Processing math: 100%

典型结构功能一体化复合材料的设计与制备技术

蒋民强, 胡东源, 董晨昊, PIERCERobert, RUDDChris, 刘晓玲, 益小苏

蒋民强, 胡东源, 董晨昊, 等. 典型结构功能一体化复合材料的设计与制备技术[J]. 复合材料学报, 2024, 41(9): 4457-4477. DOI: 10.13801/j.cnki.fhclxb.20240731.001
引用本文: 蒋民强, 胡东源, 董晨昊, 等. 典型结构功能一体化复合材料的设计与制备技术[J]. 复合材料学报, 2024, 41(9): 4457-4477. DOI: 10.13801/j.cnki.fhclxb.20240731.001
JIANG Minqiang, HU Dongyuan, DONG Chenhao, et al. Design and fabrication techniques for typical structural-functional integrated composites[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 4457-4477. DOI: 10.13801/j.cnki.fhclxb.20240731.001
Citation: JIANG Minqiang, HU Dongyuan, DONG Chenhao, et al. Design and fabrication techniques for typical structural-functional integrated composites[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 4457-4477. DOI: 10.13801/j.cnki.fhclxb.20240731.001

典型结构功能一体化复合材料的设计与制备技术

详细信息
    通讯作者:

    刘晓玲,博士,副教授,博士生导师,研究方向为碳纤维复合材料 E-mail: xiaoling.liu@nottingham.edu.cn

    益小苏,博士,教授,博士生导师,研究方向为碳纤维复合材料 E-mail: xiaosu.yi@nottingham.edu.cn

  • 中图分类号: TB332

Design and fabrication techniques for typical structural-functional integrated composites

  • 摘要: 在碳纤维增强树脂基复合材料轻量化与结构性能持续提高的前提下,同时附加其特定的功能,尤其是在不损失、甚至提升其层间断裂韧性的情况下,不仅可以弥补结构复合材料天然的缺陷,例如树脂基体的电绝缘性,也可以使其满足特定产品的要求,例如高刚度兼具一定的吸声降噪特性等。显然,对于航空航天这样的尖端应用领域,这种功能附加或结构功能一体化的复合材料技术对航空航天技术的未来发展至关重要。本文介绍了4种具有典型性的结构功能一体化复合材料的设计、制备与性能研究,分别是基于层间功能化插层和基于内织导电纬纱的导电增韧一体化复合材料及多级孔碳化棉纤维填充蜂窝/微穿孔面板的夹芯复合材料结构和编织布/无纺纤维毡复合材料片材折叠成型的结构吸声一体化复合材料。前两种材料分别通过在复合材料富树脂的层间插入导电功能化插层和在复合材料内引入贯通整个材料的导电纬纱网络实现了复合材料的导电性能与层间韧性的同步提高,而后两种材料则分别通过多级孔结构的碳化棉纤维材料填充蜂窝/微穿孔面板夹芯技术和编织布/无纺纤维毡复合材料片材的折叠技术实现了良好的吸声性能等,以展示多尺度、多层次结构设计和制备技术在结构复合材料功能化集成和结构功能一体化方面的应用。

     

    Abstract: Under the premise of continuous improvement of lightweight and structural performance of carbon fiber reinforced polymer matrix composites, enhancing specific functions, especially in the case of no loss, or even enhancement of their interlaminar fracture toughness, can not only compensate for the inherent shortcomings of structural composite materials, such as the electrical insulation of the resin matrix, but also enable them to meet the requirements of specific products, such as high stiffness and certain sound absorption and noise reduction properties. Obviously, for cutting-edge applications such as aerospace, such function-added or structure-function-integrated composites technology is crucial to the future development of aerospace technology. In this paper, the design, preparation, and performance studies of four typical function-integrated structural composites are presented, which are conductivity-toughening integrated laminate based on functionalized interlayer technology (FIT), and based on inter-woven conductive weft fabric (IWCWF); Sound absorption composite based on honeycomb/micro-perforated panels sandwich structure filled with carbonized cotton fibers with hierarchical pores, and based on folded structures prepared from woven fabric/nonwoven mats. The first two materials achieved simultaneous improvement in the electrical conductivity and interlaminar toughness of composite materials by inserting conductive functional interlayers into the resin-rich layers and introducing a conductive weft network throughout the composite. The latter two materials demonstrated excellent sound absorption performance through the technology using honeycomb/micro-perforated panel sandwich filled with carbonized cotton fibers with hierarchical pores, and the folding technology of woven fabric/nonwoven fiber mats composite sheets. This showcases the application of multi-scale, multi-level structural design and fabrication techniques in the functional integration and structural-functional integration of structural composites.

     

  • 近年来,柔性压力传感器凭借其轻量、柔韧、生物相容等特点在生物医疗[1]、电子皮肤[2]、人机交互[3]、柔性机器人[4]等领域具有广泛的应用前景。根据传感原理,柔性压力传感器主要分为电阻式[5]、电容式[6]、压电式[7]、摩擦电式[8]4种。而柔性电容式压力传感器因其结构简单、信号稳定,且能与静态力测量兼容及低功耗优点,得到了研究人员的广泛关注[9]。但在电容式柔性压力传感器的性能优化研究中存在一个共性问题,即高灵敏度与宽检测范围之间的制约,如何解决两者之间的矛盾仍是亟需解决的瓶颈问题。

    目前,研究人员在介电层结构方面主要通过设计介电层的表面微结构或介电层体相多孔结构,来提高柔性电容压力传感器的灵敏度和检测范围。一般,在介电层表面设计金字塔形[10]、半球形[11]、荷叶表面乳突[12]等微纳结构。但制作这些微纳结构一般需要光刻[13]、3D打印[14]和仿生模板复刻[15]等技术,存在工艺复杂、成本高、耗时长等缺陷。并且由于表面微纳结构在压力作用下的变形易快速达到饱和状态,只能提高一部分检测量程。而介电层的体相多孔结构,由于本身就存在孔隙,在压力作用下先后发生孔隙减小、孔壁接触和孔壁进一步挤压过程,延缓了形变达到饱和状态的过程,从而提高了检测量程。因此相较于表面微纳结构,多孔结构在传感器的设计中存在显著优势。而在介电层材料方面,研究人员主要提出在介电层中添加高介电常数、低介电损耗填料的方法,以形成复合介电层,提高介电层的有效介电常数,从而提高灵敏度和检测范围。通常,可以分为导电填料(炭黑(CB)[16]、碳纳米管(CNTs)[17]、石墨烯(GO)[18]等),压电填料(聚偏氟乙烯(PVDF)[19]、钛酸钡(BTO)[20]等)和磁性填料(金属镍(Ni)[21]等)。

    本文针对高灵敏度、宽检测范围和制作成本不能兼顾的问题,利用模板组装法制备出了一种多孔结构的电容式柔性压力传感器。首先,在基底材料上选择了具有价格低廉、质量轻、弹性好、孔隙率高、比表面积大等特点的聚氨酯(PU)海绵。其次,在填料的选择上,分别选择了导电填料炭黑(Carbon black,CB)和压电填料钛酸钡(BaTiO3,BTO),由于CB不仅具有良好的附着能力,还可以改善压力下介电常数的变化,从而提高传感器的性能[22]。而选择BTO,则是因其具有高介电常数和低介电损耗特性。两者都可以利用范德华力和静电引力附着在PU骨架上。最后,利用PU海绵现有的多孔结构作为模板,采用超声浸渍涂覆的方法将CB和BTO附着在海绵骨架上,从而制备出高的有效介电常数及低介电损耗的CB-BTO/PU海绵体。并以此为介电层组装成电容式柔性压力传感器。同时,还对该压力传感器进行了性能测试和应用范围的研究,解决了在大量程范围压力信号检测中测量量程与灵敏度之间的矛盾。

    前处理:将聚氨酯海绵(PU,大城好五金店,优质高密度)剪切成10 mm×10 mm×3 mm的立方体,用无水乙醇(Ethanol absolute,太仓新太酒精)与去离子水(浙江南岱实业)交替清洗2次,每次10 min,以除去PU海绵表面的杂质,并在恒温培养箱中干燥1 h,以待后用。

    CB-BTO/PU海绵柔性电容式压力传感器的制备过程:将炭黑(CB,美国CABOT,粉末,~15 nm)与钛酸钡(BTO,麦克林,99.9%metals basis,粉末,~100 nm)按照质量比为2.5∶100、5∶100、7.5∶100、10∶100分别加入一定量无水乙醇中,用磁力搅拌器(ZNCL-BS,山东元创仪器)进行搅拌,30 min后搅拌停止,分别往各悬浮液中加入前处理后的PU海绵,随后在超声波细胞破碎仪(LC-JY98-IIIDN,上海力辰邦西仪器科技)中进行超声分散,超声过程中产生的局部高温和超声波,其一可大幅度地减弱CB和BTO纳米颗粒之间的作用力,防止纳米颗粒团聚;其二是让悬浮液中的纳米颗粒不断地无规则运动,均匀地分散在PU海绵内部。超声1 h后,将附着有CB与BTO的PU海绵放入80℃的恒温培养箱(XMTA-600,余姚市科洋仪表)中干燥1 h,随后将干燥完成的PU海绵进行机械压缩20 min,以达到海绵的老化处理和将附着不牢的纳米颗粒去除,当压缩过程中海绵不再脱落纳米颗粒和用纸擦拭海绵表面不再出现灰色污渍时,证明得到结构稳定的CB-BTO/PU海绵三维复合材料。最后在CB-BTO/PU海绵三维复合材料的两端贴附铜箔电极,并用聚对苯二甲酸乙二醇酯(Polyethlene terephthalate,PET)薄膜封装得到CB-BTO/PU海绵柔性电容式压力传感器。具体制备流程如图1所示。

    图  1  炭黑(CB)-钛酸钡(BTO)/聚氨酯(PU)海绵电容式压力传感器制备流程图
    PET—Polyethlene terephthalate
    Figure  1.  Preparation flow chart of carbon black (CB)-barium titanate (BTO)/polyurethane (PU) sponge capacitive pressure sensor

    采用扫描电子显微镜(SEM,日立SU8020)对CB-BTO/PU复合材料的形貌进行表征。用能谱分析仪(EDS,美国edax)探究CB-BTO/PU复合材料中的碳(C)、钛(Ti)和钡(Ba)元素的分布。将CB-BTO/PU海绵固定在样品台上,然后放入真空镀膜仪内喷金,喷金结束后将样品置于SEM扫描电镜下,观察海绵断面形貌。电子加速电压为5.0 kV,工作距离为13.6 mm,上下探头同时成像;然后用扫描电镜上配置的EDS对海绵上的元素成分和含量进行观察分析。

    压力传感器的传感性能测试主要通过万能试验机(ZQ-950B,东莞市智取精密仪器)、LCR测试仪(TH2830,上海双旭电子)等完成。将传感器放置到万能试验机的下端压头平台上,通过控制上端压头的位移,以10 mm/min的恒定速度将0~300 kPa压力施加于传感器表面上;将传感器电极板引出的导线连接LCR测试仪(工作电压1 V),使用远端接口模式连接到PC,实时测量传感器的电容信号。

    图2(a)为PU海绵浸渍前后实物图,浸渍前PU海绵骨架清晰,孔隙分布均匀;浸渍后PU海绵由淡黄色转为黑灰色,这是CB与BTO有效沉积的结果。将制备的CB-BTO/PU海绵完全压缩,当撤去外力之后,仍能恢复到初始状态,展现了该材料具有很好的柔韧性和弹性,如图2(b)图2(c)所示。图2(d)~图2(f)为CB-BTO/PU海绵骨架的断面SEM图像。可以看出,PU海绵骨架结构明显,孔隙清晰,且随着图像的放大,能看到CB与BTO(呈颗粒状,少量团聚)均匀地附着在PU海绵骨架上。从EDS能谱分析表明,Ba (图2(g))、Ti (图2(h))、C (图2(i))3种元素在PU海绵均匀分布,再一次验证了CB与BTO在PU海绵骨架上分布均匀。

    图  2  CB-BTO/PU海绵的形貌与结构表征:(a)浸渍前后PU海绵实物图;((b), (c)) PU海绵压缩的初始状态和压缩状态图;((d)~(f)) PU海绵断面SEM图像;((g)~(i)) Ba元素、Ti元素、C元素的EDS分布图
    Figure  2.  Morphology and structure characterization of CB-BTO/PU sponge: (a) Physical diagram of PU sponge before and after impregnation; ((b), (c)) Initial compression state and compression state diagrams of PU sponge respectively; ((d)-(f)) SEM images of PU sponge sections; ((g)-(i)) EDS distribution diagrams of Ba element, Ti element and C element respectively

    CB-BTO/PU 海绵压力传感器可视为平行板电容器[23],在外界压力作用下,平行板电容器的两极板之间的相对距离和介电层的相对介电常数都发生了改变,从而引起了电容的变化。传感器的电容的计算公式为

    C=ε0εrAd (1)

    其中:C是电容器的电容;ε0是真空介电常数;εr是介电层的相对介电常数;A是上下电极板的有效重叠表面积;d是上下两电极之间的距离。

    CB-BTO/PU 海绵压力传感器的传感机制为:在没有外界压力作用的初始状态下,PU海绵骨架表面附着CB和BTO,空气充满了骨架空隙,介电层具有较低的相对介电常数εr。而当受到外界压力作用以后,介电层被压缩,上下两电极之间的距离d减小,并且PU海绵微孔开始闭合,介电层中的空气被排出,εr增加,导致电容C随着压力的增加而不断增大。

    对于CB-BTO/PU 海绵介电层来说,可以根据一般的Lichtenecker 混合规则[24],求出有效的相对介电常数。有效相对介电常数的计算公式为

    lnεr=Vairlnεair+VCBlnεCB+VBTOlnεBTO+VPUlnεPU (2)

    其中:VairVCBVBTOVPU分别为复合材料中空气、炭黑、钛酸钡与聚氨酯海绵所占的体积比;εairεCBεBTOεPU分别为空气、炭黑、钛酸钡与聚氨酯海绵的介电常数。

    由上式可知,当介电层受力被压缩时,空气被逐渐排出,其他三相所占的体积比逐渐增大,介电层的相对介电常数也逐渐增大,因此电容传感器的电容才能逐渐增大。

    通过制备CB与BTO不同质量比的CB-BTO/PU 海绵传感器,进行传感性能测试分析,从而对传感器进行工艺参数优化。

    不同配比的传感器性能也不尽相同,而质量比为mCB:mBTO=5:100的CB-BTO/PU海绵传感性能是最好的,如图3所示。从图上可知,随着CB的含量增大,传感器的灵敏度逐渐增大然后逐渐减小并趋于一致。笔者认为,一方面,CB表面具有大量的羟基、羰基、酸基和吸附水分子等官能团[25],而PU海绵中除了氨基甲酸酯官能团外,还可含有醚、酯、脲、缩二脲、脲基甲酸酯等基团[26]。这些官能团可以使CB和BTO附着在PU海绵上,并且随着CB的含量增加,附着在PU海绵上的CB与BTO也越来越多,而CB作为导电填料既可以强化BTO在PU海绵上的附着能力,还能在PU海绵上形成零星微电容,提高复合材料的介电常数,进而提高器件性能。但当CB含量超过某阈值后,虽然能让更多的BTO附着在PU海绵上,但CB附着在PU海绵上的含量也会逐渐增大,随着外界压力的作用下,CB之间相互接近逐渐形成渗流和遂穿,从而形成部分导电通路降低电容,这与田玉玉等[22]分析的导电填料在介电层中的作用结果一致。另一方面,PU海绵的空隙是有限的,而随着填料的增加,附着在PU海绵上的填料逐渐变缓,并趋于一致。上述原因解释了为什么会出现随着CB含量的增加,传感器的灵敏度会先增加后减小并趋于一致的结果。

    图  3  不同炭黑与钛酸钡质量比(mCB:mBTO)下的CB-BTO/PU海绵压力传感器电容变化率-压力变化曲线
    Figure  3.  Capacitance change rate-pressure change curves of CB-BTO/PU sponge pressure sensor with different mass ratio of carbon black to barium titanate (mCB:mBTO)
    ΔC/C0—Relative variation of capacitance signal

    灵敏度是评价压力传感器对压力变化敏感程度的重要性能指标,电容式压力传感器的灵敏度公式为

    S=(CC0)/C0ΔP=ΔC/C0ΔP (3)

    其中: ΔC是施加压力后的电容变化量;C0是不施加压力时的初始电容值;ΔP是压力变化量;ΔC/C0为电容信号的相对变化量;C是压缩过程中传感器的实时电容。

    通过上述不同配比的介电层组装的传感器的压力-电容响应曲线,可以看出,CB与BTO质量比为5∶100的海绵介电层的传感器灵敏度是最高。从图4 可以看出,CB-BTO/PU 海绵压力传感器在较小的压力范围内(0~10 kPa)的灵敏度平均为0.6311 kPa−1,而随着压力的不断增加,在10~140 kPa范围内传感器的平均灵敏度有所增加,达到了0.7911 kPa−1。在这两个压力范围内灵敏度快速增加的原因是,越来越大的压力,使介电层不断压缩,两电极板的相对距离逐渐变小,而海绵介电层中的空气也逐渐排出,使介电层的相对介电常数迅速变大,这两方面都能增大电容的变化量,因此灵敏度在这两个压力范围内快速提升。在较大的压力范围内(140~300 kPa)的平均灵敏度为0.1395 kPa−1,相较于前两个压力范围的灵敏度,较大的压力范围内(140~300 kPa)的灵敏度有所降低,但也达到了0.1395 kPa−1,这是由于随着压力的增大,介电层的变化趋于饱和,灵敏度也随之下降。

    图  4  炭黑与钛酸钡质量比为5∶100下的CB-BTO/PU海绵压力传感器的灵敏度曲线
    SC1, SC2, SC3—Sensitivity in different pressure ranges
    Figure  4.  Sensitivity curves of CB-BTO/PU sponge pressure sensor at 5∶100 mass ratio of carbon black to barium titanate

    线性度值越小,表明拟合的曲线与实测的曲线之间的偏差越小[27]。如图4所示,对压力传感器进行了线性度分析,结果表明,在0~10 kPa、10~140 kPa、140~300 kPa这3个压力范围内的线性度分别为5.3%、1.4%、0.8%。该结果也从侧面证明了传感器在3个压力范围的灵敏度拟合更加可靠和准确。

    综上所述,从灵敏度与线性度可以得出,CB-BTO/PU 海绵压力传感器在宽的压力范围内能保持高的灵敏度,具备良好的传感性能。

    此外,与近年来相关领域文献中报道的柔性电容式压力传感器性能比较如表1所示[26, 28-30]

    表  1  CB-BTO/PU传感器与文献报道性能比较
    Table  1.  Performance comparison between CB-BTO/PU sensor and literature report
    Materials Sensitivity Detection range/kPa Ref.
    TiO2@PU 0.93 kPa−1 (0-0.37 kPa)
    0.079 kPa−1 (0.37-2.83 kPa)
    0.02 kPa−1 (2.83-10 kPa)
    0-10 [26]
    CCTO@PU 0.73 kPa−1 (0-1.6 kPa)
    0.135 kPa−1 (1.6-22.8 kPa)
    0.026 kPa−1 (22.8-100 kPa)
    0-100 [28]

    GO/CNTs@TPU
    0.05777 kPa−1 (0-5 kPa)
    0.33213 kPa−1 (5-60 kPa)
    0-60 [29]

    GNPs/MWCNTs/SR/PS
    0.062 kPa−1 (0-0.3 kPa)
    0.033 kPa−1 (0.3-4.5 kPa)
    0-4.5 [30]
    CB-BTO/PU 0.6311 kPa−1 (0-10 kPa)
    0.7911 kPa−1 (10-140 kPa)
    0.1395 kPa−1 (140-300 kPa)
    0-300 This work
    Notes: CCTO—Calcium copper titanate; GO—Graphene oxide; CNTs—Carbon nanotube; TPU—Thermoplastic polyurethane; GNPs—Graphene nanosheets; MWCNTs—Carboxyl-functionalized multiwalled carbon nanotubes; SR—Silicone rubber; PS—Commercial polyurethane sponge.
    下载: 导出CSV 
    | 显示表格

    对于传感器性能而言,传感器的响应时间/恢复时间、最小压力检测极限、稳定性和耐久性等性能指标也是评估传感器的重要参数。如图5(a)所示,通过在传感器加/卸载100 g砝码测量传感器的响应与恢复时间。结果表明,响应时间与恢复时间分别为0.375 s、0.125 s,响应时间略长是由于PU海绵被快速压缩形变后在短时间内仍然会持续形变才能到达最终的稳定状态,而当卸载砝码时海绵却能快速恢复原状,因此恢复时间较短。但响应时间和恢复时间都接近于人体对压力的响应时间400 ms[31],因此该传感器在人体运动监测具备一定的可行性。如图5(b)所示,为了检测传感器的最小压力测量极限,将一颗质量为0.25 g (~24.5 Pa)的小磁子放置在传感器表面,通过观察加载和卸载前后的电容变化,检测出传感器的最低压力极限。根据Zang等[32]对压力范围的分类方法,该传感器的最低检测限处于微压范围内(1 Pa~1 kPa),表明了传感器在微小压力检测方面具有潜在的应用价值。稳定性是评估压力传感器维持稳定工作的重要参数。如图5(c)所示,为了评估该传感器的输出可靠性、稳定性和重复性,分别在不同的压力下对传感器进行了响应特性测试,电容变化随着压力的增加而增加,且能在压力撤销以后恢复到初始值,这说明了该传感器具有良好的分辨率及测压的应用潜力。此外,还对传感器进行了在200 kPa压力下的2500次循环响应恢复测试。如图5(d)所示,在上千次的测试中,传感器的电容变化率幅值无明显变化,电容变化率曲线波形保持了良好的一致,证明了该传感器具有良好的重复性和稳定性。还与近年来相关领域文献中报道的柔性传感器耐久性进行了比较,如表2所示[33-35]

    图  5  CB-BTO/PU海绵压力传感器的性能参数:(a)响应时间/恢复时间;(b)最低检测限;(c)不同压力下的响应;(d)循环稳定性
    Figure  5.  Performance parameters of CB-BTO/PU sponge pressure sensor: (a) Response time/recovery time; (b) Minimum detection limit; (c) Response under different pressures; (d) Cyclic stability
    表  2  CB-BTO/PU传感器与文献报道耐久性比较
    Table  2.  Comparison of durability between CB-BTO/PU sensor and literature report
    Number of cycle test Circulating pressure range/Circulating strain range Ref.
    500 0-1.7 kPa [33]
    2000 100% [34]
    35000 100% [35]
    2500 0-200 kPa This work
    下载: 导出CSV 
    | 显示表格

    通过上述对传感器的一系列力学传感性能检测,验证了基于CB-BTO/PU海绵柔性电容式传感器具有高灵敏度、宽检测范围等较优异的传感性能。在此基础上,对传感器的应用方面进行了拓展。首先,是对传感器在小压力范围内的应用,将传感器安装在鼠标上如图6(a)所示,通过对鼠标的单击快慢和双击时的力度变化,输出不同的电容信号。结果显示,对鼠标的单击力度的不相同,所输出的信号峰值也不相同,并且随着对鼠标的单击速度加快,所得到的电容信号也会越来越密集;而双击鼠标时,则会得到连续输出的信号。

    图  6  CB-BTO/PU海绵压力传感器在各种变形信号监测中的应用:(a)手指点击鼠标上传感器的响应(0~5 kPa);(b)指关节弯曲的传感器响应(0~7 kPa);(c)抓取不同质量玻璃杯的传感器响应(0~40 kPa);(d)足底压力和步态监测的传感器响应(0~110 kPa)
    Figure  6.  Application of CB-BTO/PU sponge pressure sensor in monitoring various deformation signals: (a) Response of sensor when finger clicks the mouse (0-5 kPa); (b) Sensor response of knuckle bending (0-7 kPa); (c) Sensor responses for grabbing glasses with different qualities (0-40 kPa); (d) Sensor response of plantar pressure and gait monitoring (0-110 kPa)

    该传感器还可以监测人体的小规模活动,如图6(b)所示,将传感器安装在手指的关节处,监测手指关节在不同弯曲角度时的电容相对变化值。当手指关节的弯曲角度变大时,对传感器的压缩形变也越来越大,而传感器所输出的电容信号值也不断变大,因此通过传感器的电容相对变化,可以精确地区分手指的弯曲程度。

    除了传感器在上述小压力范围内的应用以外,该传感器还能应用于较大的压力场景,如图6(c)所示,通过拿起和放下侧面安装有传感器的玻璃杯(重600 g),传感器的电容幅值也会产生相应的变化,而随着玻璃杯中水的质量不断增加(50 g、100 g、150 g、200 g、250 g、300 g),其电容的相对变化也不断变大,并且当玻璃杯被拿起和放下时,传感器都能产生稳定的信号。在图6(d)中,将传感器连接到鞋底,用于检测足底压力和步态监测。当落脚时,传感器被压缩,电容值立即增大;而当抬脚时,传感器被释放恢复原状,电容值立即恢复初始值,表明了该传感器具有良好的稳定性及快速响应的特性。

    以上的4种不同压力范围的应用检测无不都验证了该传感器在人机交互、电子皮肤、运动监测等领域应用的巨大潜力。

    本工作利用模板组装的方法制备了炭黑(CB)-钛酸钡(BTO)/聚氨酯(PU)海绵型电容式柔性压力传感器。得出以下结论:

    (1)通过对制备的CB-BTO/PU海绵骨架进行SEM、EDS表征,结果表明CB与BTO均匀地浸渍涂覆在PU海绵骨架上。从而使该传感器的介电层融合了PU海绵的低弹性模量和CB-BTO的高介电常数等特性,显著地增强了电容变化,使传感器拥有了良好的传感性能;

    (2)通过控制CB和BTO的质量比可改善海绵介电层的传感性能,最佳的配比为mCB:mBTO=5:100。该配比所制备的电容传感器,兼具了高灵敏度与宽的检测范围,在0~10 kPa、10~140 kPa与140~300 kPa的灵敏度分别为0.6311 kPa−10.7911 kPa−10.1395 kPa−1。同时,传感器还展示出较快的响应与恢复时间(<0.375 s)及低的检测限(~0.25 g),并且还具有良好的分辨率和长久的使用寿命(>2500次);

    (3)本工作被成功地验证可用于在人机交互、电子皮肤、运动监测等领域的巨大潜力,并为低成本、大规模商业化制备柔性压力传感器提供了可能。

  • 图  1   金属结构飞机机身与碳纤维增强复合材料(CFRP)飞机机身的电回路原理[5]

    Figure  1.   Electrical principle of electrical structure network applied to carbon fiber reinforced polymer (CFRP) fuselage[5]

    图  2   航空复合材料压缩强度与冲击后压缩强度(CAI)的关系及发展趋势[12]

    Figure  2.   Relationship between compression strength and compression strength after impact (CAI) of aerospace composites, and its development trend[12]

    The abbreviations in the figure all refer to resin and composite materials grades

    图  3   飞机相对油耗及噪声下降的趋势[14]

    Figure  3.   Development trends of relative fuel consumption and noise reduction of commercial aircraft[14]

    图  4   航空发动机短舱声衬[25]

    Figure  4.   Acoustic liner for aircraft engine nacelle[25]

    图  5   压实力对不同干态碳纤维(CF)(无树脂)正交铺层叠合物的影响:(a)压实力-厚度曲线;(b)垂直方向电阻Rtt-厚度曲线;(c) Rtt-压实力曲线;(d)垂直方向电阻率ρtt -碳纤维体积分数VCF关系曲线[26]

    FIT—Functionalized interlayer technology; Δt—Thickness difference between the two experimental groups

    Figure  5.   Effect of compaction on different dry cross-stacked carbon fiber (CF) fabrics: (a) Compression load-thickness curves; (b) Through thickness resistance Rtt-thickness curves; (c) Relationship between Rtt and compression load; (d) Relationship between through thickness electrical resistivity ρtt and carbon fiber volume fraction VCF[26]

    图  6   干态叠合物(无树脂)的垂直电阻Rtt-铺层层数n曲线:(a)正交叠合的碳纤维单向织物;(b)正交叠合的碳纤维单向织物层间插入柔性导电纱(NPV);(c)纯NPV叠合物[26]

    Figure  6.   Relationship between Rtt and number of plies n for dry stacks: (a) Cross-stacked carbon fiber unidirectional fabrics; (b) Cross-stacked carbon fiber unidirectional fabrics interleaved with NPV; (c) Cross-stacked NPV[26]

    R2—Fit index; NPV—Nickel-plated polyester veil

    图  7   叠合物体系电阻率k与压实力(a)及“虚拟”接触电阻R0与压实力之间的关系(b)[26]

    Figure  7.   Resistance of laminate system k (a), and virtual interfacial contact resistance (R0) as a function of load for Control−D and FIT−D specimens (b)[26]

    图  8   厚度方向电阻率ρtt与碳纤维体积分数VCF的关系(其中,实线为无树脂的干态碳纤维叠合物试样,而散点为环氧树脂浸渍并固化后的叠合物试样)

    Figure  8.   Through thickness electrical resistivity (ρtt) versus carbon fibre volume fraction (VCF) for dry cross-stacked specimens (solid lines) and the resin impregnated and cured cross-ply specimens (scatters)

    图  9   树脂含量(ωresin)与碳纤维体积分数(VCF)之间的关系

    Figure  9.   Relationship between resin content (ωresin) and carbon fibre volume fraction (VCF)

    图  10   NPV在低压实和高压实情况下的厚度方向导电示意图:(a) Control−E;(b) FIT−E

    Figure  10.   Schematic illustration regarding the through thickness conductive contacts of NPV at low and high compaction: (a) Control−E; (b) FIT−E

    图  11   ρtt与NPV插层层数的关系[26]

    Figure  11.   Effects of the number of NPV layers on ρtt[26]

    图  12   功能性导电插层试样FITt与无插层对比试样Control的I型层间断裂韧性测试结果比较:(a)载荷-位移曲线;(b) I型层间断裂阻力R曲线[4]

    Figure  12.   Result and comparison of FITt specimen and Control specimen in Mode I interlaminar fracture toughness test: (a) Typical load-displacement curves; (b) Typical R-curves of Mode I fracture toughness test[4]

    GIC—Mode I interlaminar fracture toughness

    图  13   功能性导电插层试样FITt的I型层间断口照片:(a) I型断裂韧性测试照片;(b)开裂处侧向电镜照片;(c)断口整体形貌;(d)断口局部放大照片[4]

    Figure  13.   Photograph of interleaved specimen FITt in Mode I interlaminar fracture test: (a) Fracture open photograph; (b) SEM image at crack region; (c) Plane view of the fracture surface; (d) Zoom-in photograph of fracture surface of (c)[4]

    图  14   功能性导电插层试样FITt与无插层对比试样Control的Ⅱ型层间断裂韧性测试结果对比:(a)典型载荷-位移曲线;(b) II型层间断裂韧性GIIC数值[4]

    Figure  14.   Result and comparison of FITt specimen and control specimen in Mode II interlaminar fracture toughness test: (a) Typical load-displacement curves; (b) GIIC values of Mode II interlaminar fracture toughness[4]

    图  15   功能性导电插层试样FITt的II型层间断裂韧性侧视图:(a) Mode II试验中;(b) II型裂纹的SEM图像[4]

    Figure  15.   Side view photograph of interleaved specimen FITt in Mode II interlaminar fracture test: (a) Mode II test; (b) SEM images at crack region[4]

    图  16   II型层间断裂韧性表面形貌:(a)上表面;(b)上表面电镜;(c)下表面;(d)下表面电镜[4]

    Figure  16.   Plane view of Mode II fracture surface for interleaved specimen FITt: (a) Observation of upper fracture surface; (b) SEM image at upper fracture surface; (c) Observation of lower fracture surface; (d) SEM image at lower fracture surface[4]

    图  17   内织导电纬纱/连续碳纤维织物(IWCWF)的结构示意图

    Figure  17.   Schematic illustration of the inter-woven conductive weft/continuous carbon fiber fabric (IWCWF)

    图  18   粗细两种IWCWF的光学照片:(a)粗导电纬纱织物;(b)细导电纬纱织物[35]

    Figure  18.   Photographs of two sets of IWCWFs: (a) Thick conductive yarn fabric; (b) Fine conductive yarn fabric[35]

    图  19   粗细两种导电纱线的SEM截面照片:(a)粗纬纱导电织物;(b)细纬纱导电织物[35]

    Figure  19.   SEM images of the cross-section of two kinds of conductive yarn: (a) Thick conductive yarn; (b) Fine conductive yarn[35]

    图  20   基于IWCWF的复合材料结构模型:(a)包括碳纤维和导电纬纱的模型;(b)仅显示导电纬纱的模型;(c)导电纬纱复合材料模型的截面图

    Figure  20.   Structural model of composite based on IWCWF: (a) Model including both carbon fibers and conductive weft yarns; (b) Model only including conductive weft yarns; (c) Cross-section image of the model

    图  21   连通图形式的随机叠层网络模型[35]

    Figure  21.   A schematic of the stochastic overlap network model in connected graph form[35]

    图  22   普通纬纱定型复合材料(CC)与粗导电纬纱(tIC)及细导电纬纱(fIC)导电复合材料的厚度方向导电率(TTEC)及其对比[35]

    Figure  22.   Through thickness electrical conductivity (TTEC) of common weft shaped composite (CC) and thick conductive weft (tIC) and fine conductive weft (fIC) conductive composite and their comparisons[35]

    图  23   CC和导电织物复合材料(IC)的表面和截面形貌:CC表面形貌((a1), (a2))、CC截面形貌((a3), (a4))、IC表面形貌((b1), (b2))、IC截面形貌((b3), (b4))[36]

    Figure  23.   Surface photographs and cross-section images of CC and conductive fabric composite (IC): CC surfaces ((a1), (a2)), CC cross-sections ((a3), (a4)), IC surfaces ((b1), (b2)), IC cross-sections ((b3), (b4)) [36]

    图  24   CC和IC的I型层间断裂韧性测试结果[36]

    Figure  24.   Results of Mode I interlaminar fracture toughness tests of CC and IC [36]

    GIC-ini—Initiation mode I interlaminar fracturetoughness; GIC-prop—Propagation mode I interlaminar fracturetoughness

    图  25   Ⅰ型层间断裂韧性测试后裂纹路径的典型SEM侧视图:(a) CC;(b) IC;I型层间断裂韧性测试后相应断裂表面的典型SEM俯视图:常规复合材料((c1), (c2))、导电复合材料((d1), (d2))及其相应的光学显微镜图像: ((c3), (c4))常规复合材料;((d3), (d4))导电复合材料[36]

    Figure  25.   Typical SEM side views of crack paths after the mode I tests: (a) CC; (b) IC; Typical SEM top views of matching fracture surface after the mode I tests: CC ((c1), (c2)), IC ((d1), (d2)) and their corresponding optical microscopy images: ((c3), (c4)) CC and ((d3), (d4)) IC[36]

    图  26   CC和IC的II型层间断裂韧性(GIIC)测试结果[36]

    Figure  26.   Results of Mode II interlaminar fracture toughness (GIIC) tests of CC and IC [36]

    图  27   II型层间断裂韧性测试后裂纹路径的典型SEM侧视图:(a) CC;(b) IC[36]

    Figure  27.   Typical SEM side views of crack paths after the Mode II tests: (a) CC; (b) IC [36]

    图  28   典型微穿孔板/蜂窝夹芯复合材料结构:(a)整体结构;(b)微穿孔板面板;(c)蜂窝夹芯;(d)固定底板[42]

    Figure  28.   Typical micro perforated-honeycomb structure: (a) Overall structure; (b) Micro perforated plate; (c) Honeycomb structure core;(d) Rigid bottom plate[42]

    图  29   碳化棉形貌

    Figure  29.   Morphology of carbonized cotton

    图  30   微穿孔面板/多级孔碳化棉填充蜂窝的夹芯吸声复合材料的制备流程[60]

    Figure  30.   Preparation of micro-perforated plate sound-absorbing composite with honeycomb-hierarchical structure[60]

    图  31   无填充的对照组、碳化棉填充蜂窝孔的试验组和含多级孔结构碳化棉填充物的试验组的吸声测试结果对比(其中阴影部分表示不同样品间测试结果的标准差):(a)吸声系数曲线;(b)平均吸声系数

    Figure  31.   Sound absorption performance test results of no-filling, carbonized cotton, and hierarchical pore structure samples (the shadow around the curves shows the standard deviation from the mean of three samples): (a) Sound absorption curve; (b) Average sound absorption coefficient

    图  32   微穿孔面板/多级孔填充蜂窝结构的夹芯复合材料简化模型:(a)二维模型;(b)分解模型[60]

    Figure  32.   Simplified model of the micro-perforated plate sound-absorbing composite with honeycomb-hierarchical structure: (a) 2D model; (b) Decomposition model[60]

    图  33   碳化棉填充试验件和含多级孔填充物试验件的理论模型计算结果与实验结果对比[60]

    Figure  33.   Results of analytical modelling compared with experimental data for the carbon cotton and hierarchical pore structures[60]

    图  34   编织布/无纺纤维毡组合片材:(a)俯视图及显微镜视图;(b)侧视图及显微视图[72]

    Figure  34.   Woven/nonwoven fiber mat composite material: (a) Vertical view and microscopic view; (b) Front view and microscopic view[72]

    Φ—Diameter

    图  35   (a)折叠结构造型;(b)折叠单元结构尺寸[72]

    Figure  35.   (a) Folded structure theoretical model; (b) Geometric parameters of the folded structure unit cell[72]

    H—Height of the structure; S—Length of the edge; a—Length of the edge; θ—The folding angle

    图  36   不同材料和结构对吸声性能的影响:(a)吸声系数曲线;(b)实验安装示意图[72]

    Figure  36.   The influence of different materials and structures on sound absorption ability: (a) Sound absorption coefficient curves; (b) Experimental setup[72]

    图  37   提取结构最小单元[72]

    Figure  37.   Extracting the minimum unit cell of the structure[72]

    图  38   折叠结构简化模型:(a)折叠结构最小单元;(b)折叠结构等效模型[72]

    Figure  38.   Simplified model of the folded structure: (a) Minimum cell of the folded structure; (b) Equivalent model of the folded structure[72]

    S2—The area of incline plate; V2—The volume of the inner cavity; t1, t2—The thickness of the composite; D1, D2—The height of the upper and bottom cavity in equivalent model; D1', D2'—The thickness of the porous material in composite mateirals

    图  39   折叠结构等效模型分析示意图[72]

    Figure  39.   Analytical diagram of the equivalent model for the folded structure[72]

    Z1, Z2, Z3, Z4, ZC1, ZC2, ZC3, ZC4—The specific acoustic impedance of the locations; Zm1, Zm2, Zm3, Zm4—The specific acoustic impedance of the microperforated plate

    图  40   理论模型计算结果和试验结果对比[72]

    Figure  40.   Comparison of the theoretical model and experimental results[72]

    表  1   折叠结构建模尺寸数据

    Table  1   Geometric parameters of the folded structure unit cell

    Geometric parameter Value
    Height of the structure H/mm 50
    Length of the edge S/mm 60
    Length of the edge a/mm 30
    The folding angle θ/(°) 55
    下载: 导出CSV
  • [1]

    GUO M, YI X, RUDD C, et al. Preparation of highly electrically conductive carbon-fiber composites with high interlaminar fracture toughness by using silver-plated interleaves[J]. Composites Science and Technology, 2019, 176: 29-36. DOI: 10.1016/j.compscitech.2019.03.014

    [2]

    GAZTELUMENDI I, CHAPARTEGUI M, SEDDON R, et al. Enhancement of electrical conductivity of composite structures by integration of carbon nanotubes via bulk resin and/or buckypaper films[J]. Composites Part B: Engineering, 2017, 122: 31-40. DOI: 10.1016/j.compositesb.2016.12.059

    [3]

    CHENG C, ZHANG C, ZHOU J, et al. Improving the interlaminar toughness of the carbon fiber/epoxy composites via interleaved with polyethersulfone porous films[J]. Composites Science and Technology, 2019, 183: 107827. DOI: 10.1016/j.compscitech.2019.107827

    [4]

    HU D, YI X, JIANG M, et al. Development of highly electrically conductive composites for aeronautical applications utilizing bi-functional composite interleaves[J]. Aerospace Science and Technology, 2020, 98: 105669. DOI: 10.1016/j.ast.2019.105669

    [5]

    Engineering Directorate. ATS airbus targe specification, ATS05-0003[R]. Blagnac Cedex: AIRBUS, 2012.

    [6]

    LONJON A, DEMONT P, DANTRAS E, et al. Electrical conductivity improvement of aeronautical carbon fiber reinforced polyepoxy composites by insertion of carbon nanotubes[J]. Journal of Non-Crystalline Solids, 2012, 358(15): 1859-1862. DOI: 10.1016/j.jnoncrysol.2012.05.038

    [7]

    ZHAO Z J, XIAN G J, YU J G, et al. Development of electrically conductive structural BMI based CFRPs for lightning strike protection[J]. Composites Science and Technology, 2018, 167: 555-562. DOI: 10.1016/j.compscitech.2018.08.026

    [8]

    LOCHOT C, SLOMIANOWSHI D. A350 XWB electrical structure network[J]. Airbus Technical Magazine, 2014, 1: 20-25.

    [9]

    KUMAR V, YOKOZEKI T, OKADA T, et al. Effect of through-thickness electrical conductivity of CFRPs on lightning strike damages[J]. Composites Part A: Applied Science and Manufacturing, 2018, 114: 429-438. DOI: 10.1016/j.compositesa.2018.09.007

    [10]

    HU D, ZHANG X, LIU X, et al. Study on toughness improvement of a rosin-sourced epoxy matrix composite for green aerospace application[J]. Journal of Composites Science, 2020, 4(4): 168. DOI: 10.3390/jcs4040168

    [11]

    TANG Y, YE L, ZHANG Z, et al. Interlaminar fracture toughness and CAI strength of fibre-reinforced composites with nanoparticles–A review[J]. Composites Science and Technology, 2013, 86: 26-37. DOI: 10.1016/j.compscitech.2013.06.021

    [12]

    BAEKERS B. Composite technology at airbus[C]//International Symposium on Manufacturing for Composite Aircraft Structures. Braunschweig: German Aerospace Center, 2004.

    [13]

    HÄNNINEN O, KNOL A B, JANTUNEN M, et al. Environmental burden of disease in Europe: Assessing nine risk factors in six countries[J]. Environmental Health Perspectives, 2014, 122(5): 439-446. DOI: 10.1289/ehp.1206154

    [14]

    DAVID R. Aviation: Diver for economic & social development [C]//Second meeting of the ICAO Asia/Pacific seamless ATM planning group (APSAPG/2). Tokyo: International Civil Aviation Organization, 2012.

    [15]

    LI X, YU X, ZHAI W. Additively manufactured deformation-recoverable and broadband sound-absorbing microlattice inspired by the concept of traditional perforated panels[J]. Advanced Materials, 2021, 33(44): 2104552.

    [16]

    REN Z, CHENG Y, CHEN M, et al. A compact multifunctional metastructure for low-frequency broadband sound absorption and crash energy dissipation[J]. Materials & Design, 2022, 215: 110462.

    [17]

    LIU Q, LIU X, ZHANG C, et al. A novel multiscale porous composite structure for sound absorption enhancement[J]. Composite Structures, 2021, 276: 114456. DOI: 10.1016/j.compstruct.2021.114456

    [18] 马大猷. 噪声控制学[M]. 北京:科学出版社, 1987: 288-296.

    MA Dayou. Noise control[M]. Beijing: Science Press, 1987: 288-296(in Chinese).

    [19]

    TOYODA M, SAKAGAMI K, TAKAHASHI D, et al. Effect of a honeycomb on the sound absorption characteristics of panel-type absorbers[J]. Applied Acoustics, 2011, 72(12): 943-948. DOI: 10.1016/j.apacoust.2011.05.017

    [20]

    HOSHI K, HANYU T, OKUZONO T, et al. Implementation experiment of a honeycomb-backed MPP sound absorber in a meeting room[J]. Applied Acoustics, 2020, 157: 107000. DOI: 10.1016/j.apacoust.2019.107000

    [21]

    YAN S, WU J, CHEN J, et al. Optimization design and analysis of honeycomb micro-perforated plate broadband sound absorber[J]. Applied Acoustics, 2022, 186: 108487. DOI: 10.1016/j.apacoust.2021.108487

    [22]

    GAUTAM A, CELIK A, AZARPEYVAND M. On the acoustic performance of double degree of freedom helmholtz resonator based acoustic liners[J]. Applied Acoustics, 2022, 191: 108661.

    [23]

    ZHONG H, TIAN Y, GAO N, et al. Ultra-thin composite underwater honeycomb-type acoustic metamaterial with broadband sound insulation and high hydrostatic pressure resistance[J]. Composite Structures, 2021, 277: 114603. DOI: 10.1016/j.compstruct.2021.114603

    [24]

    SHEN L, ZHANG H, LEI Y, et al. Hierarchical pore structure based on cellulose nanofiber/melamine composite foam with enhanced sound absorption performance[J]. Carbohydrate Polymers, 2021, 255: 117405. DOI: 10.1016/j.carbpol.2020.117405

    [25] 王元元. 波音-NASA新型短舱声衬设计超出预期[N]. 中国航空报, 2018-09-18(5).

    WANG Yuanyuan. Boeing-NASA's new nacelle acoustic liner design exceeds expectations[N]. Chinese Aviation News, 2018-09-18(5)(in Chinese).

    [26]

    HU D, LIU X, LIU W, et al. The effects of compaction and interleaving on through-thickness electrical resistance and in-plane mechanical properties for CFRP laminates[J]. Composites Science and Technology, 2022, 223: 109441. DOI: 10.1016/j.compscitech.2022.109441

    [27]

    YI X S, GUO M C, LIU G, et al. Composite conductive sheet, fabricating method and application thereof: EP Patant, EP2687364B1[P]. 2017-04-05.

    [28]

    GUO M, YI X, LIU G, et al. Simultaneously increasing the electrical conductivity and fracture toughness of carbon-fiber composites by using silver nanowires-loaded interleaves[J]. Composites Science and Technology, 2014, 97: 27-33. DOI: 10.1016/j.compscitech.2014.03.020

    [29]

    LIN Y. Functionalized interleaf technology in carbon-fibre-reinforced composites for aircraft applications[J]. National Science Review, 2014, 1(1): 7-8.

    [30]

    LIU H, GUO Y, ZHOU Y, et al. Multifunctional nickel-coated carbon fiber veil for improving both fracture toughness and electrical performance of carbon fiber/epoxy composite laminates[J]. Polymer Composites, 2021, 42(10): 5335-5347. DOI: 10.1002/pc.26227

    [31]

    XU F, YANG B, FENG L, et al. Improved interlaminar fracture toughness and electrical conductivity of CFRPs with non-woven carbon tissue interleaves composed of fibers with different lengths[J]. Polymers, 2020, 12(4): 803. DOI: 10.3390/polym12040803

    [32]

    LI W, XIANG D, WANG L, et al. Simultaneous enhancement of electrical conductivity and interlaminar fracture toughness of carbon fiber/epoxy composites using plasma-treated conductive thermoplastic film interleaves[J]. RSC Advances, 2018, 8(47): 26910-26921. DOI: 10.1039/C8RA05366A

    [33]

    GUO M, YI X. The production of tough, electrically conductive carbon fiber composite laminates for use in airframes[J]. Carbon, 2013, 58: 241-244.

    [34]

    GUO M, YI X. Effect of paper or silver nanowires-loaded paper interleaves on the electrical conductivity and interlaminar fracture toughness of composites[J]. Aerospace, 2018, 5(3): 77.

    [35]

    JIANG M, CONG X, YI X, et al. A stochastic overlap network model of electrical properties for conductive weft yarn composites and their experimental study[J]. Composites Science and Technology, 2022, 217: 109075. DOI: 10.1016/j.compscitech.2021.109075

    [36]

    JIANG M, HU Y, RUDD C, et al. Simultaneously improving electrical properties and interlaminar fracture toughness: A novel multifunctional composite based on inter-woven wire fabric[J]. Composites Communications, 2023, 39: 101563. DOI: 10.1016/j.coco.2023.101563

    [37] 益小苏, 肖勇民, 陆明彦, 等. 厚度方向导电的层压复合材料及其制造方法: 中国, WO2019/227474A1[P]. 2019-12-05.

    YI X S, XIAO Y M, LU M Y, et al. Thickness direction conductive laminated composite material and manufacturing method therefor: CN Patant, WO2019/227474A1[P]. 2019-12-05(in Chinese).

    [38]

    WANG F, CHEN Z, WU C, et al. Prediction on sound insulation properties of ultrafine glass wool mats with artificial neural networks[J]. Applied Acoustics, 2019, 146: 164-171. DOI: 10.1016/j.apacoust.2018.11.018

    [39]

    MISKINIS K, DIKAVICIUS V, BUSKA A, et al. Influence of EPS, mineral wool and plaster layers on sound and thermal insulation of a wall: A case study[J]. Applied Acoustics, 2018, 137: 62-68. DOI: 10.1016/j.apacoust.2018.03.001

    [40]

    MOHAMMADI B, ERSHAD-LANGROUDI A, MORADI G, et al. Mechanical and sound absorption properties of open-cell polyurethane foams modified with rock wool fiber[J]. Journal of Building Engineering, 2022, 48: 103872. DOI: 10.1016/j.jobe.2021.103872

    [41]

    MA D Y. Theory and design of microperforated panel sound-absorbing constructions[J]. Scientia Sinica, 1975, 18(1): 55-71.

    [42]

    EPHRAMAC. Acoustic liner[EB/OL]. [2022-11-12]. Website: en.wikipedia.org/wiki/Acoustic_liner.

    [43]

    TABAN E, KHAVANIN A, JAFARI A J, et al. Experimental and mathematical survey of sound absorption performance of date palm fibers[J]. Heliyon, 2019, 5(6): e01977. DOI: 10.1016/j.heliyon.2019.e01977

    [44]

    BHINGARE N H, PRAKASH S. An experimental and theoretical investigation of coconut coir material for sound absorption characteristics[J]. Materials Today: Proceedings, 2021, 43: 1545-1551.

    [45]

    PRABHAKARAN S, KRISHNARAJ V, KUMAR M S, et al. Sound and vibration damping properties of flax fiber reinforced composites[J]. Procedia Engineering, 2014, 97: 573-581. DOI: 10.1016/j.proeng.2014.12.285

    [46]

    TENG T, ELAMMARAN J, BAKRI M K B, et al. Effect of biomass ash mixture composite on sound absorption[J]. Materials Today: Proceedings, 2020, 29: 223-227. DOI: 10.1016/j.matpr.2020.05.533

    [47]

    BAEK S H, KIM J H. Polyurethane composite foams including silicone-acrylic particles for enhanced sound absorption via increased damping and frictions of sound waves[J]. Composites Science and Technology, 2020, 198: 108325. DOI: 10.1016/j.compscitech.2020.108325

    [48]

    KANG C W, KOLYA H, JANG E S, et al. Steam exploded wood cell walls reveals improved gas permeability and sound absorption capability[J]. Applied Acoustics, 2021, 179: 108049. DOI: 10.1016/j.apacoust.2021.108049

    [49]

    LIU R, HOU L, ZHOU W, et al. Design, fabrication and sound absorption performance investigation of porous copper fiber sintered sheets with rough surface[J]. Applied Acoustics, 2020, 170: 107525. DOI: 10.1016/j.apacoust.2020.107525

    [50]

    HIROSAWA K. Numerical study on the influence of fiber cross-sectional shapes on the sound absorption efficiency of fibrous porous materials[J]. Applied Acoustics, 2020, 164: 107222. DOI: 10.1016/j.apacoust.2020.107222

    [51]

    ATIÉNZAR-NAVARRO R, BONET-ARACIL M, GISBERT-PAYÁ J, et al. Sound absorption of textile fabrics doped with microcapsules[J]. Applied Acoustics, 2020, 164: 107285. DOI: 10.1016/j.apacoust.2020.107285

    [52]

    CAO L, YU X, YIN X, et al. Hierarchically maze-like structured nanofiber aerogels for effective low-frequency sound absorption[J]. Journal of Colloid and Interface Science, 2021, 597: 21-28. DOI: 10.1016/j.jcis.2021.03.172

    [53]

    CHEN S H, WANG J K, ZUO W Q, et al. Superhydrophobic cement with hierarchically tunable pore structure by additive manufacturing towards super sound absorption[J]. Journal of Building Engineering, 2024, 96: 110433. DOI: 10.1016/j.jobe.2024.110433

    [54]

    CAI X, ZHANG Y, YANG J. Tunable ultra low and broad acoustic absorption by controllable pyrolysis of fiber materials[J]. Materials Today Communications, 2018, 16: 226-231.

    [55]

    ZHANG H, LIU H, WU H, et al. Microwave absorbing property of gelcasting SiC-Si3N4 ceramics with hierarchical pore structures[J]. Journal of the European Ceramic Society, 2022, 42(4): 1249-1257. DOI: 10.1016/j.jeurceramsoc.2021.12.011

    [56]

    ZHOU P, ZHANG J, SONG Z, et al. Ordered mesoporous carbon with hierarchical pore structure for high-efficiency electromagnetic wave absorber under thin matching thickness[J]. Journal of Materials Research and Technology, 2023, 25: 1560-1569. DOI: 10.1016/j.jmrt.2023.06.056

    [57]

    YANG L, CHUA J W, LI X, et al. Superior broadband sound absorption in hierarchical ultralight graphene oxide aerogels achieved through emulsion freeze-casting[J]. Chemical Engineering Journal, 2023, 469: 143896. DOI: 10.1016/j.cej.2023.143896

    [58]

    OH J H, LEE H R, UMRAO S, et al. Self-aligned and hierarchically porous graphene-polyurethane foams for acoustic wave absorption[J]. Carbon, 2019, 147: 510-518. DOI: 10.1016/j.carbon.2019.03.025

    [59]

    XU P, FANG J, HE H, et al. In situ growth of globular MnO2 nanoflowers inside hierarchical porous mangosteen shells-derived carbon for efficient electromagnetic wave absorber[J]. Journal of Alloys and Compounds, 2022, 903: 163826. DOI: 10.1016/j.jallcom.2022.163826

    [60]

    DONG C, LIU Z, PIERCE R, et al. Sound absorption performance of a micro perforated sandwich panel with honeycomb-hierarchical pore structure core[J]. Applied Acoustics, 2023, 203: 109200. DOI: 10.1016/j.apacoust.2022.109200

    [61]

    OLNY X, BOUTIN C. Acoustic wave propagation in double porosity media[J]. The Journal of the Acoustical Society of America, 2003, 114: 73-89.

    [62]

    MOUSANEZHAD D, KAMRAVA S, VAZIRI A. Origami-based building blocks for modular construction of foldable structures[J]. Scientific Reports, 2017, 7(1): 14792.

    [63]

    MA Q, REJAB R, SIREGAR J, et al. A review of the recent trends on core structures and impact response of sandwich panels[J]. Journal of Composite Materials, 2021, 55(18): 2513-2555. DOI: 10.1177/0021998321990734

    [64]

    DU Y, SONG C, XIONG J, et al. Fabrication and mechanical behaviors of carbon fiber reinforced composite foldcore based on curved-crease origami[J]. Composites Science and Technology, 2019, 174: 94-105. DOI: 10.1016/j.compscitech.2019.02.019

    [65]

    JIN X, FANG H, YU X, et al. Reconfigurable origami-inspired window for tunable noise reduction and air ventilation[J]. Building and Environment, 2023, 227: 109802. DOI: 10.1016/j.buildenv.2022.109802

    [66]

    JI J C, LUO Q, YE K. Vibration control based metamaterials and origami structures: A state-of-the-art review[J]. Mechanical Systems and Signal Processing, 2021, 161: 107945.

    [67]

    HAN H, SOROKIN V, TANG L, et al. Origami-based tunable mechanical memory metamaterial for vibration attenuation[J]. Mechanical Systems and Signal Processing, 2023, 188: 110033. DOI: 10.1016/j.ymssp.2022.110033

    [68]

    JIANG T, HAN Q, LI C. Topologically tunable local-resonant origami metamaterials for wave transmission and impact mitigation[J]. Journal of Sound and Vibration, 2023, 548: 117548.

    [69]

    PRATAPA P P, SURYANARAYANA P, PAULINO G H. Bloch wave framework for structures with nonlocal interactions: Application to the design of origami acoustic metamaterials[J]. Journal of the Mechanics and Physics of Solids, 2018, 118: 115-132.

    [70]

    WAN M, YU K, GU J, et al. 4D printed TMP origami metamaterials with programmable mechanical properties[J]. International Journal of Mechanical Sciences, 2023, 250: 108275. DOI: 10.1016/j.ijmecsci.2023.108275

    [71]

    LI H, ZHANG N, FAN X, et al. Investigation of effective factors of woven structure fabrics for acoustic absorption[J]. Applied Acoustics, 2020, 161: 107081. DOI: 10.1016/j.apacoust.2019.107081

    [72]

    DONG C, LIU Z, LIU X, et al. Sound absorption performance of folded structures prepared from woven prepreg and porous material composites[J]. Applied Acoustics, 2023, 212: 109591. DOI: 10.1016/j.apacoust.2023.109591

    [73]

    RUIZ H, COBO P, JACOBSEN F. Optimization of multiple-layer microperforated panels by simulated annealing[J]. Applied Acoustics, 2011, 72(10): 772-776.

  • 期刊类型引用(1)

    1. 曾鹏程,肖书平,杨柳,谈灵操,徐百平. 较宽压强响应范围和较高灵敏度的聚丙烯基电容式压力传感器的研制. 机电工程技术. 2025(03): 58-63 . 百度学术

    其他类型引用(3)

  • 目的 

    在碳纤维增强树脂基复合材料轻量化与结构性能持续提高的前提下,同时附加其特定的功能,尤其是在不损失、甚至提升其层间断裂韧性的情况下,不仅可以弥补结构复合材料天然的缺陷,例如树脂基体的电绝缘性,也可以使其满足特定产品的要求,例如高刚度兼具一定的吸声降噪特性等。显然,对于航空航天这样的尖端应用领域,这种功能附加或结构功能一体化的复合材料技术对复合材料的实际应用至关重要。

    方法 

    本文通过材料和结构设计,理论模型建立和实验验证的方式,依次对(1)基于层间功能化插层和(2)基于内织导电纬纱的导电增韧一体化复合材料、以及(3)多级孔碳化棉纤维填充蜂窝/微穿孔面板的夹芯复合材料结构和(4)编织布/无纺纤维毡复合材料片材折叠成型的结构吸声一体化复合材料进行了研究。其中前两种材料分别通过在复合材料富树脂的层间插入导电功能化插层和在复合材料内引入贯通整个材料的导电纬纱网络实现了复合材料的导电性能与层间韧性的同步提高,而后两种材料则分别通过多级孔结构的碳化棉纤维材料填充蜂窝/微穿孔面板夹芯技术和编织布/无纺纤维毡复合材料片材的折叠技术实现了良好的吸声性能。

    结果 

    实验测试结果表明(1)功能性插层材料—既本文中的柔性导电纱(NPV)材料,在碳纤维增强叠层复合材料层间的增韧作用类似于尼龙搭扣(Velcro)的机械性连接,它主要是在碳纤维铺层的层间建立了一种机械性的、树脂与NPV互穿的双连续网络结构,最终功能化插层试样在实现了导电性能增强的同时也增强了碳纤维复合材料的层间韧性;(2)内织导电纬纱的IWCWF(Inter-Woven Conductive Weft Fabric)复合材料中的导电纬纱不仅可以提供导电通道,从而大幅提高这种复合材料的导电性能,同时还可以影响层间裂纹的扩展路径,从而提高复合材料的Ⅰ型和Ⅱ型层间断裂韧性。本研究的IWCWF复合材料的面内导电率和厚度方向导电率分别达到了22386 S/m和107.5 S/m,相比与普通纬纱定型的常规复合材料,分别提高了129%和133%。(3) 多级孔结构的碳化棉填充有效地提升了复合材料的低频吸声性能,在平均吸声系数达到0.626的同时并在200-600 Hz范围内实现低频段的宽频高吸声性能。(4)由编织布/无纺纤维毡制备而成的折叠结构可以在400-6300 Hz的范围内始终保持大于0.4吸声系数,实现了宽频吸声。

    结论 

    随着复合材料应用领域的不断扩展,仅提供高结构性能的所谓“高性能”复合材料已越来越难以满足航空航天、交通运输等高技术领域对复合材料多功能性和结构功能一体化的需求。因此,通过多尺度、多层次的结构设计赋予复合材料各种功能性,构建结构功能一体化的复合材料正受到人们越来越多的关注。本文选择了四个复合材料案例已反映或代表结构复合材料实现结构功能一体化的几种典型的技术路径,可望为传统结构复合材料的结构功能一体化转型升级提供借鉴。

图(40)  /  表(1)
计量
  • 文章访问数:  1071
  • HTML全文浏览量:  194
  • PDF下载量:  223
  • 被引次数: 4
出版历程
  • 收稿日期:  2024-05-12
  • 修回日期:  2024-07-07
  • 录用日期:  2024-07-19
  • 网络出版日期:  2024-08-01
  • 刊出日期:  2024-08-31

目录

/

返回文章
返回