeake Bay, USA[J]. Environmental Science & Technology,2014,48(24):14195.
    [20] FAURE F, DEMARS C, WIESER O, et al. Plastic pollution in Swiss surface waters: Nature and concentrations, interaction with pollutants[J]. Environmental Chemistry,2015,12(5):582-591. doi: 10.1071/EN14218
    [21] MARTIN C, CORONA E, MAHADIK G A, et al. Adhesion to coral surface as a potential sink for marine microplastics[J]. Environmental Pollution,2019,255:113281. doi: 10.1016/j.envpol.2019.113281
    [22] SONG C, QIU Y, LI S, et al. A novel concept of bicarbonate-carbon utilization via an absorption-microalgae hybrid process assisted with nutrient recycling from soybean wastewater[J]. Journal of Cleaner Production,2019,237:117864. doi: 10.1016/j.jclepro.2019.117864
    [23] SONG C, LIU Z, WANG C, et al. Different interaction performance between microplastics and microalgae: The bio-elimination potential of Chlorella sp. L38 and Phaeodactylum tricornutum MASCC-0025[J]. Science of the Total Environment,2020,723:138146. doi: 10.1016/j.scitotenv.2020.138146
    [24] PELLER J, NEVERS M B, BYAPPANAHALLI M, et al. Sequestration of microfibers and other microplastics by green algae, Cladophora, in the US Great Lakes[J]. Envi-ronmental Pollution,2021,276:116695. doi: 10.1016/j.envpol.2021.116695
    [25] SANTANA M F M, DAWSON A L, MOTTI C A, et al. Ingestion and depuration of microplastics by a planktivorous coral reef fish, Pomacentrus amboinensis[J]. Frontiers in Environmental Science,2021,9:641135.
    [26] CAPONE A, PETRILLO M, MISIC C. Ingestion and elimination of anthropogenic fibres and microplastic fragments by the European anchovy (Engraulis encrasicolus) of the NW Mediterranean Sea[J]. Marine Biology,2020,167(11):1-15.
    [27] LENGAR Ž, KLUN K, DOGSA I, et al. Sequestration of polystyrene microplastics by jellyfish mucus[J]. Frontiers in Marine Science,2021,9:690749.
    [28] BRÅTE I L N, BLÁZQUEZ M, BROOKS S J, et al. Weathering impacts the uptake of polyethylene microparticles from toothpaste in Mediterranean mussels (M. galloprovincialis)[J]. Science of the Total Environment,2018,626:1310-1318. doi: 10.1016/j.scitotenv.2018.01.141
    [29] BULANNGA R B, SCHMIDT S. Uptake and accumulation of microplastic particles by two freshwater ciliates isolated from a local river in South Africa[J]. Environmental Research,2022,204:112123. doi: 10.1016/j.envres.2021.112123
    [30] HUANG Z, WENG Y, SHEN Q, et al. Microplastic: A potential threat to human and animal health by interfering with the intestinal barrier function and changing the intestinal microenvironment[J]. Science of the Total Environment,2021,785:147365. doi: 10.1016/j.scitotenv.2021.147365
    [31] BRAUN T, EHRLICH L, HENRICH W, et al. Detection of microplastic in human placenta and meconium in a clinical setting[J]. Pharmaceutics,2021,13(7):921-932. doi: 10.3390/pharmaceutics13070921
    [32] NOR N H M, KOOI M, DIEPENS N J, et al. Lifetime accumulation of microplastic in children and adults[J]. Environmental Science & Technology,2021,55(8):5084-5096.
    [33] 刘慧. 功能化生物质复合材料的制备及其吸附水中砷的性能研究[D]. 南京: 南京林业大学, 2021.

    LIU Hui. Study on the preparation of functional biomass composite material and the adsorption for arsenic removal from water[D]. Nanjing: Nanjing Forestry University, 2021(in Chinese).
    [34] CHI N T L, ANTO S, AHAMED T S, et al. A review on biochar production techniques and biochar based catalyst for biofuel production from algae[J]. Fuel,2021,287:119411. doi: 10.1016/j.fuel.2020.119411
    [35] MADADI R, BESTER K. Fungi and biochar applications in bioremediation of organic micropollutants from aquatic media[J]. Marine Pollution Bulletin,2021,166:112247. doi: 10.1016/j.marpolbul.2021.112247
    [36] KUMAR M, DUTTA S, YOU S, et al. A critical review on biochar for enhancing biogas production from anaerobic digestion of food waste and sludge[J]. Journal of Cleaner Production,2021,305:127143. doi: 10.1016/j.jclepro.2021.127143
    [37] ABUWATFA W H, AL-MUQBEL D, AL-OTHMAN A, et al. Insights into the removal of microplastics from water using biochar in the era of COVID-19: A mini review[J]. Case Studies in Chemical and Environmental Engineering,2021,4:100151. doi: 10.1016/j.cscee.2021.100151
    [38] WANG Z, SEDIGHI M, LEA-LANGTON A. Filtration of microplastic spheres by biochar: Removal efficiency and immobilisation mechanisms[J]. Water Research,2020,184:116165. doi: 10.1016/j.watres.2020.116165
    [39] SIIPOLA V, PFLUGMACHER S, ROMAR H, et al. Low-cost biochar adsorbents for water purification including microplastics removal[J]. Applied Sciences,2020,10(3):788-805. doi: 10.3390/app10030788
    [40] GANIE Z A, KHANDELWAL N, TIWARI E, et al. Biochar-facilitated remediation of nanoplastic contaminated water: Effect of pyrolysis temperature induced surface modifications[J]. Journal of Hazardous Materials,2021,417:126096. doi: 10.1016/j.jhazmat.2021.126096
    [41] MAGID A S I A, ISLAM M S, CHEN Y, et al. Enhanced adsorption of polystyrene nanoplastics (PSNPs) onto oxidized corncob biochar with high pyrolysis temperature[J]. Science of the Total Environment,2021,784:147115. doi: 10.1016/j.scitotenv.2021.147115
    [42] SINGH N, KHANDELWAL N, GANIE Z A, et al. Eco-friendly magnetic biochar: An effective trap for nanoplastics of varying surface functionality and size in the aqueous envi-ronment[J]. Chemical Engineering Journal,2021,418:129405. doi: 10.1016/j.cej.2021.129405
    [43] WANG J, SUN C, HUANG Q X, et al. Adsorption and thermal degradation of microplastics from aqueous solutions by Mg/Zn modified magnetic biochars[J]. Journal of Hazardous Materials,2021,419:126486. doi: 10.1016/j.jhazmat.2021.126486
    [44] BOONMAHITTHISUD A, SOYKEABKAEW N, ONGTHIP L, et al. Review of the recent developments in all-cellulose nanocomposites: Properties and applications[J]. Carbohydrate Polymers,2022,286:119192.
    [45] PRASAD S, SINGH A, KORRES N E, et al. Sustainable utilization of crop residues for energy generation: A life cycle assessment (LCA) perspective[J]. Bioresource Technology,2020,303:122964. doi: 10.1016/j.biortech.2020.122964
    [46] 蔡杰, 吕昂, 周金平, 等. 纤维素科学与材料[M]. 北京: 化学工业出版社, 2015: 345.

    CAI Jie, LYU Ang, ZHOU Jinping, et al. Cellulose science and materials[M]. Beijing: Chemical Industry Press, 2015: 345(in Chinese).
    [47] BATOOL A, VALIYAVEETTIL S. Surface functionalized cellulose fibers—A renewable adsorbent for removal of plastic nanoparticles from water[J]. Journal of Hazardous Materials,2021,413:125301. doi: 10.1016/j.jhazmat.2021.125301
    [48] YEN P L, HSU C H, HUANG M L, et al. Removal of nano-sized polystyrene plastic from aqueous solutions using untreated coffee grounds[J]. Chemosphere,2022,286:131863. doi: 10.1016/j.chemosphere.2021.131863
    [49] LEPPÄNEN I, LAPPALAINEN T, LOHTANDER T, et al. Capturing colloidal nano- and microplastics with plant-based nanocellulose networks[J]. Nature Communications,2022,13(1):1-12. doi: 10.1038/s41467-021-27699-2
    [50] ZHUANG J, RONG N, WANG X, et al. Adsorption of small size microplastics based on cellulose nanofiber aerogel modified by quaternary ammonium salt in water[J]. Separation and Purification Technology,2022,291:121133.
    [51] CHEN C C, WU Q J, WAN Z M, et al. Mildly processed chitin used in one-component drinking straws and single use materials: Strength, biodegradability and recyclability[J]. Chemical Engineering Journal,2022,442:136173. doi: 10.1016/j.cej.2022.136173
    [52] EL KNIDRI H, BELAABED R, ADDAOU A, et al. Extraction, chemical modification and characterization of chitin and chitosan[J]. International Journal of Biological Macromolecules,2018,120:1181-1189. doi: 10.1016/j.ijbiomac.2018.08.139
    [53] YANG J, CHEN X, ZHANG J, et al. Role of chitosan-based hydrogels in pollutants adsorption and freshwater harvesting: A critical review[J]. International Journal of Biological Macromolecules,2021,189:53-64. doi: 10.1016/j.ijbiomac.2021.08.047
    [54] ANITHA A, SOWMYA S, KUMAR P T S, et al. Chitin and chitosan in selected biomedical applications[J]. Progress in Polymer Science,2014,39(9):1644-1667. doi: 10.1016/j.progpolymsci.2014.02.008
    [55] SUN C, WANG Z, CHEN L, et al. Fabrication of robust and compressive chitin and graphene oxide sponges for removal of microplastics with different functional groups[J]. Chemical Engineering Journal,2020,393:124796. doi: 10.1016/j.cej.2020.124796
    [56] SUN C, WANG Z, ZHENG H, et al. Biodegradable and reusable sponge materials made from chitin for efficient removal of microplastics[J]. Journal of Hazardous Materials,2021,420:126599. doi: 10.1016/j.jhazmat.2021.126599
    [57] RISCH P, ADLHART C. A chitosan nanofiber sponge for oyster-inspired filtration of microplastics[J]. ACS Applied Polymer Materials,2021,3(9):4685-4694. doi: 10.1021/acsapm.1c00799
    [58] 林自明. 甲壳素/聚乙烯亚胺复合材料的制备及其对Cr(Ⅵ)、U(Ⅵ)的吸附行为和机理研究[D]. 南宁: 广西大学, 2021.

    LIN Ziming. Preparation of Chitin/polyvinyl imine composite and its adsorption behavior and mechanism for Cr(VI) and U(VI)[D]. Nanning: Guangxi University, 2021(in Chinese).
    [59] WANG Z, SUN C, LI F, et al. Fatigue resistance, reusable and biodegradable sponge materials from plant protein with rapid water adsorption capacity for microplastics removal[J]. Chemical Engineering Journal,2021,415:129006. doi: 10.1016/j.cej.2021.129006
    [60] SUN M, CHEN W, FAN X, et al. Cooperative recyclable magnetic microsubmarines for oil and microplastics removal from water[J]. Applied Materials Today,2020,20:100682. doi: 10.1016/j.apmt.2020.100682
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  993
  • HTML全文浏览量:  574
  • PDF下载量:  169
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-12
  • 修回日期:  2022-05-30
  • 录用日期:  2022-06-11
  • 网络出版日期:  2022-06-22
  • 刊出日期:  2023-02-15

目录

    /

    返回文章
    返回