Loading [MathJax]/jax/output/SVG/jax.js

Cu2S@SBPF复合材料的协同抑菌性能

汪艳, 张强, 陈惠惠, 邱莹, 胡瑞玲, 李亚鹏, 赵欣鑫, 安雪, 刘荟芝, 郭少波

汪艳, 张强, 陈惠惠, 等. Cu2S@SBPF复合材料的协同抑菌性能[J]. 复合材料学报, 2025, 42(1): 491-503. DOI: 10.13801/j.cnki.fhclxb.20240506.004
引用本文: 汪艳, 张强, 陈惠惠, 等. Cu2S@SBPF复合材料的协同抑菌性能[J]. 复合材料学报, 2025, 42(1): 491-503. DOI: 10.13801/j.cnki.fhclxb.20240506.004
WANG Yan, ZHANG Qiang, CHEN Huihui, et al. Synergistic antibacterial properties of Cu2S@SBPF composites[J]. Acta Materiae Compositae Sinica, 2025, 42(1): 491-503. DOI: 10.13801/j.cnki.fhclxb.20240506.004
Citation: WANG Yan, ZHANG Qiang, CHEN Huihui, et al. Synergistic antibacterial properties of Cu2S@SBPF composites[J]. Acta Materiae Compositae Sinica, 2025, 42(1): 491-503. DOI: 10.13801/j.cnki.fhclxb.20240506.004

Cu2S@SBPF复合材料的协同抑菌性能

基金项目: 陕西省教育厅项目(20JS015);陕西省自然科学基金(2023-YBGY-486);陕西理工大学基础研究基金(SLGRCQD2309)
详细信息
    通讯作者:

    张强,博士,教授,硕士生导师,研究方向为多环芳烃的合成 E-mail: zhangqiang22@126.com

  • 中图分类号: O626;TB333

Synergistic antibacterial properties of Cu2S@SBPF composites

Funds: Project of Shaanxi Provincial Department of Education (20JS015); Shaanxi Provincial Natural Science Foundation (2023-YBGY-486); Fundamental Research Fund of Shaanxi University of Science and Technology (SLGRCQD2309)
  • 摘要:

    随着耐药细菌的快速增长,有机抑菌剂已无法满足社会公共卫生需求,高活性复合抑菌剂不仅可以保留单组分的性质,还可以显示出更加优异的抑菌性能,因而成为抑菌材料的重要研究方向。本研究通过制备纳米Cu2S材料,然后与3-(苯并噻唑-2-巯基)丙烷磺酸钠(SBPF)反应,制备出结构新颖的Cu2S@SBPF材料,采用TEM、XRD、UV-vis、FTIR及XPS等测试手段对样品的微观形貌、结构、元素组成等进行表征,探究了该复合材料对革兰氏阴性菌大肠杆菌(E. coli)、革兰氏阳性菌金黄色葡萄球菌(S. aureus)和耐药菌沙门氏菌(T-Salmonella)的抑菌性能。结果表明,浓度为500 µg/mL的复合材料在60 min时对E. coliS. aureusT-Salmonella的抑菌率均达到99.99%且对E. coli最为敏感。抑菌机制表明,该复合材料能破坏细菌的细胞壁进入细菌内部,抑制细菌呼吸,最终使细菌死亡。这一成果有望为解决细菌耐药问题提供新的方案。

     

    Abstract:

    With the rapid growth of drug-resistant bacteria, organic bacteriostatic agents have been unable to meet the needs of social public health. High-activity composite bacteriostatic agents can not only retain the properties of single components, but also show more excellent antibacterial properties, thus becoming an important research direction of antibacterial materials. In this study, a novel structure Cu2S@sodium 3-(benzothiazol-2-ylthio)-1-propanesulfonate (SBPF) material, TEM, XRD, UV-vis, FTIR and XPS were used to characterize the micromorphology, structure and elemental composition of the samples. The antibacterial properties of the composite against Gram-negative bacteria E. coli, Gram-positive bacteria S. aureus and drug-resistant bacteria T-Salmonella were investigated. The results showed that the antibacterial rate of the composite at the concentration of 500 µg/mL to E. coli, S. aureus and T-Salmonella reached 99.99% at 60 min, and the composite was the most sensitive to E. coli. The antibacterial mechanism showed that the composite material could destroy the cell wall of bacteria into the interior of bacteria, inhibit bacterial respiration, and eventually cause bacterial death. This result is expected to provide a new solution to solve the problem of bacterial drug resistance.

     

  • 飞行器高速跨越大气层飞行时,会面临严峻的气动加热环境[1],高速热流的冲刷剥蚀导致飞行器面临结构破坏和信号中断等问题。为了保证飞行器在极端恶劣的环境中安全服役,确保天线设备系统在通讯导航和远程控制方面平稳运行,对热防护材料的性能提出了更高的要求,即在高温等苛刻的条件下保持结构的完整性和高频电磁波的透波性[2-3]

    可陶瓷化聚合物基复合材料作为一类新型的热防护材料[4],常温下与普通聚合物基复合材料性质相近,在高温环境下可以形成具有一定强度的致密陶瓷层,隔绝材料内部结构与外界热氧的接触,使复合材料保持良好的热稳定性[5-6]。其不仅具有传统的聚合物基复合材料密度低、制备工艺简单高效、可设计制造大面积异型产品等优点,还具备更加优良的耐高温性能,如低烧蚀率和高维形性[7-9]。Yang等[10]将MoSi2引入硼酚醛树脂复合材料中,大幅提高了复合材料的耐烧蚀性能,1400℃下处理20 min后弯曲强度较未添加 MoSi2的复合材料提高了2倍以上。董闯等[11]制备并研究了石榴石微粉改性硼酚醛树脂复合材料的耐高温性能,当石榴石微粉含量为50wt%时,其线烧蚀率和质量烧蚀率与纯硼酚醛树脂相比分别降低了44.05%和43.6%,明显提高了复合材料的耐烧蚀性能。

    目前对于可陶瓷化聚合物基复合材料的研究,主要聚焦在耐烧蚀、防隔热等方面,很少应用在高温微波传输领域,因此有必要对其进行相关设计,满足多功能热防护材料的需求。酚醛树脂具有良好的耐热性、力学性能和在各种环境中的耐候性。改性酚醛树脂可用于对材料耐热性要求更高的环境中去。如采用石英纤维增强烯丙基化酚醛树脂与双马树脂预聚得到的耐高温树脂,能够满足飞行器300℃以上短时间高温使用的需求[12]。国内纤维增强SiO2复合材料的研究也比较广泛,先后研制和发展了正交三向石英、高硅氧穿刺等耐热透波复合材料,并已得到应用。宋麦丽等[13]以低残炭率甲基硅树脂为基体,引入金属氧化物和无机氧化物作为除碳剂和介电性能改善剂,结果表明,在 800℃和 1200℃高温处理后,采用电磁波频率 9.30 GHz测试,介电常数小于3.5,介电常数随温度的升高变化不明显。Si3N4基陶瓷材料是综合性能最好的结构陶瓷之一,不仅具有优异的力学性能和良好的热稳定性,而且具有较低的介电常数,广泛应用于高温透波领域。王思青等[14]对颗粒和纤维增强氮化硅基透波复合材料均作了大量研究。采用反应烧结法制备氮化硅基复相陶瓷材料,其弯曲强度和断裂韧性分别为96.7 MPa 和1.80 MPa·m1/2,相对介电常数为3.8~3.9。采用先驱体浸渍裂解工艺制备的石英纤维增强氮化硅基复合材料力学性能和高温介电性能均十分优异[15]

    为了满足高超声速飞行器对热防护材料的防热、承载、透波等性能需求,本文采用低烧蚀、低密度、高温形貌稳定的硼酚醛树脂为基体,耐高温、抗氧化、耐烧蚀的Si3N4陶瓷颗粒作为主要的防热功能体(兼具透波功能),低熔点玻璃料为助熔剂,利用预浸料-层压工艺制备高硅氧纤维增强可陶瓷化复合材料,探究玻璃料对复合材料的耐热性能、耐烧蚀性能及介电性能的影响,并研究了不同温度处理后复合材料的残留物相及微观形貌的变化。

    硼酚醛树脂,型号THC-400,陕西太航阻火聚合物有限公司;无水乙醇(分析纯),国药集团化学试剂有限公司;高硅氧玻璃纤维平纹布,SiO2含量为97%,面密度248.3 g/m2,厚度0.2 mm,陕西华特新材料有限公司;β-Si3N4陶瓷颗粒,纯度99.9%,粒径1 μm,密度3.187 g/cm3,上海卜微应用材料技术有限公司;低熔点玻璃料(GF),硅酸盐系,贵州威顿晶磷电子材料股份有限公司,软化点(450±20)℃,主要成分如表1所示。

    表  1  低熔点玻璃料(GF)主要成分及含量
    Table  1.  Main components and contents of low melting point glass frit (GF) wt%
    SiO2K2ONa2OZnOAl2O3BaOTiO2Bi2O3P2O5Fe2O3
    52.0416.268.435.680.444.339.242.960.130.10
    下载: 导出CSV 
    | 显示表格

    将硼酚醛树脂粉末按质量比1∶1溶于无水乙醇中,充分溶解得到硼酚醛树脂溶液,按照表2的配方将Si3N4颗粒和GF依次加入到树脂胶液中,磁力搅拌60 min,得到可陶瓷化树脂,然后将可陶瓷化树脂均匀地刮涂在裁剪好的高硅氧玻璃纤维平纹布上,晾至2~3天,使溶剂充分挥发,得到可陶瓷化预浸料,将裁剪好的预浸料单向层叠16层之后放入厚度为4 mm的模具中进行热压固化,升温速率为2℃/min,固化制度为120℃(30 min,0 MPa)、150℃(60 min,10 MPa)、180℃(120 min,10 MPa)、200℃(60 min,10 MPa);热压固化结束,自然冷却至室温,脱模即可得到可陶瓷化复合材料。

    表  2  GF-Si3N4/BPR复合材料配方
    Table  2.  GF-Si3N4/BPR composite formulations
    SampleMass ratio
    BPRSi3N4GF
    BPR100 0 0
    Si3N4/BPR10030 0
    5GF-Si3N4/BPR10030 5
    10GF-Si3N4/BPR1003010
    15GF-Si3N4/BPR1003015
    20GF-Si3N4/BPR1003020
    Note: BPR—Boron phenolic resin.
    下载: 导出CSV 
    | 显示表格

    将制备的可陶瓷化复合材料试样切割成尺寸为80 mm×15 mm×4 mm的样条,采用上海光明实验电炉厂生产的LD-1700 STN型管式炉在空气气氛下对复合材料试样进行高温处理,升温速率为10℃/min,在不同温度下(800℃、1000℃、1200℃、1400℃)处理20 min,取出试样冷却测试。

    采用德国耐驰公司生产的STA2500型TG-DTA同步热分析仪对可陶瓷化复合材料进行热稳定性分析(空气气氛,升温速率为10℃/min,室温到1500℃)。采用日本理学株式会社生产的D/MAX-RB型X射线衍射仪对复合材料试样进行物相分析,扫描速率为10°/min。采用捷克TESCAN公司生产的TESCAN MIRA4型场发射扫描电子显微镜对复合材料试样进行微观形貌观察。采用深圳瑞格尔公司生产的RGM4100型电子万能试验机对复合材料试样进行弯曲强度测试,测试标准为GB/T 1449—2005[16]。采用氧乙炔火焰对复合材料试样进行烧蚀测试,测试标准为GJB 323 A—1996[17]。采用波导法,使用美国AGILENT公司生产的PNA-N5244 A型矢量网络分析仪对不同配方的复合材料试样进行介电性能测试,测试频率为8.2 GHz。采用美国AGILENT公司生产的安捷伦4339 b型电阻率测试仪对复合材料试样进行电阻率/电导率测试,采用法国H.J.Y公司生产的LabRam ARAMIS型高分辨拉曼光谱仪对复合材料试样进行拉曼光谱测试,激光器类型 514 nm,扫描范围为 750~2150 cm−1

    图1为 GF-Si3N4/BPR复合材料的TG和DTG曲线,表3为各温度区间复合材料的热分解特性。分析可知复合材料的裂解大致分为4个阶段。室温到400℃,复合材料的热失重率比较低,400℃时复合材料的残重率分别为90.63%、92.41%、93.42%、93.30%、94.33%和93.28%,失重的主要原因是复合材料中水分的蒸发及交联副产物、未反应的低聚物和一些小基团的损失[18];400~600℃第二次裂解过程中,复合材料裂解速率最大,热失重率也最大,600℃残重率分别为54.32%、69.73%、70.21%、71.05%、75.14%和73.73%,该温度区间内,复合材料剧烈裂解产生大量H2O、CO和小分子碳氢化合物[19]。由图1(a)可知,600℃前后Si3N4颗粒非常稳定,因此该温度区间复合材料的热失重主要是硼酚醛树脂的裂解;800~1200℃,树脂进一步裂解,1200℃时残重率分别为52.15%、68.98%、69.33%、71.56%、75.40%和74.78%,除BPR之外,复合材料的残重率略有增加,结合其XRD分析,可能是GF成分促进Si3N4颗粒少量氧化生成SiO2增重及与树脂裂解产物的相互作用,使其转化为以Na2Si2O5为主要成分的玻璃相,提高了裂解产物的热稳定性。在1200~1400℃时,残重率略有降低,1400℃下,裂解残留物进一步氧化,复合材料裂解产物中已经不再有金属Bi和其他裂解过程中生成的玻璃相,可能是随着温度的升高逐渐挥发。

    图  1  空气气氛下GF-Si3N4/BPR复合材料的TG (a)和DTG (b)曲线
    Figure  1.  TG (a) and DTG (b) curves of GF-Si3N4/BPR composites in air atmosphere
    表  3  GF-Si3N4/BPR复合材料的热分解特性
    Table  3.  Thermal decomposition properties of GF-Si3N4/BPR composites
    SampleTmax/℃Residue yield/%
    400℃600℃800℃1200℃1400℃
    BPR495.990.6354.3252.8852.1551.54
    Si3N4/BPR494.292.4169.7369.1468.9868.87
    5GF-Si3N4/BPR501.393.4270.2169.2469.3368.75
    10GF-Si3N4/BPR481.893.3071.0571.4071.5670.54
    15GF-Si3N4/BPR500.994.3375.1475.3175.4073.91
    20GF-Si3N4/BPR495.793.2873.7374.3674.7873.61
    Note: Tmax—Temperature at which the thermal mass loss rate is the maximum.
    下载: 导出CSV 
    | 显示表格
    图  4  不同温度处理后Si3N4/BPR (a)和10GF-Si3N4/BPR (b)裂解产物的XRD图谱
    Figure  4.  XRD patterns of cracked products of Si3N4/BPR (a) and 10GF-Si3N4/BPR (b) treated at different temperatures

    图2是不同温度处理后GF-Si3N4/BPR复合材料的弯曲强度,总体上不同配方复合材料的弯曲强度随着热处理温度的升高而降低,这是由于随着温度的升高,基体裂解及裂解炭的氧化程度加剧,基体与纤维之间的界面结合越来越差造成的(图3)。常温下,BPR、Si3N4/BPR的弯曲强度分别为133.5 MPa和179.5 MPa,Si3N4/BPR相较于BPR弯曲强度提高了34.5%,主要是由于添加的β-Si3N4颗粒是短柱状,可以嵌入在树脂和纤维之间,提高复合材料的抗弯强度;而引入GF之后,总的填料含量太高,树脂与纤维之间界面结合性能变差,故而常温下复合材料的弯曲强度随玻璃料含量的增加而下降。另外,添加GF后,不同温度处理之后的复合材料弯曲强度均随着玻璃料含量的增加呈先增加后降低的趋势,当GF含量为10wt%时,10GF-Si3N4/BPR的弯曲强度最高。这是由于GF在高温下熔融、填充、愈合基体裂解及裂解炭氧化形成的孔洞裂纹等缺陷,促进复合材料的陶瓷化过程,进而增加复合材料的致密度[20](图3(e))。但是,当GF含量过高时,复合材料界面结合变差,因此会导致力学性能变差。1200℃高温处理后,BPR的弯曲强度为12.3 MPa,Si3N4/BPR、10GF-Si3N4/BPR的弯曲强度分别是19.4 MPa和22.3 MPa,相较于BPR提高了58.5%和81.6%。此外, 1200℃处理后的10GF-Si3N4/BPR比1000℃和1400℃处理后的更高,这是由于1200℃下,GF的流动性更强,能更有效地愈合孔隙,复合材料的致密度相较1000℃处理后的更高,而1000℃下,基体裂解的速率加快,产生的挥发性小分子数量增大,Si3N4颗粒的贯穿桥接作用减弱,影响了复合材料的弯曲强度。当温度升高至1400℃,GF部分挥发,对裂解炭的保护程度下降,复合材料的致密度也会降低,此外,高硅氧纤维中的SiO2在高温下结晶[21],强度衰减,从而导致复合材料弯曲强度进一步下降。

    图  2  不同温度处理后的GF-Si3N4/BPR复合材料弯曲强度
    RT—Room temperature
    Figure  2.  Flexural strength of GF-Si3N4/BPR composites treated at different temperatures
    图  3  1200℃处理后GF-Si3N4/BPR复合材料表面和断面微观形貌:((a), (c), (e)) BPR、Si3N4/BPR和10GF-Si3N4/BPR的表面;((b), (d), (f)) BPR、Si3N4/BPR和10GF-Si3N4/BPR的断面
    Figure  3.  Surface and cross-section micro-morphologies of GF-Si3N4/BPR composites treated at 1200℃: ((a), (c), (e)) Surfaces of BPR, Si3N4/BPR and 10GF-Si3N4/BPR; ((b), (d), (f)) Cross-sections of BPR, Si3N4/BPR and 10GF-Si3N4/BPR

    为了探究GF对GF-Si3N4/BPR复合材料在不同温度下裂解产物物相和形貌的影响,对Si3N4/BPR和10GF-Si3N4/BPR在不同温度下的裂解产物进行了XRD分析和SEM表面形貌分析。图4(a)图4(b)为Si3N4/BPR和10GF-Si3N4/BPR在不同温度下于空气气氛中裂解20 min后残留物的物相图谱;图5为Si3N4/BPR和10GF-Si3N4/BPR在1200℃下裂解20 min后表面微观形貌图及特定元素分布的EDS分析。

    图4(a)可以看出,从室温到1200℃,Si3N4/BPR的XRD衍射峰基本重合,说明1200℃以下,添加的Si3N4颗粒非常稳定;图4(b)中,800℃下GF中的Bi2O3被酚醛树脂裂解产生的CO还原产生金属Bi,同时玻璃料中的一些氧化物和树脂裂解产物互相反应生成以Na2Si2O5为主要成分的玻璃相;1200℃处理后,通过其相应的元素EDS映射分布图可以看出,10GF-Si3N4/BPR的O元素分布密度明显大于Si3N4/BPR,且10GF-Si3N4/BPR的Si元素分布比较均匀,说明复合材料经高温处理后,10GF-Si3N4/BPR的液相明显增多,同时Si3N4颗粒氧化,表面形成熔体膜,抑制了Si3N4颗粒的进一步氧化[22];由图4(b)可知,1400℃下,10GF-Si3N4/BPR裂解产物中已经不再有金属Bi和其他化合物,这可能是Bi和其他裂解过程中生成的化合物随着温度的升高逐渐挥发所致,裂解过程涉及的化学反应如下:

    BPRC(s)+CO(g)+CH4(g) (g)
    Bi2O3(s)+3CO(g)=2Bi(s)+3CO2(g) (1)
    Si3N4(s)+3O2(g)=3SiO2(s)+2N2(g) (2)
    Na2O(s)+2SiO2(s)=Na2Si2O5(s) (3)
    图  5  1200℃处理后GF-Si3N4/BPR复合材料的微观形貌图及相应的元素EDS映射:(a) Si3N4/BPR;(b) 10GF-Si3N4/BPR
    Figure  5.  Micro-morphology of GF-Si3N4/BPR composites treated at 1200℃ and corresponding element EDS mapping: (a) Si3N4/BPR; (b) 10GF-Si3N4/BPR
    图  6  BPR (a)、Si3N4/BPR (b)和10GF-Si3N4/BPR (c)氧乙炔烧蚀后表面形貌
    Figure  6.  Surface morphologies of BPR (a), Si3N4/BPR (b) and 10GF-Si3N4/BPR (c) after oxyacetylene ablation

    为了探究GF对GF-Si3N4/BPR复合材料耐烧蚀性能的影响,对BPR、Si3N4/BPR和10GF-Si3N4/BPR进行了氧乙炔烧蚀测试(图6图7),并对烧蚀后的材料表面进行微观形貌观察及物相分析(图8图9)。

    图  7  GF-Si3N4/BPR复合材料的线烧蚀率和质量烧蚀率
    Figure  7.  Line and mass ablation rates of GF-Si3N4/BPR composites
    图  8  氧乙炔烧蚀后Si3N4/BPR (a)和10GF-Si3N4/BPR (b)表面微观形貌和EDS分析
    Figure  8.  Surface morphology and EDS analysis of Si3N4/BPR (a) and 10GF-Si3N4/BPR (b) after oxyacetylene ablation
    图  9  氧乙炔烧蚀后Si3N4/BPR和10GF-Si3N4/BPR表面残留物物相分析
    Figure  9.  Phase analysis of residues on the surface of Si3N4/BPR and 10GF-Si3N4/BPR after oxyacetylene ablation

    图7可以看出,BPR的线烧蚀率和质量烧蚀率明显大于Si3N4/BPR和10GF-Si3N4/BPR试样,这是由于BPR在氧乙炔高温热流冲刷下,中间出现凹坑,形成凹坑的主要原因是氧-乙炔火焰中心温度将高硅氧纤维熔化,形成液态SiO2 ,然后从火焰喷射中心被吹走,在试样四周温度较低的部位凝固成透明熔滴[23]及树脂裂解残碳的氧化生成气体逸出所致。10GF-Si3N4/BPR中添加的GF在高温热流的冲刷下,熔融产生液相,部分液相被热流冲刷消散,剩下的熔融相的GF迅速向树脂裂解产生的孔洞渗透填充,再者,Si3N4高温下氧化反应生成SiO2,反应增重,抵消了部分质量损失;因此10GF-Si3N4/BPR的线烧蚀率大于Si3N4/BPR,而质量烧蚀率却相对于Si3N4/BPR较小。Si3N4/BPR和10GF-Si3N4/BPR复合材料表面陶瓷相的微观形貌及EDS分析如图8所示,氧乙炔烧蚀之后,复合材料产生了不同致密程度的陶瓷层,10GF-Si3N4/BPR的陶瓷相较Si3N4/BPR更致密,可能是添加的GF成分促进了Si3N4颗粒氧化及与树脂裂解产物的相互作用,反应生成了以Si3N4和SiC为主要成分的陶瓷层,提高了复合材料的耐烧蚀性能。

    为了探究低熔点GF对GF-Si3N4/BPR复合材料介电性能的影响,对BPR、Si3N4/BPR和10GF-Si3N4/BPR在不同温度下的介电常数ε和介电损耗角正切值tanδ(测试频率为8.2 GHz)及复合材料电导率进行测试分析。图10为复合材料介电常数和损耗角正切值随温度的变化情况,表4为不同温度处理后的复合材料电导率。

    图  10  不同温度处理后的GF-Si3N4/BPR复合材料介电常数ε (a) 和介电损耗角正切tanδ (b)变化曲线
    Figure  10.  Variation curves of dielectric constant ε (a) and dielectric loss tangent tanδ (b) of GF-Si3N4/BPR composites treated at different temperatures
    表  4  不同温度处理后的GF-Si3N4/BPR复合材料电导率
    Table  4.  Conductivity of GF-Si3N4/BPR composites treated at different temperatures
    SampleConductivity/(10−10 S·m–1)
    RT800℃1000℃1200℃1400℃
    BPR0.222113 93.5162358
    Si3N4/BPR0.125149142 80188
    10GF-Si3N4/BPR0.111 87150 65.8128
    下载: 导出CSV 
    | 显示表格

    图10(a)可以看出,在室温~600℃时,BPR、Si3N4/BPR和10GF-Si3N4/BPR 3种材料的介电常数没有明显变化,介电常数均小于3.5;从800~1400℃,复合材料的介电常数发生了明显变化,600~1000℃材料的介电常数出现激增,主要是硼酚醛树脂分子中含有大量极性基团,随着温度的升高使其介电常数和介电损耗明显增大;随着树脂充分裂解,产生的碳杂质在基体中聚集形成碳层或弥散分布,对电磁波有很大的屏蔽或衰减作用,从而影响复合材料的介电性能,同时伴随大量的H2O、CO、CH4等气体和挥发性小分子物质,在复合材料内部和表面留下大量孔洞、裂纹等缺陷,当电磁波入射至材料表面时,会发生多次反射和折射,空隙影响了电磁波在介质中的传播,在一定程度上会吸收电磁波[23]。由此可见,高温作用使材料表面化学成分发生变化,从而导致复合材料介电常数和损耗角正切值发生变化。而且在这个温度区间内,10GF-Si3N4/BPR添加的GF中Bi2O3被还原成金属Bi,Bi和树脂裂解残留物可能形成导电通道,同时添加GF时引入的微量杂质随温度的升高开始电离并产生离子电导,导致复合材料的介电常数和介电损耗大幅提升[24]。1200℃处理后,GF中的氧化物会促进Si3N4氧化,形成SiO2熔体膜,提高复合材料的致密度,从而改善复合材料的介电性能。

    1400℃下复合材料的介电常数和介电损耗大幅增加,根据图11表5的拉曼光谱测试数据分析可能是该温度下复合材料的裂解玻璃碳石墨化程度加深导致。在无序碳中,除了 1580 cm −1处有G峰外,在低波数1350 cm −1处也有D峰 [25] 。D和G峰的存在和位置、D带与G带的强度比ID/IG可以反映无序碳石墨化程度[26] 。从表5可以看出,从800℃到1400℃,ID/IG的值逐渐变小,这说明,随裂解温度的升高,玻璃碳中石墨微晶的数量逐渐增多,其石墨化程度逐渐加深,对电磁波有明显的吸收作用,从表4中1400℃处理后的复合材料电导率的增大也可以证实这一点。

    图  11  GF-Si3N4/BPR复合材料在800℃ (a)和1400℃ (b)空气气氛下处理20 min残留物的拉曼光谱
    D, G—Band peak
    Figure  11.  Raman spectra of residues of GF-Si3N4/BPR composites treated at 800℃ (a) and 1400℃ (b) in air for 20 min
    表  5  GF-Si3N4/BPR复合材料裂解玻璃碳的ID/IG
    Table  5.  ID/IG values of pyrolyzed glassy carbon of GF-Si3N4/BPR composites
    SampleID/IG
    800℃1400℃
    BPR2.7172.403
    Si3N4/BPR3.2362.364
    10GF-Si3N4/BPR3.6632.326
    Note: ID/IG—Intensity ratio of the D band to the G band.
    下载: 导出CSV 
    | 显示表格

    (1) 玻璃料(GF)的添加,提高了复合材料高温下的致密性和完整性。复合材料在高温下生成Na2Si2O5等化合物,与Si3N4氧化生成的SiO2熔体膜形成致密的陶瓷层,抑制了氧气对复合材料内部的进一步侵蚀,提高了复合材料的热稳定性。

    (2) GF的添加,提高了复合材料高温下的力学性能和耐烧蚀性能。1200℃处理后,其弯曲强度为22.3 MPa,与纯树脂试样相比,提高了81.3%,与未添加GF的试样相比,提高了14.9%;其质量烧蚀率为0.022 g/s,分别降低了73.1%和55.1%。

    (3) GF的添加,改善了复合材料的介电性能。800℃以上,树脂充分裂解,产生了吸收电磁波的游离碳和衰减电磁波的孔洞、裂纹,导致其介电常数和损耗角正切值逐渐增大,而复合材料表面生成的致密玻璃相有效遏制了这种不利影响。

  • 图  1   Cu2S@3-(苯并噻唑-2-巯基)丙烷磺酸钠(SBPF)复合材料的合成示意图

    Figure  1.   Illustration of the synthesis of Cu2S@sodium 3-(benzothiazol-2-ylthio)-1-propanesulfonate (SBPF) composites

    PVP—Polyvinyl pyrrolidone

    图  2   (a) Cu2S的TEM图像;(b) Cu2S的HRTEM图像;((c)~(e)) Cu2S的EDS图谱

    Figure  2.   (a) TEM image of Cu2S; (b) HRTEM image of Cu2S; ((c)-(e)) EDS diagrams of Cu2S

    图  3   Cu2S、SBPF 、Cu2S@SBPF的XRD图谱(a)、红外光谱图(b)和紫外吸收光谱图(c);((d)~(i)) Cu2S@SBPF的XPS谱图

    Figure  3.   XRD patterns (a), infrared spectra (b) and UV absorption spectra (c) of Cu2S, SBPF and Cu2S@SBPF; ((d)-(i)) XPS spectra of Cu2S@SBPF

    图  4   (a) SBPF和 Cu2S的优化电子结构和SBPF的静电势(ESP)分析示意图;(b) Cu2S与SBPF的结合能

    Figure  4.   (a) Schematic diagram of the optimized electronic structures of SBPF and Cu2S and the electrostatic potential (ESP) analysis of SBPF; (b) Binding energy between Cu2S and SBPF

    G—Gibbs free energy

    图  5   不同材料对大肠杆菌(E. coli)、金黄色葡萄球菌(S. aureus)和沙门氏菌(T-Salmonella)的滤纸片扩散照片(A、B、C、D 分别对应溶剂蒸馏水、Cu2S、SBPF以及 Cu2S@SBPF):((a1)~(c1))分别代表浓度为0.5、1、2、5 mg/mL的不同抑菌材料对E. coliS. aureusT-Salmonella的抑菌结果照片;((a2)~(c2))分别为不同材料对E. coliS. aureusT-Salmonella的抑菌圈直径随浓度变化曲线

    Figure  5.   Diffusion photos of E. coli, S. aureus and T-Salmonella by different materials on filter paper (A, B, C and D correspond to the solvents distilled water, Cu2S, SBPF and Cu2S@SBPF, respectively): ((a1)-(c1)) Antibacterial results of different antibacterial materials with concentrations of 0.5, 1, 2 and 5 mg/mL against E. coli, S. aureus and T-Salmonella; ((a2)-(c2)) Inhibition zone diameter curves of different materials against E. coli, S. aureus and T-Salmonella as a function of concentration

    图  6   Cu2S@SBPF复合材料抑制 E. coli (a)、S. aureus (b)和 T-Salmonella (c)的菌落计数分布图;(d)纳米复合材料的时间-杀菌曲线图;(e)纳米复合材料对3种测试菌在不同时间的抑菌率比较图

    Figure  6.   Cu2S@SBPF colony count distribution diagram of E. coli (a), S. aureus (b) and T-Salmonella (c) inhibited by the composite; (d) Time-sterilization curves of the nanocomposite; (e) Comparison of antibacterial rates of nanocomposites against the three test bacterias at different time

    图  7   (a) Cu2S@SBPF复合材料与3种测试菌混合5 min和60 min后的Zeta电位值;(b) ICP-OES测得的铜阳离子累积释放图;(c)复合材料毒理性实验结果

    Figure  7.   (a) Zeta potential values of the Cu2S@SBPF composite after mixing with the three test bacteria for 5 min and 60 min; (b) Cumulative release of copper cations measured by ICP-OES; (c) Experimental results of toxicity of composite materials

    IC50—Half maximal inhibitory concentration

    图  8   Cu2S@SBPF复合材料对E. coli (d)、S. aureus (e)和 T-Salmonella (f)的碘化丙啶(PI)染色照片;((a)~(c))为对应的纯菌对照效果图;Cu2S@SBPF复合材料作用于E. coli (g)、S. aureus (h)和T-Salmonella (i)的细胞质泄露结果

    Figure  8.   Photos of the propidium iodine (PI) staining of the Cu2S@SBPF composite for E. coli (d), S. aureus (e) and T-Salmonella (f), and ((a)-(c)) Corresponding rendering of the pure bacteria control; Results of cytoplasmic leakage of the Cu2S@SBPF composite acting on E. coli (g), S. aureus (h), and T-Salmonella (i)

    图  9   Cu2S@SBPF复合材料抑菌机制图

    Figure  9.   Antibacterial mechanism diagram of Cu2S@SBPF composite material

    ROS—Reactive oxygen species

    表  1   溶剂、Cu2S、SBPF以及 Cu2S@SBPF对E. coliS. aureusT-Salmonella的抑菌圈尺寸

    Table  1   Inhibition zone size of solvent, Cu2S, SBPF, and Cu2S@SBPF against E. coli, S. aureus, and T-Salmonella

    Bacterial Concentration/
    (mg·mL−1)
    Inhibition zones/cm (±0.05 cm)
    H2O Cu2S SBPF Cu2S@SBPF
    E. coli 0.5 0.6 0.9 0.6 1.0
    1 0.6 1.1 0.7 1.2
    2 0.6 1.6 0.8 1.9
    5 0.6 2.1 1.0 2.4
    S. aureus 0.5 0.6 0.6 0.6 0.7
    1 0.6 0.7 0.6 0.8
    2 0.6 1.2 0.6 1.9
    5 0.6 1.7 0.7 2.3
    T-Salmonella 0.5 0.6 0.7 0.6 0.8
    1 0.6 0.8 0.6 1.0
    2 0.6 1.0 0.7 1.3
    5 0.6 1.5 0.9 1.6
    下载: 导出CSV
  • [1]

    THEO V, STEPHEN S L, CRISTIANA A, et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: A systematic analysis for the Global Burden of Disease Study 2019[J]. The Lancet, 2020, 396(10258): 1204-1222. DOI: 10.1016/S0140-6736(20)30925-9

    [2]

    ALI S H, SAYED A R. Review of the synthesis and biological activity of thiazoles[J]. Synthetic Communications, 2021, 51(5): 670-700. DOI: 10.1080/00397911.2020.1854787

    [3]

    GRYBAITE B, VAICKELIONIENE R, STASEVYCH M, et al. Synthesis and antimicrobial activity of novel thiazoles with reactive functional groups[J]. Chemistry Select, 2019, 4(23): 6965-6970.

    [4]

    KARTSEV V, GERONIKAKI A, ZUBENKO A, et al. Synthesis and antimicrobial activity of new heteroaryl (aryl) thiazole derivatives molecular docking studies[J]. Antibiotics, 2022, 11(10): 1337. DOI: 10.3390/antibiotics11101337

    [5]

    JI X H, WU Y H, HAN Y Y, et al. Synergistic antibacterial study of nano-Cu2O/CuO@ Ag-tetracycline composites[J]. Materials Chemistry and Physics, 2023, 306: 127904. DOI: 10.1016/j.matchemphys.2023.127904

    [6]

    CHEN H F, WU J J, WU M Y, et al. Preparation and antibacterial activities of copper nanoparticles encapsulated by carbon[J]. New Carbon Materials, 2019, 34(4): 382-389. DOI: 10.1016/S1872-5805(19)30023-X

    [7]

    RADI A, PRADHAN D, SOHN Y, et al. Nanoscale shape and size control of cubic, cuboctahedral, and octahedral Cu-Cu2O core-shell nanoparticles on Si(100) by one-step, templateless, capping-agent-free electrodeposition[J]. ACS Nano, 2010, 4(3): 1553-1560. DOI: 10.1021/nn100023h

    [8] 梁犇, 吴娟娟, 郑锦丽, 等. 4-羟基香豆素-Ag复合材料的协同抑菌性能[J]. 复合材料学报, 2023, 40(8): 4779-4791.

    LIANG Ben, WU Juanjuan, ZHENG Jinli, et al. Synergistic antibacterial properties of 4-hydroxycoumarin-Ag composites[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4779-4791(in Chinese).

    [9]

    XU X Y, SHEN J, QIN J Y, et al. Cytotoxicity of bacteriostatic reduced graphene oxide-based copper oxide nanocomposites[J]. Journal of Metals, 2019, 71: 294-301.

    [10]

    ZHOU J L, ZHAI M, WANG R X, et al. High metal-loaded Cu2O@TM hybrids for melt-spun antibacterial fibers engineered towards medical protective fabrics[J]. Composites Part A: Applied Science and Manufacturing, 2022, 161: 107080. DOI: 10.1016/j.compositesa.2022.107080

    [11] 吴迎花, 陈惠惠, 房迅, 等. Cu2O/CuO-四环素复合材料的协同抑菌性能[J]. 复合材料学报, 2023, 40(12): 6789-6799.

    WU Yinghua, CHEN Huihui, FANG Xun, et al. Study on synergistic antibacterial effect of Cu2O/CuO-tetracycline composites[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6789-6799(in Chinese).

    [12] 何月珍, 尹曼悦, 孙健. 硫化亚铜纳米抗菌剂及其制备方法和应用: CN113582216A[P]. 2021-11-02.

    HE Yuezhen, YIN Manyue, SUN Jian. Cuprous sulfide nano antibacterial agent and preparation method and application thereof: CN113582216A[P]. 2021-11-02(in Chinese).

    [13] 董娜, 陈哲, 王辰. 高温热解法合成硫化亚铜纳米晶[J]. 有色金属(冶炼部分), 2020(5): 71-74.

    DONG Na, CHEN Zhe, WANG Chen, et al. Synthesis of cuprous sulfide nanocrystalline by high temperature pyrolysis[J]. Nonferrous Metals (Extractive Metallurgy), 2020(5): 71-74(in Chinese).

    [14] 李思晴, 赵晨, 陈哲. Cu1.1S纳米晶的制备及光催化应用[J]. 吉林化工学院学报, 2021, 38(11): 29-32.

    LI Siqing, ZHAO Chen, CHEN Zhe. Preparation and photocatalytic application of Cu1.1S nanocrystals[J]. Journal of Jilin Institute of Chemical Technology, 2021, 38(11): 29-32(in Chinese).

    [15] 余德观, 廖颖艺, 黄罗仪, 等. 4种苯并噻唑类药物及其类似物的谱学计算分析[J]. 药物分析杂志, 2021, 41(8): 1461-1475.

    YU Deguan, LIAO Yingyi, HUANG Luoyi, et al. Spectrographic calculation of 4 benzothiazoles and their analogues[J]. Chinese Journal of Pharmaceutical Analysis, 2021, 41(8): 1461-1475(in Chinese).

    [16] 刘庆, 魏振宏, 于慧, 等. 金属氯化物-苯并噻唑有机-无机杂化化合物的合成、表征及荧光性质[J]. 无机化学学报, 2017, 33(11): 2139-2146.

    LIU Qing, WEI Zhenhong, YU Hui, et al. Syntheses, characterization and optical properties of three organic inorganic hybrid compounds based on metal chlorides and benzothiazole[J]. Chinese Journal of Inorganic Chemistry, 2017, 33(11): 2139-2146(in Chinese).

    [17]

    ZHANG P, WANG T Q, QIAN G R, et al. Organo-LDH synthesized via tricalcium aluminate hydration in the present of Na-dodecylbenzenesulfate aqueous solution and subsequent investigated by near-infrared and mid-infrared[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, 125: 195-200. DOI: 10.1016/j.saa.2014.01.062

    [18] 高明, 徐艳林, 盛翔, 等. 超高效液相色谱法测定橡胶中6种橡胶助剂的含量[J]. 理化检验(化学分册), 2020, 56(1): 66-70.

    GAO Ming, XU Yanlin, SHENG Xiang, et al. Determination of six kinds of rubber additives in rubber by ultra performance liquid chromatography[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2020, 56(1): 66-70(in Chinese).

    [19] 岳阳阳, 韦毅, 邓明龙, 等. 构造CuO/Cu2S复合微纳米晶材料及其光催化性能研究[J]. 化工新型材料, 2020, 48(7): 114-118, 123.

    YUE Yangyang, WEI Yi, DENG Minglong, et al. Synthesis and photocatalytic properties of CuO/Cu2S composite micro-nanocrystalline materials[J]. New Chemical Materials, 2020, 48(7): 114-118, 123(in Chinese).

    [20]

    FINSGAR M. Tandem GCIB-ToF-SIMS and GCIB-XPS analyses of the 2-mercaptobenzothiazole on brass[J]. npj Materials Degradation, 2023, 7(1): 1. DOI: 10.1038/s41529-022-00317-2

    [21]

    CHEN X N, WANG X H, FANG D. A review on C1s XPS-spectra for some kinds of carbon materials[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2020, 12(28): 1048-1058.

    [22]

    SHI H Y, LIU Y H, SONG J, et al. On-surface synthesis of self-assembled monolayers of benzothiazole derivatives studied by STM and XPS[J]. Langmuir, 2017, 33(17): 4216-4223. DOI: 10.1021/acs.langmuir.7b00674

    [23]

    ZHAO J, GAO F, PUJARI S P, et al. Universal calibration of computationally predicted N1s binding energies for interpretation of XPS experimental measurements[J]. Langmuir, 2017, 33(41): 10792-10799. DOI: 10.1021/acs.langmuir.7b02301

    [24] 李毓豪, 刘华, 杨丙桥, 等. 木质素磺酸钠在磷矿正浮选脱镁中的应用及机理研究[J]. 有色金属(选矿部分), 2023(3): 152-157, 180.

    LI Yuhao, LIU Hua, YANG Bingqiao, et al. Study on the application and mechanism of sodium lignosulfonate in phosphorite flotation[J]. Nonferrous Metals (Mieral Processing Section), 2023(3): 152-157, 180(in Chinese).

    [25] 谢成浩, 郭鸿旭, 陈彰旭. CN@NiS-Cu2S复合材料的制备及其催化性能分析[J]. 闽南师范大学学报(自然科学版), 2023, 36(3): 90-97.

    XIE Chenghao, GUO Hongxu, CHEN Zhangxu, et al. Preparation of CN@NiS-Cu2S composites and analysis of their catalytic properties[J]. Journal of Zhangzhou Teachers College (Natural Science Edition), 2023, 36(3): 90-97(in Chinese).

    [26]

    FINSGAR M. Surface analysis of the 2-mercaptobenzothiazole corrosion inhibitor on 6082 aluminum alloy using ToF-SIMS and XPS[J]. Analytical Methods, 2020, 12(4): 456-465. DOI: 10.1039/C9AY02293G

    [27]

    VALE B R C, MOURAO R S, BETTINI J, et al. Ligand induced switching of the band alignment in aqueous synthesized CdTe/CdS core/shell nanocrystals[J]. Scientific Reports, 2019, 9(1): 8332-8344. DOI: 10.1038/s41598-019-44787-y

    [28]

    MAILLARD A P V F, ESPECHE J C, MATURANA P, et al. Zeta potential beyond materials science: Applications to bacterial systems and to the development of novel antimicrobials[J]. Biochimica et Biophysica Acta (BBA): Biomembranes, 2021, 1863: 183597.

    [29]

    WANG X L, LI Y, HUANG J, et al. Efficiency and mechanism of adsorption of low concentration uranium in water by extracellular polymeric substances[J]. Journal of Environmental Radioactivity, 2019, 197: 81-89. DOI: 10.1016/j.jenvrad.2018.12.002

    [30]

    YADAV A K, SIROHI P, SARASWAT S, et al. Inhibitory mechanism on combination of phytic acid with methanolic seed extract of syzygium cumini and sodium chloride over bacillus subtilis[J]. Current Microbiology, 2018, 75: 849-856. DOI: 10.1007/s00284-018-1457-5

    [31]

    YANG H Y, CHANG C M, CHEN Y W, et al. Inhibitory effect of propolis extract on the growth of Listeria monocytogenes and the mutagenicity of 4-nitroquinoline-N-oxide[J]. Journal of the Science of Food and Agriculture, 2006, 86(6): 937-943. DOI: 10.1002/jsfa.2441

    [32]

    LIU B K, XUE Y F, ZHANG J T, et al. Visible-light-driven TiO2/Ag3PO4 heterostructures with enhanced antifungal activity against agricultural pathogenic fungi Fusarium graminearum and mechanism insight[J]. Environmental Science: Nano, 2017, 4(1): 255-264. DOI: 10.1039/C6EN00415F

    [33]

    HAMANO Y. Occurrence, biosynthesis, biodegradation, and industrial and medical applications of a naturally occurring ε-poly-l-lysine[J]. Bioscience, Biotechnology, and Biochemistry, 2011, 75(7): 1226-1233. DOI: 10.1271/bbb.110201

    [34]

    ROJAS E R, BILLINGS G, ODERMATT P D, et al. The outer membrane is an essential load-bearing element in Gram-negative bacteria[J]. Nature, 2018, 559(7715): 617-621. DOI: 10.1038/s41586-018-0344-3

    [35] 刁春玲, 张国平, 徐广芳, 等. 苯并噻唑衍生物亚磷酸盐对禾谷镰刀菌的作用机理初探[J]. 农药学学报, 2006, 8(3): 233-238.

    DIAO Chunling, ZHANG Guoping, XU Guangfang, et al. Effect of benzothiazole derivative phosphite on Fusarium grainearum[J]. Chinese Journal of Pesticide Science, 2006, 8(3): 233-238(in Chinese).

    [36]

    LI W R, XIE X B, SHI Q S, et al. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli[J]. Applied Microbiology and Biotechnology, 2010, 85: 1115-1122. DOI: 10.1007/s00253-009-2159-5

  • 期刊类型引用(3)

    1. 张恒,张保平,肖煜坤,王尹. 氨基硫脲/季铵木质素对铂的吸附. 复合材料学报. 2022(10): 4674-4684 . 本站查看
    2. 狄婧,刘海霞,姜永强,郭金鑫,赵国虎. 聚吡咯/壳聚糖复合膜的制备及其对Cu(Ⅱ)和Cr(Ⅵ)吸附机制. 复合材料学报. 2021(01): 221-231 . 本站查看
    3. 苏凯,廖明旭,张胜利,贺玉龙. 蒙脱石-纤维素复合膜对Cd(Ⅱ)吸附性能研究. 矿物岩石. 2020(04): 1-6 . 百度学术

    其他类型引用(4)

  • 其他相关附件

  • 目的 

    近年来,随着耐药细菌的快速增长,人类的生命安全及生活效益受到严重威胁,有机抑菌剂已无法满足社会公共卫生需求,高活性复合抑菌剂不仅可以保留单组分的性质,还可以显示出更加优异的抑菌性能,因而成为抑菌材料的重要研究方向。本研究将空心纳米CuS材料与3-(苯并噻唑-2-巯基)丙烷磺酸钠配位制备出CuS@Sodium 3-(benzothiazol-2-ylthio)-1-propanesulfonate(CuS@SBPF)复合材料,并通过实验探究复合材料的抑菌性能和机制。

    方法 

    通过蚀刻法制备空心纳米CuS材料,然后将CuS与3-(苯并噻唑-2-巯基)丙烷磺酸钠反应,制备出CuS@Sodium 3-(benzothiazol-2-ylthio)-1-propanesulfonate(CuS@SBPF)复合材料。采用透射电子显微镜(TEM)、X射线衍射仪(XRD)、紫外可见分光光度计(UV-vis)、傅里叶变换红外光谱仪(FT-IR)及X射线光电子能谱分析仪(XPS)等对复合材料的微观形貌、结构、元素组成等进行表征;通过理论计算探究复合材料的静电势及结合能;以革兰氏阴性菌、革兰氏阳性菌和耐药菌沙门氏菌为测试菌,通过滤纸片扩散和菌落计数法研究复合材料的抑菌效率;并通过PI染色、Zeta电位和细胞质泄露等方法进一步研究复合材料的协同抑菌性能及抑菌机制。

    结果 

    由理论计算可知CuS@SBPF复合材料中的CuS颗粒与SBPF中磺酸基之间存在较强的相互作用力,可以形成稳定的结构。与单独使用CuS相比,CuS@SBPF复合材料对、和的抑菌效率分别提高了1.19、1.14和1.30倍;与SBPF相比,该复合材料对、和的抑菌效率分别提高了2.38、3.17和1.86倍。将500 μg/mL的复合材料与菌液作用40 min时,CuS@SBPF复合材料对大肠杆菌、金黄色葡萄球菌和耐药沙门氏菌的抑菌率均达到99.99%以上;用500 μg/mL的复合材料处理3 h后,碘化丙啶可穿透大肠杆菌、金黄色葡萄球菌和耐药沙门氏菌的细胞壁进入细菌内部;使用500 g/mL的CuS@SBPF复合材料分别与、和混合,5 min后测得三种测试菌的表面电位值分别为-10.09、-11.87和-12.01 mV,60 min后测得三种测试菌的表面电位值分别为-5.07、-7.18和-7.72 mV,可以看出三种测试菌的细胞膜表面的Zeta电位值随时间呈递增趋势。由细胞毒理性实验测得复合材料的IC值为220.52 μg/mL,与SBPF相比,复合材料的毒性大大减小,和市售药GDC-0941相比,复合材料仍具有良好生物相容性。

    结论 

    CuS@SBPF复合材料对大肠杆菌、金黄色葡萄球菌和耐药沙门氏菌均具有较强的抑菌活性,并且对大肠杆菌效果最好。与单独使用CuS和SBPF相比,复合材料的抑菌效率更高,其可有效破坏细菌和耐药菌的细胞壁的完整性及其通透性,进入细菌内部与蛋白质、DNA等生物大分子结合,抑制细菌呼吸,最终使细菌死亡。此外,细胞毒理性研究结果表明该材料具有良好的生物相容性。

  • 随着耐药细菌的快速增长,高活性且不产生耐药性的抑菌剂的研发成为抑菌材料的重要研究方向。Cu+作为铜系抑菌剂的重要成分,具有良好的抑菌性能,然而其单独使用存在离子释放过快、不稳定和易团聚等弊端。有机抑菌剂与含Cu+的无机组分组成复合材料不仅可以保留单组分的性质,而且可以显示出更加优异的抑菌性能。本研究通过制备无机材料Cu2S,然后与3-(苯并噻唑-2-巯基)丙烷磺酸钠反应,制备新型Cu2S@Sodium 3-(benzothiazol-2-ylthio)-1-propanesulfonate(Cu2S@SBPF)复合材料。探究复合材料对革兰氏阴性菌大肠杆菌(E. coli)、革兰氏阳性菌金黄色葡萄球菌(S. aureus )和耐药菌沙门氏菌(T-Salmonella)的抑菌性能及抑菌机制。结果表明,该复合材料能破坏细菌的细胞壁进入细菌内部,抑制细菌呼吸,最终使细菌死亡。这一成果有望为解决细菌耐药问题提供新的方案。

    Cu2S@SBPF材料制备流程和抑菌机制图

图(9)  /  表(1)
计量
  • 文章访问数:  181
  • HTML全文浏览量:  107
  • PDF下载量:  17
  • 被引次数: 7
出版历程
  • 收稿日期:  2024-02-27
  • 修回日期:  2024-04-02
  • 录用日期:  2024-04-19
  • 网络出版日期:  2024-05-24
  • 发布日期:  2024-05-07
  • 刊出日期:  2025-01-14

目录

/

返回文章
返回