Loading [MathJax]/jax/output/SVG/jax.js

玻璃纤维/甲基丙烯酸酯基原位固化管道内衬在海水和硫酸中的加速老化行为

张广毅, 李泽庄, 张超, 夏洋洋, 孟彭辉, 方宏远

张广毅, 李泽庄, 张超, 等. 玻璃纤维/甲基丙烯酸酯基原位固化管道内衬在海水和硫酸中的加速老化行为[J]. 复合材料学报, 2025, 42(1): 299-309. DOI: 10.13801/j.cnki.fhclxb.20240506.003
引用本文: 张广毅, 李泽庄, 张超, 等. 玻璃纤维/甲基丙烯酸酯基原位固化管道内衬在海水和硫酸中的加速老化行为[J]. 复合材料学报, 2025, 42(1): 299-309. DOI: 10.13801/j.cnki.fhclxb.20240506.003
ZHANG Guangyi, LI Zezhuang, ZHANG Chao, et al. Accelerated aging behavior of glass fiber reinforced methacrylate-based cured-in-place-pipe lining in seawater and sulfuric acid[J]. Acta Materiae Compositae Sinica, 2025, 42(1): 299-309. DOI: 10.13801/j.cnki.fhclxb.20240506.003
Citation: ZHANG Guangyi, LI Zezhuang, ZHANG Chao, et al. Accelerated aging behavior of glass fiber reinforced methacrylate-based cured-in-place-pipe lining in seawater and sulfuric acid[J]. Acta Materiae Compositae Sinica, 2025, 42(1): 299-309. DOI: 10.13801/j.cnki.fhclxb.20240506.003

玻璃纤维/甲基丙烯酸酯基原位固化管道内衬在海水和硫酸中的加速老化行为

基金项目: 国家自然科学基金(51978630;52178368;51909242);河南省高效科技创新团队和人才培养计划(23IRTSTHN004;23HASTIT007);河南省自然科学基金重点项目(232300421137)
详细信息
    通讯作者:

    张超,博士,副教授,硕士生导师,研究方向为复合材料的宏微观物理力学性能及应用 E-mail: chao.zhang.zzu@outlook.com

  • 中图分类号: TU599;TB332

Accelerated aging behavior of glass fiber reinforced methacrylate-based cured-in-place-pipe lining in seawater and sulfuric acid

Funds: National Natural Science Foundation of China (51978630; 52178368; 51909242); Program for Science and Technology Innovation Teams and Talents in Universities of Henan Province (23IRTSTHN004; 23HASTIT007); Key Project of Natural Science Foundation of Henan Province (232300421137)
  • 摘要:

    原位固化管道(Cured-in-place-pipe,CIPP)内衬用于修复被生物硫酸腐蚀的排水管道,也用于市政排海管道。而玻璃纤维/甲基丙烯酸酯基复合材料用于CIPP内衬,在硫酸和海水环境下的耐久性尚不明确。设计了0.5%硫酸、模拟海水与高温(80℃)加速相耦合的老化实验,以纯水作为对照,基于吸水测试、三点弯曲测试、接触角分析、SEM和FTIR等表征测试方法,研究了玻璃纤维/甲基丙烯酸酯基CIPP内衬的老化行为。结果显示:0.5%硫酸、模拟海水和纯水加速老化1440 h后,弯曲强度分别下降了57.9%、58.4%和57.4%,而弯曲模量没有明显下降;酯键水解生成的羟基部分被氧化为羰基,使树脂老化后颜色发黄;硫酸劣化了树脂表面使润湿性降低,也通过腐蚀表面玻璃纤维促进了水分扩散;海水中盐分析出结晶阻碍了水分扩散,也严重破坏了材料表面的树脂层,使润湿性增强。提高CIPP内衬的耐久性,重点应该抑制水分扩散劣化界面。可为甲基丙烯酸酯用于CIPP修复材料的耐久性评估提供参考依据。

     

    Abstract:

    Cured-in-place-pipe (CIPP) lining is used to repair drainage pipes corroded by biological sulfuric acid and is also used in municipal sea drainage pipes. However, the durability of glass fiber reinforced methacrylate-based composite materials used in CIPP lining in sulfuric acid and seawater environments is unclear. This study established two aging conditions: 0.5% sulfuric acid and simulated seawater, with the temperature of 80℃ to accelerate aging. Pure water was used as a control. Characterization and testing methods such as water absorption test, three-point bending test, contact angle analysis, SEM, and FTIR were used for the study to evaluate the aging behavior of glass fiber reinforced methacrylate-based CIPP lining. The results show that the bending strength decreases by 57.9%, 58.4%, and 57.4% respectively, after accelerated aging in 0.5% sulfuric acid, simulated seawater, and pure water for 1440 h. While the bending modulus does not show a significant decrease. The hydroxyl group generated by the hydrolysis of the ester bond is partially oxidized to a carbonyl group, causing the resin to turn yellow after aging. Sulfuric acid deteriorates the resin surface and reduces the wettability, and also promotes water diffusion by corroding the surface glass fiber. The crystallization of salt in seawater hinders the diffusion of water and severely damages the resin layer on the material surface, leading to enhanced wettability. To enhance CIPP lining durability, efforts should focus on inhibiting moisture diffusion and degradation at the interface. This study can provide a reference basis for the durability evaluation of methacrylate used in CIPP repair materials.

     

  • 由于石油资源不可再生,生物基的食品包装材料引起了学术界和工业界的广泛关注。尼龙612 (PA612)是一种半结晶性热塑性聚合物,可由单体己二胺和十二碳二酸缩聚而成,其中十二碳二酸可以从植物油中获得,因此PA612属于半生物基材料[1]。在包装领域,尼龙通常作为软包装应用,其具备优异的力学、耐穿刺、光学、阻隔、耐化学溶剂等综合性能[2]。在尼龙包装薄膜中,尼龙6 (PA6)薄膜应用最广,而PA612与PA6在结构性能上有一定的相似性,且较PA6具有更低的吸湿率和更好的尺寸稳定性[3]。细菌的滋生不仅影响食品新鲜度,还直接影响人体健康,因此尼龙抗菌包装材料的研究与开发受到了普遍重视[4-6]。各种类型的无机抗菌剂,如银类抗菌剂、钛类抗菌剂、锌类抗菌剂、铜类抗菌剂已经开发出来,在PA复合材料上表现出不同程度的抗菌效果[7-12]

    纳米氧化锌(以下简称ZnO)由于其较低的成本、无毒、对环境友好及优异的抗菌性能,被认为是一种有前景的抗菌剂[13]。此外,ZnO已被美国食品和药物管理局(FDA)列为公认安全(GRAS)的材料。目前,针对ZnO纳米颗粒提出的抗菌机制主要有4个方面,即活性氧ROS的生成、Zn2+的离子释放、表面静电相互作用和纳米粒子的内化[14]。Wang等[10]利用原子层沉积(ALD)与水热技术相结合制备了抗菌PA6-ZnO多级纳米纤维,发现其可有效抑制细菌存活。Li等[15]通过熔融共混和热压成型工艺制备纳米氧化锌/高密度聚乙烯(HDPE)复合薄膜并研究其机械和抗菌性能发现,通过添加纳米ZnO颗粒,提高了HDPE薄膜的拉伸强度和断裂伸长率。 ZnO/HDPE纳米复合材料表现出良好的抗菌活性,尤其是对金黄色葡萄球菌。Kim等[16]采用溶液法制备了聚乳酸(PLA)/ZnO纳米复合薄膜,其对金黄色葡萄球菌和大肠杆菌显示出明显的抗菌活性,但具有超过3wt%ZnO含量的生物纳米复合膜由于团聚和分散性差导致表面粗糙和结晶度降低。因此,为充分发挥ZnO的抗菌特性和纳米效应,同时提高其在聚合物基体中的分散性,需要对其进行表面改性。

    γ-氨丙基三乙氧基硅烷偶联剂(KH550)是常用的改性剂,能有效改善纳米粒子在基体中的分散。Li等[17]采用KH550对氧化锌纳米粒子进行改性,发现纳米颗粒的分散性得到了很大的改善,有效地打破了纳米颗粒的团聚现象。截止目前,针对KH550改性纳米ZnO做为抗菌剂在PA612薄膜中应用的相关研究尚未开展。

    本文利用KH550湿法改性纳米ZnO (m-ZnO),然后将m-ZnO加入到PA612基体材料中,通过双螺杆挤出造粒制备了纳米抗菌复合材料,通过挤出流延制备了PA612纳米抗菌复合薄膜。研究了m-ZnO对纳米复合材料热稳定性、结晶行为、力学性能和抗菌性能的影响。

    实验选用的PA612 (Zytel® 151L NC010)熔点为218℃,购自杜邦公司;纳米氧化锌(ZnO),粒径50 nm,上海阿拉丁生化科技股份有限公司;硅烷偶联剂KH550,分子量为221.37 g/mol,安徽泽升科技有限公司;溶菌肉汤(LB肉汤)、琼脂粉,青岛高科技工业园海博生物技术有限公司;大肠杆菌(ATCC25922)、金黄色葡萄球菌(ATCC29213),上海鲁微科技有限公司。

    利用偶联剂KH550对纳米氧化锌进行改性。将20 g纳米ZnO和500 mL 95%乙醇加入到1000 mL的三口烧瓶中,超声分散30 min,然后搅拌加热至75℃。将2 g KH550预水解1 h后缓慢加入到ZnO溶液中,在75℃下搅拌4 h后终止反应。然后将所得混合物抽滤分离,并用乙醇洗涤3次,以去除过量的KH550。将表面改性的纳米氧化锌(m-ZnO)在真空干燥箱中60℃干燥12 h,最后研磨成粉末备用。

    采用熔融复合法制备了含m-ZnO纳米颗粒的PA612纳米复合材料。将所需含量的m-ZnO与PA612在双螺杆挤出机(CTE 35 PLUS,南京科倍隆机械有限公司)中在250℃下熔融共混挤出,然后用流延机(FDHU-35,广东市普同实验分析仪器)以20 r/min的固定转速在270℃下流延成膜,流延膜厚度为(120±10) μm。所制备的m-ZnO/PA612纳米复合材料简称Xm-ZnO/PA612。为了比较,以同样的步骤,将原始的ZnO纳米颗粒与PA612混合,所制备的ZnO/PA612纳米复合材料简称XZnO/PA612,其中X为纳米复合材料中ZnO的质量分数。复合薄膜具体质量配比如表1所示。

    表  1  不同ZnO含量的ZnO/PA612抗菌复合膜
    Table  1.  ZnO/PA612 antibacterial composite films with different ZnO content
    SampleMass fraction/wt%
    PA612m-ZnOZnO
    PA612 100 0 0
    0.5wt%m-ZnO/PA612 99.5 0.5 0
    2wt%
    ZnO/PA612
    98 0 2
    2wt%m-ZnO/PA612 98 2 0
    4wt%m-ZnO/PA612 96 4 0
    6wt%m-ZnO/PA612 94 6 0
    Notes: m-ZnO—Modified nano zinc oxide; ZnO—Unmodified nano zinc oxide; PA612—Nylon 612.
    下载: 导出CSV 
    | 显示表格

    傅里叶变换红外光谱(FTIR)测试:采用Bruker TENSOR II型红外光谱仪进行测试,扫描范围为4000~400 cm−1,波数分辨率为4 cm−1

    扫描电子显微镜(SEM)和能量色散X射线能谱(EDX)测试:先将样品在液氮中低温脆断后贴于导电胶,然后将样品在真空条件下喷金,再排布在样品台上观察,电压3 kV。

    差示扫描量热仪(DSC)测试:采用德国耐驰公司的DSC214型差式扫描量热仪,取5~10 mg样品,在N2氛围下将样品由25℃加热至280℃,保持5 min去除热历史后降至25℃,各阶段升温速率均为10℃/min。结晶度由下式计算:

    Xc=ΔHm(1wf)ΔH0×100% (1)

    其中:∆Hm为熔融焓;wf为m-ZnO的质量分数;∆H0为PA612结晶度为100%对应的熔融焓(258 J/g)[18]

    X射线衍射仪(XRD)测试:采用日本理学的UltimaIV型X射线衍射仪,反射模式,铜靶,管电压为40 kV,管电流为30 mA,测试范围为5°~30°,扫描速率为2°/min。

    热重分析仪(TGA):美国TA仪器公司Q20型,在氮气气氛下进行,试样以10℃/min的升温速率从30℃加热到600℃。

    力学性能测试:采用深圳万测实验设备有限公司的ETM-104B型万能力学试验机,通过哑铃裁刀,将薄膜裁为长35 mm、窄部宽2 mm的哑铃型样条。测试前把样条放置在23℃、相对湿度为50%的条件下恒温恒湿处理48 h,测试速度为50 mm/min,取5根样条结果的平均值。

    光学测试:采用上海精密科学仪器有限公司的WGT-S透光度雾度测试仪,参照国家标准GB/T 2410—2008[19],测量薄膜的透光率和雾度。

    抗菌活性检测:采用贴膜平板计数法测试样品抗菌率,参照国家标准GB/T 31402—2015[20]。样品处理:将样品裁成5 cm×5 cm大小,覆盖膜裁成4 cm×4 cm大小,先于酒精中浸泡30 min,然后取出放于紫外灯下两面各照射灭菌 30 min,备用。菌液准备:取活化后的菌液10 μL于30 mL液体培养基中,在恒温振荡器上培养16 h后,将菌液稀释约至105 CFU/mL的浓度。共培养:将试样放入无菌培养皿中,用移液管吸取0.4 mL菌液,滴到每个试样表面,并将覆盖膜盖于接种好的菌液上,并向下轻轻按压使菌液均匀扩散,然后盖上培养皿盖,在35℃恒温培养箱中培养24 h。共培养完成后,采用0.85%生理盐水清洗薄膜并进行10倍倍比稀释(本测试采用103、104和105 稀释倍数),各取100 μL稀释液均匀涂布于LB固体培养基,即倒平板,放于35℃恒温培养箱中静置培养24 h,拍照并记录菌落数。抗菌率计算:

    R=ABA×100% (2)

    其中:R为抗菌率;A为空白样菌浓度(未加抗菌剂的纯PA612薄膜);B为样品的菌浓度。菌浓度(CFU/mL)计算方式:菌落数×稀释倍数×10 (0.1 mL涂布)。

    ZnO和m-ZnO的FTIR图谱如图1所示,在ZnO图谱中,3000~3700 cm−1处的宽峰对应—OH的伸缩振动,1636 cm−1处的宽峰代表纳米颗粒表面吸附的水分子导致的—OH的弯曲振动,在500 cm−1附近检测到的峰,归因于Zn—O的伸缩振动[21]。 两个新峰2975 cm−1和2931 cm−1对应于KH550的碳氢拉伸振动峰。1016 cm−1处的峰是KH550醇解后羟基与纳米氧化锌表面的羟基缩合反应产生的Si—O—Zn拉伸振动峰[22]。上述结果表明KH550成功接枝到纳米氧化锌上。

    进一步地,可以通过SEM图像,直观评估m-ZnO/PA612纳米复合材料中纳米颗粒的分散,如图2所示,其中插入的图片为m-ZnO/PA612纳米复合材料的外观照片,可以看出,纳米ZnO包覆在薄膜内部。从SEM图像中可以看出 2wt%ZnO/PA612 (含2wt%未改性ZnO)表现出明显的颗粒团聚。与 2wt%ZnO/PA612相比,改性ZnO颗粒在PA612基体中的分散性要好得多。然而,m-ZnO的添加量相对较高(4wt%和6wt%)时,由于纳米颗粒的大比表面积,在断裂表面出现了轻微的团聚(图中圆圈)。综上所述,偶联KH550可以有效提高纳米ZnO 在PA612基体中的分散性,但随着 m-ZnO 含量增加至4wt%,纳米颗粒会部分团聚。

    图  1  ZnO和m-ZnO的FTIR光谱
    Figure  1.  FTIR spectra of ZnO and m-ZnO
    图  2  ZnO含量2wt%和不同m-ZnO含量的PA612纳米复合材料的脆断截面SEM图像及外观图片
    Figure  2.  Fracture cross section SEM images and appearance pictures of PA612 nanocomposites with different m-ZnO contents and ZnO content 2wt%

    2wt%m-ZnO/PA612的SEM图像如图3所示,对应的EDX光谱证实了2wt%m-ZnO/PA612的化学成分,在锌元素和氧元素处有两个尖锐的信号峰。此外,还观察到氮和硅元素的信号峰,这可能是由于接枝KH550的存在,这也印证了KH550的成功接枝。从图3中的EDX映射图像可以看出,Zn元素分布均匀,表明m-ZnO均匀地分布在纳米复合膜中。

    图  3  2wt%m-ZnO/PA612的SEM图像和EDX映射元素Zn、Si、N和O图谱
    Figure  3.  SEM images of 2wt%m-ZnO/PA612 and EDX mapping elements Zn, Si, N and O

    图4显示了PA612及其纳米复合材料的熔融结晶行为。图4(a)中m-ZnO/PA612纳米复合材料的熔融峰温度(Tm)与纯PA612相比都略微下降。从图4(b)中可以观察到m-ZnO/PA612纳米复合材料的结晶峰温度(Tc)都向较高的值移动。这些结果表明,在结晶过程中,m-ZnO的存在有助于促进晶体的成核。

    图  4  PA612及不同m-ZnO含量的PA612纳米复合材料的DSC图谱:(a) 升温;(b) 降温
    Figure  4.  DSC curves of PA612 and PA612 nanocomposites with different m-ZnO contents: (a) Heating procedure; (b) Cooling procedure

    表2列出了PA612及其纳米复合材料的TcTm、熔融焓(∆Hm)、结晶度(Xc)。可见,m-ZnO/PA612纳米复合材料的结晶度均高于纯PA612,在m-ZnO添加量为2wt%时,其结晶度相较于纯PA612提高了4.1%,可见m-ZnO的加入可以促进PA612结晶,这是由于m-ZnO具有异相成核的作用[23]。然而,m-ZnO/PA612纳米复合材料的结晶度随m-ZnO含量的增加先增大后有所下降。这是由于随着m-ZnO含量增大,产生了部分团聚,降低了其成核作用[24]

    表  2  PA612及不同m-ZnO含量的PA612纳米复合材料的DSC热分析数据
    Table  2.  DSC thermal analysis data of PA612 and PA612 nanocomposites with different m-ZnO contents
    SampleTm/℃Tc/℃ΔHm/(J·g−1)Xc/%
    PA612222.86186.2661.2223.73
    0.5wt%m-ZnO/PA612220.37187.0970.6827.53
    2wt%m-ZnO/PA612221.67187.3470.3627.83
    4wt%m-ZnO/PA612221.29186.9966.9926.93
    6wt%m-ZnO/PA612220.97186.1465.6126.88
    Notes: Tm—Melting peak temperature; Tc—Crystallization peak temperature; △Hm—Melting enthalpy; Xc—Crystallinity.
    下载: 导出CSV 
    | 显示表格

    m-ZnO/PA612纳米复合材料的XRD图谱如图5所示。PA612中观察到2θ=21°的衍射峰,对应于PA612的γ晶型[25]。与纯PA612相比,m-ZnO/PA612纳米复合材料的衍射峰没有明显的位移或变化,表明m-ZnO的加入对PA612的晶型结构没有影响。

    图  5  PA612及不同m-ZnO含量的PA612纳米复合材料的XRD图谱
    Figure  5.  XRD patterns of PA612 and PA612 nanocomposites with different m-ZnO contents

    通过热重分析(TGA)研究了m-ZnO含量对PA612热稳定性的影响,结果如图6所示。m-ZnO的加入对PA612纳米复合材料的热稳定性没有很大的影响。

    图  6  PA612及不同m-ZnO含量的PA612纳米复合材料的TGA热重曲线
    Figure  6.  TGA curves of PA612 and PA612 nanocomposites with different m-ZnO contents

    表3列出了失重分别为5wt% (T5%)和 50wt% (T50%)时的温度及600℃ 时的残炭率。可以发现T5%几乎没有变化,表明无论 m-ZnO 含量如何,所有 PA612 纳米复合材料的热稳定性都较好。在PA612 基体中添加m-ZnO 后,T50%温度向较低温度移动。热稳定性的降低可能与高温下ZnO在增强型基质上的催化活性有关[26]。此外,ZnO 纳米粒子可以诱导聚合物-ZnO界面中周围碳的氧化分解[27]。随着m-ZnO 含量的增加,m-ZnO/PA612纳米复合材料在 600℃的炭产率逐渐增加。

    表  3  PA612及不同m-ZnO含量的PA612纳米复合材料的热稳定性
    Table  3.  Thermal stability of PA612 and PA612 nanocomposites with different m-ZnO contents
    SampleT5%/℃T50%/℃Char yield at 600℃/wt%
    PA612398.9450.02.3
    0.5wt%m-ZnO/PA612400.4446.02.7
    2wt%m-ZnO/PA612397.2443.03.5
    4wt%m-ZnO/PA612399.3446.74.7
    6wt%m-ZnO/PA612398.6446.37.8
    Notes: T5% and T50%—Temperature when the weight loss of the samples is 5wt% and 50wt%, respectively.
    下载: 导出CSV 
    | 显示表格

    PA612及其纳米复合材料的典型应力-应变曲线如图7所示。表4总结了拉伸应力、杨氏模量和断裂伸长率。可以看出所有试样的应力-应变曲线分为弹性、塑性变形和应变硬化3个区域。首先弹性区域具有可恢复变形的线性变化,在塑性变形区将形成颈部。随后应变硬化区出现应变硬化的现象。可见纳米氧化锌作为刚性填料改变了基体的应力场。

    图  7  PA612及不同m-ZnO含量的PA612纳米复合材料的拉伸应力-应变曲线
    Figure  7.  Tensile stress versus strain curves of PA612 and PA612 nanocomposites with different m-ZnO contents

    当添加2wt%m-ZnO时,m-ZnO/PA612纳米复合材料的拉伸强度达到最大值,与纯PA612相比提高了15%。随后拉伸强度有所下降。这是由于纳米氧化锌极高的表面能,当含量较高时,由于其较强的相互吸附作用,导致出现明显的团聚现象(图3),从而降低了m-ZnO/PA612势同拉伸强度一样,在m-ZnO含量为2wt%达到最大。m-ZnO/PA612纳米复合材料的断裂伸长率较PA612略有下降。这是由于纳米ZnO提高了m-ZnO/PA612纳米复合材料的结晶度,使材料变脆,此外m-ZnO在m-ZnO/PA612基体中会引起应力集中,从而使其韧性变差。

    m-ZnO/PA612纳米复合膜的透光率和雾度如图8所示。随着m-ZnO含量的增加,复合膜的透光率随之降低,雾度与之相反,这是由于纳米氧化锌在基体中团聚,会影响光的传输,从而产生光散射,导致透光率的降低。

    m-ZnO/PA612纳米复合膜对大肠杆菌的抗菌活性如图9所示,抗菌率数据列于表5。结果表明:m-ZnO的加入使PA612纳米复合材料具有抗菌活性。此外,随着m-ZnO含量的增加,抗菌率逐渐增大,在m-ZnO含量达到4wt%时,其抗菌率达到93.25%。这些结果可以归结为纳米氧化锌具有优越的抗菌性能。对于ZnO抗菌机制的研究比较成熟,主要解释为两种,金属离子溶出机制和光催化反应机制[28]。当有紫外光照射时,会在ZnO纳米结构的表面形成电子空穴对,这些电子和空穴经过与水分子和氧分子反应生成活性氧,能降解大多数微生物中的有机物,从而杀死细菌,而ZnO粒径大小决定了光催化反应效率,其抗菌活性随粒径减小而增大。2wt%ZnO/PA612在尼龙基体中团聚使其相对粒径增大,2wt%m-ZnO/PA612在尼龙基体中较2wt%ZnO/PA612分散更好,从而使其抗菌效果更佳。因此2wt%m-ZnO/PA612对大肠杆菌的抗菌率远远大于2wt%ZnO/PA612。

    表  4  PA612及不同m-ZnO含量的PA612纳米复合材料的拉伸性能
    Table  4.  Tensile properties of PA612 and PA612 nanocomposites with different m-ZnO contents
    SampleTensile stress/MPaYoung’s modulus/MPaElongation at break/%
    PA612 93.95±5.55 685.11±50.97 392.77±13.70
    0.5wt%m-ZnO/PA612 93.06±4.56 543.66±39.20 378.30±11.08
    2wt%m-ZnO/PA612 108.13±1.76 889.70±60.78 305.23±10.13
    4wt%m-ZnO/PA612 84.31±8.35 422.97±94.12 371.85±27.97
    6wt%m-ZnO/PA612 83.06±10.85 486.79±71.10 325.38±32.66
    下载: 导出CSV 
    | 显示表格
    图  8  PA612及不同m-ZnO含量的PA612纳米复合材料的光学性能
    Figure  8.  Optical properties of PA612 and PA612 nanocomposites with different m-ZnO contents
    图  9  PA612及不同m-ZnO含量的PA612纳米复合材料对大肠杆菌的抗菌测试结果照片
    Figure  9.  Photos of antibacterial test results of PA612 and PA612 nanocomposites with different m-ZnO contents against Escherichia coli
    表  5  PA612及不同m-ZnO含量的PA612纳米复合材料膜对大肠杆菌的抑菌活性
    Table  5.  Antibacterial activity of PA612 and PA612 nanocomposites with different m-ZnO contents membranes against Escherichia coli
    SampleBacteria concentration/
    (CFU·mL−1)
    Antibacterial rate R/%
    PA6125.48×106 0.00
    0.5wt%m-ZnO/PA6123.89×10629.01
    2wt%ZnO/PA6121.43×10673.91
    2wt%m-ZnO/PA6125.30×10590.33
    4wt%m-ZnO/PA6123.70×10593.25
    6wt%m-ZnO/PA6122.50×10595.44
    下载: 导出CSV 
    | 显示表格

    m-ZnO/PA612纳米复合膜对金黄色葡萄球菌的抗菌活性如图10所示,抗菌率数据列于表6。结果表明:同纳米抗菌复合膜对大肠杆菌的抗菌活性相似,随着m-ZnO含量的增加,m-ZnO/PA612纳米复合膜对金黄色葡萄球菌的抗菌率逐渐增大,在m-ZnO含量达到4wt%时,其抗菌率达到90%以上,在m-ZnO含量较高时,m-ZnO/PA612纳米复合薄膜对大肠杆菌的抑菌效果优于金黄色葡萄球菌。这可能是由于革兰氏阳性菌金黄色葡萄球菌的肽聚糖膜比革兰氏阴性菌大肠杆菌厚得多[29]

    图  10  PA612及不同m-ZnO含量的PA612纳米复合材料对金黄色葡萄球菌的抗菌测试结果照片
    Figure  10.  Photos of antibacterial test results of PA612 and PA612 nanocomposites with different m-ZnO contents against Staphylococcus aureus
    表  6  PA612及不同m-ZnO含量的PA612纳米复合材料膜对金黄色葡萄球菌的抑菌活性
    Table  6.  Antibacterial activity of PA612 and PA612 nanocomposites with different m-ZnO contents membranes against Staphylococcus aureus
    SampleBacteria concentration/
    (CFU·mL−1)
    Antibacterial
    rate R/%
    PA6125.35×106 0.00
    0.5wt%m-ZnO/PA6123.60×10632.71
    2wt%ZnO/PA6121.73×10667.66
    2wt%m-ZnO/PA6129.40×10582.43
    4wt%m-ZnO/PA6124.80×10591.03
    6wt%m-ZnO/PA6123.60×10593.27
    下载: 导出CSV 
    | 显示表格

    (1) 利用γ-氨丙基三乙氧基硅烷偶联剂(KH550)改性纳米ZnO颗粒(m-ZnO),SEM观察发现未改性纳米ZnO在尼龙612 (PA612)基体中出现较大团聚,而m-ZnO纳米粒子在PA612基体中均分散良好。

    (2) m-ZnO作为成核剂可以促进PA612的结晶,m-ZnO添加量为2wt%时,结晶度提高了4.1%。m-ZnO的存在对PA612热稳定性的影响较小。

    (3) 适量m-ZnO的加入对PA612有增强作用,在m-ZnO添加量为2wt%时,PA612纳米复合材料的拉伸强度较纯PA612提高了15%。

    (4) m-ZnO的加入使PA612对革兰氏阳性菌金黄色葡萄球菌和革兰氏阴性菌大肠杆菌都具有抗菌活性,在m-ZnO添加量超过4wt%时,对金黄色葡萄球菌和大肠杆菌的抗菌率均达到90%以上。

    (5) 通过挤出流延法制得的半生物基PA612纳米复合抗菌薄膜不但具有良好的抗菌性能和热稳定性能,且力学性能优良,加工工艺简单,有利于工业化生产,在食品、药品等包装领域有一定的应用前景。

  • 图  1   玻璃纤维/甲基丙烯酸酯基原位固化管道(CIPP)内衬的固化和切割好的试样

    Figure  1.   Curing of glass fiber reinforced methacrylate-based cured-in-place-pipe (CIPP) linings and cut specimens

    图  2   玻璃纤维/甲基丙烯酸酯基CIPP内衬加速老化后的吸水行为:(a) 增重;(b) 扩散系数和饱和吸水率

    Figure  2.   Water absorption behavior of glass fiber reinforced methacrylate-based CIPP lining after accelerated aging: (a) Mass gain; (b) Diffusion coefficient and saturated water content

    图  3   玻璃纤维/甲基丙烯酸酯基CIPP内衬加速老化后的弯曲强度

    Figure  3.   Flexural strength of glass fiber reinforced methacrylate-based CIPP lining after accelerated aging

    图  4   玻璃纤维/甲基丙烯酸酯基CIPP内衬在3种条件下加速老化后的弯曲应力-应变曲线:(a) 0.5%硫酸;(b) 模拟海水;(c) 纯水

    Figure  4.   Flexural stress-strain curves of glass fiber reinforced methacrylate-based CIPP lining after accelerated aging under three conditions: (a) 0.5% sulfuric acid; (b) Simulated seawater; (c) Pure water

    图  5   未老化和3种条件下加速老化1440 h后的玻璃纤维/甲基丙烯酸酯基CIPP内衬表面和弯曲断面微观形貌

    Figure  5.   Micromorphology of the surface and curved cross section of glass fiber reinforced methacrylate-based CIPP lining without aging and after accelerated aging 1440 h under three conditions

    图  6   (a)硫酸和海水腐蚀玻璃纤维/甲基丙烯酸酯基CIPP内衬;(b)树脂/纤维界面劣化;(c)弯曲断裂模式

    Figure  6.   (a) Sulfuric acid and seawater corrode glass fiber reinforced methacrylate-based CIPP lining; (b) Degradation of resin fiber interface; (c) Bending fracture modes

    图  7   未老化和3种条件下加速老化1440 h后的玻璃纤维/甲基丙烯酸酯基CIPP内衬表面的FTIR图谱

    Figure  7.   FTIR spectra of glass fiber reinforced methacrylate-based CIPP lining without aging and after accelerated aging 1440 h under three conditions

    图  8   树脂基体的化学结构变化

    Figure  8.   Chemical structural changes of resin matrix

    图  9   (a)玻璃纤维/甲基丙烯酸酯基CIPP内衬加速老化1440 h后的颜色变化;(b)盐壳

    Figure  9.   (a) Color change of glass fiber reinforced methacrylate-based CIPP lining after accelerated aging 1440 h; (b) Salt crust

    图  10   玻璃纤维/甲基丙烯酸酯基CIPP内衬加速老化后的表面接触角

    Figure  10.   Surface contact angle of glass fiber reinforced methacrylate-based CIPP lining after accelerated aging

    表  1   模拟海水成分

    Table  1   Simulated seawater composition

    Compound Concentration/(g·L−1)
    NaCl 24.53
    MgCl2 5.20
    Na2SO4 4.09
    CaCl2 1.16
    KCl 0.695
    NaHCO3 0.201
    KBr 0.101
    H3BO3 0.027
    SrCl2 0.025
    NaF 0.003
    下载: 导出CSV

    表  2   玻璃纤维/甲基丙烯酸酯基CIPP内衬加速老化1440 h前后的羰基指数和羟基指数

    Table  2   Carbonyl index and hydroxyl index of glass fiber reinforced methacrylate-based CIPP lining before and after accelerated aging 1 440 h

    Condition Carbonyl index Hydroxyl index
    Before aging Aging 1440 h Before aging Aging 1440 h
    0.5% sulfuric acid 0.560±0.025 0.807±0.026 0±0.01 0.038±0.028
    Simulated seawater 0.591±0.019 0.056±0.023
    Pure water 0.824±0.021 0.039±0.035
    下载: 导出CSV
  • [1]

    DONALDSON B M. Environmental implications of cured-in-place pipe rehabilitation technology[J]. Transportation Research Record, 2009, 2123(1): 172-179. DOI: 10.3141/2123-19

    [2]

    ZHU H, WANG T, WANG Y, et al. Trenchless rehabilitation for concrete pipelines of water infrastructure: A review from the structural perspective[J]. Cement and Concrete Composites, 2021, 123: 104193. DOI: 10.1016/j.cemconcomp.2021.104193

    [3]

    LI S, GUO S C, YAO Y M, et al. The effects of aging in seawater and SWSSC and strain rate on the tensile performance of GFRP/BFRP composites: A critical review[J]. Construction and Building Materials, 2021, 282: 122534.

    [4]

    NURUDDIN M, DECOCKER K, SENDESI S M T, et al. Influence of aggressive environmental aging on mechanical and thermo-mechanical properties of ultra violet (UV) cured in place pipe liners[J]. Journal of Composite Materials, 2020, 54(23): 3365-3379. DOI: 10.1177/0021998320913988

    [5]

    RA K, SENDESI S M T, NURUDDIN M, et al. Considerations for emission monitoring and liner analysis of thermally manufactured sewer cured-in-place-pipes (CIPP)[J]. Journal of Hazardous Materials, 2019, 371: 540-549. DOI: 10.1016/j.jhazmat.2019.02.097

    [6]

    GRAS-TRAVESSET F, ANDREU-TORRAS A, PÉREZ M A. A novel test procedure for evaluating the performance of composite cured-in-place-pipe liners in water pressure pipe rehabilitation[J]. Case Studies in Construction Materials, 2023, 19: e02381. DOI: 10.1016/j.cscm.2023.e02381

    [7]

    VAHIDI E, JIN E, DAS M, et al. Environmental life cycle analysis of pipe materials for sewer systems[J]. Sustainable Cities and Society, 2016, 27: 167-174. DOI: 10.1016/j.scs.2016.06.028

    [8]

    ALLOUCHE E, ALAM S, SIMICEVIC J, et al. A pilot study for retrospective evaluation of cured-in-place pipe (CIPP) rehabilitation of municipal gravity sewers[J]. Tunnelling and Underground Space Technology, 2014, 39: 82-93. DOI: 10.1016/j.tust.2012.02.002

    [9]

    OKABE S, ODAGIRI M, ITO T, et al. Succession of sulfur-oxidizing bacteria in the microbial community on corroding concrete in sewer systems[J]. Applied and Environmental Microbiology, 2007, 73(3): 971-980. DOI: 10.1128/AEM.02054-06

    [10]

    VALIX M, SHANMUGARAJAH K. Biogenic acids produced on epoxy linings installed in sewer crown and tidal zones[J]. Water Research, 2015, 80: 217-226. DOI: 10.1016/j.watres.2015.05.027

    [11] 魏建辉, 刘明, 高进城, 等. 吸湿老化后碳纤维增强乙烯基脂树脂复合材料高低温力学性能[J]. 复合材料学报, 2023, 40(6): 3279-3290.

    WEI Jianhui, LIU Ming, GAO Jincheng, et al. Mechanical properties at elevated and cryogenic temperatures of carbon fiber reinforced vinylester resin composites after hygroscopic aging[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3279-3290(in Chinese).

    [12]

    NODEHI M. Epoxy, polyester and vinyl ester based polymer concrete: A review[J]. Innovative Infrastructure Solutions, 2021, 7(1): 64.

    [13]

    VIEIRA P S, DA SILVA G A, LOPES B J, et al. Hygrothermal aging of steel/frp pipe repair systems: A literature review[J]. International Journal of Pressure Vessels and Piping, 2023, 201: 104881. DOI: 10.1016/j.ijpvp.2022.104881

    [14] 高坤, 史汉桥, 孙宝岗, 等. 湿热老化对玻璃纤维/环氧树脂复合材料性能的影响[J]. 复合材料学报, 2016, 33(6): 1147-1152.

    GAO Kun, SHI Hanqiao, SUN Baogang, et al. Effects of hydro-thermal aging on properties of glass fiber/epoxy composites[J]. Acta Materiae Compositae Sinica, 2016, 33(6): 1147-1152(in Chinese).

    [15]

    AITHAL S, HOSSAGADDE P N, KINI M V, et al. Durability study of quasi-isotropic carbon/epoxy composites under various environmental conditions[J]. Iranian Polymer Journal, 2023, 32(7): 873-885. DOI: 10.1007/s13726-023-01172-x

    [16]

    VISCO A M, BRANCATO V, CAMPO N. Degradation effects in polyester and vinyl ester resins induced by accelerated aging in seawater[J]. Journal of Composite Materials, 2011, 46(17): 2025-2040.

    [17]

    HE W, LI X, LI P, et al. Experimental investigation on hygroscopic aging of glass fiber reinforced vinylester resin composites[J]. Polymers, 2022, 14(18): 3828. DOI: 10.3390/polym14183828

    [18] 曹银龙, 于桢琪, 冯鹏, 等. 纤维增强环氧/乙烯基树脂复合材料性能优化与劣化机制研究进展[J]. 复合材料学报, 2024, 41(3): 1179-1191.

    CAO Yinlong, YU Zhenqi, FENG Peng, et al. Performance optimization and deterioration mechanism of fiber reinforced epoxy/vinyl resin composite materials: A review[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1179-1191(in Chinese).

    [19]

    JOSÉ-TRUJILLO E, RUBIO-GONZÁLEZ C, RODRÍGUEZ-GONZÁLEZ J. Seawater ageing effect on the mechanical properties of composites with different fiber and matrix types[J]. Journal of Composite Materials, 2019, 53(23): 3229-3241. DOI: 10.1177/0021998318811514

    [20]

    KANERVA M, JOKINEN J, SARLIN E, et al. Lower stiffness of GFRP after sulfuric acid-solution aging is due to degradation of fibre-matrix interfaces?[J]. Composite Structures, 2019, 212: 524-534. DOI: 10.1016/j.compstruct.2019.01.006

    [21]

    LI H, GU P, WATSON J, et al. Acid corrosion resistance and mechanism of E-glass fibers: Boron factor[J]. Journal of Materials Science, 2013, 48(8): 3075-3087. DOI: 10.1007/s10853-012-7082-y

    [22] 韦嘉盛, 戴磊, 贺瓶. 基于纤维素及其衍生物的凝胶材料设计[J]. 复合材料学报, 2022, 39(7): 3084-3103.

    WEI Jiasheng, DAI Lei, HE Ping. Design of gel materials with cellulose and its derivatives[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3084-3103(in Chinese).

    [23]

    DEVINE M, BAJPAI A, OBANDE W, et al. Seawater ageing of thermoplastic acrylic hybrid matrix composites for marine applications[J]. Composites Part B: Engineering, 2023, 263: 110879. DOI: 10.1016/j.compositesb.2023.110879

    [24]

    DAVIES P, LE GAC P Y, LE GALL M. Influence of sea water aging on the mechanical behaviour of acrylic matrix composites[J]. Applied Composite Materials, 2017, 24(1): 97-111. DOI: 10.1007/s10443-016-9516-1

    [25]

    DUO Y, LIU X, LIU Y, et al. Environmental impact on the durability of FRP reinforcing bars[J]. Journal of Building Engineering, 2021, 43: 102909. DOI: 10.1016/j.jobe.2021.102909

    [26]

    VISCO A, BRANCATO V, CAMPO N. Degradation effects in polyester and vinyl ester resins induced by accelerated aging in seawater[J]. Journal of Composite Materials, 2012, 46(17): 2025-2040. DOI: 10.1177/0021998311428533

    [27]

    American Society for Testing and Materials International. Standard practice for preparation of substitute ocean water: ASTM D1141—98(2021)[S]. West Conshohocken: ASTM International, 2021.

    [28]

    HONG B, XIAN G, LI H. Comparative study of the durability behaviors of epoxy-and polyurethane-based CFRP plates subjected to the combined effects of sustained bending and water/seawater immersion[J]. Polymers, 2017, 9(11): 603. DOI: 10.3390/polym9110603

    [29]

    GRAMMATIKOS S A, EVERNDEN M, MITCHELS J, et al. On the response to hygrothermal aging of pultruded FRPs used in the civil engineering sector[J]. Materials & Design, 2016, 96: 283-295.

    [30] 吴瑞, 李岩, 于涛. 不同种类纤维增强复合材料湿热老化性能对比[J]. 复合材料学报, 2022, 39(9): 4406-4419.

    WU Rui, LI Yan, YU Tao. Comparative study on the hygrothermal durability of different fiber reinforced composites[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4406-4419(in Chinese).

    [31]

    American Society for Testing and Materials International. Standard test method for flexural properties of polymer matrix composite materials: ASTM D7264/D7264M—21[S]. West Conshohocken: ASTM International, 2021.

    [32]

    AWAD S A, FELLOWS C M, SAEED MAHINI S. A comparative study of accelerated weathering of epoxy resins based on DGEBA and HDGEBA[J]. Journal of Polymer Research, 2018, 25: 1-8. DOI: 10.1007/s10965-017-1408-z

    [33]

    ASLAN A, SALUR E, DÜZCÜKOĞLU H, et al. The effects of harsh aging environments on the properties of neat and MWCNT reinforced epoxy resins[J]. Construction and Building Materials, 2021, 272: 121929. DOI: 10.1016/j.conbuildmat.2020.121929

    [34]

    FANG Y, WANG K, HUI D, et al. Monitoring of seawater immersion degradation in glass fibre reinforced polymer composites using quantum dots[J]. Composites Part B: Engineering, 2017, 112: 93-102. DOI: 10.1016/j.compositesb.2016.12.043

    [35]

    LIU T, LIU X, FENG P. A comprehensive review on mechanical properties of pultruded FRP composites subjected to long-term environmental effects[J]. Composites Part B: Engineering, 2020, 191: 107958. DOI: 10.1016/j.compositesb.2020.107958

    [36]

    BEURA S, CHAKRAVERTY A, PATI S, et al. Effect of salinity and strain rate on sea water aged GFRP composite for marine applications[J]. Materials Today Communications, 2023, 34: 105056. DOI: 10.1016/j.mtcomm.2022.105056

    [37]

    FENG Z, SONG G L, WANG Z M, et al. Salt crystallization-assisted degradation of epoxy resin surface in simulated marine environments[J]. Progress in Organic Coatings, 2020, 149: 105932. DOI: 10.1016/j.porgcoat.2020.105932

    [38]

    MA Y, YANG Y, SUGAHARA T, et al. A study on the failure behavior and mechanical properties of unidirectional fiber reinforced thermosetting and thermoplastic composites[J]. Composites Part B: Engineering, 2016, 99: 162-172. DOI: 10.1016/j.compositesb.2016.06.005

    [39]

    WU C, MENG B C, TAM L H, et al. Yellowing mechanisms of epoxy and vinyl ester resins under thermal, UV and natural aging conditions and protection methods[J]. Polymer Testing, 2022, 114: 107708. DOI: 10.1016/j.polymertesting.2022.107708

    [40]

    SMITH B. Infrared spectroscopy of polymers, VIII: Polyesters and the rule of three[J]. Spectroscopy, 2022, 37(10): 25-28.

    [41]

    ARRIETA J S, RICHAUD E, FAYOLLE B, et al. Thermal oxidation of vinyl ester and unsaturated polyester resins[J]. Polymer Degradation and Stability, 2016, 129: 142-155. DOI: 10.1016/j.polymdegradstab.2016.04.003

    [42]

    BAKLAN D, BILOUSOVA A, MYRONYUK O. UV aging of styrene-acrylic polymer SiO2 and TiO2 composites[J]. Materials Today Communications, 2024, 38: 107990. DOI: 10.1016/j.mtcomm.2023.107990

    [43]

    YUAN Y, HAYS M P, HARDWIDGE P R, et al. Surface characteristics influencing bacterial adhesion to polymeric substrates[J]. RSC Advances, 2017, 7(23): 14254-14261. DOI: 10.1039/C7RA01571B

    [44]

    WANG J, WU Y, CAO Y, et al. Influence of surface roughness on contact angle hysteresis and spreading work[J]. Colloid and Polymer Science, 2020, 298(8): 1107-1112. DOI: 10.1007/s00396-020-04680-x

    [45]

    SANCHIS M, BLANES V, BLANES M, et al. Surface modification of low density polyethylene (LDPE) film by low pressure O2 plasma treatment[J]. European Polymer Journal, 2006, 42(7): 1558-1568. DOI: 10.1016/j.eurpolymj.2006.02.001

  • 期刊类型引用(6)

    1. 耿乾浩,徐晓云,李冰晶. 矿用聚氨酯注浆材料反应热控制技术研究进展. 化工进展. 2025(01): 319-328 . 百度学术
    2. 吴连锋,朱洪宇,申小松,朱艳吉,汪怀远. 1, 5-萘二酚改性环氧树脂及其氮化硼复合材料的制备与导热性能. 中国表面工程. 2024(01): 110-117 . 百度学术
    3. 杨承伟,王玉斌,傅伟强,王煦. 纳米材料改性聚对苯二甲酸乙二醇酯的研究进展. 塑料科技. 2024(01): 112-116 . 百度学术
    4. 王世民,温变英. 模压氮化硼/聚对苯二甲酸乙二醇酯复合材料的导热机制与散热效果. 复合材料学报. 2023(01): 160-170 . 本站查看
    5. 石贤斌,张帅,陈超,聂向导,班露露,赵亚星,刘仁,桑欣欣. 氮化硼纳米片的绿色制备及其在导热复合材料中的应用. 复合材料学报. 2023(08): 4558-4567 . 本站查看
    6. 郑舒方,王玉印,郭兰迪,靳玉岭. 具有三维连续网络结构的聚合物基导热复合材料研究进展. 复合材料学报. 2023(12): 6528-6544 . 本站查看

    其他类型引用(8)

  • 原位固化管道(Cured-in-place-pipe, CIPP)修复是目前市政排水管道非开挖修复常用的技术方法。该方法通过将热固性树脂和玻璃纤维组成的复合材料拉入到劣化管道内,固化后在管道内壁形成一层保护性管道内衬,保护排水管道免受生物硫酸的腐蚀,近年来也越来越多的应用于市政排海管道,抵抗海水的腐蚀,而硫酸和海水劣化玻璃纤维/甲基丙烯酸酯基CIPP内衬的机制尚不明确。

    本文设计了0.5%硫酸、模拟海水和纯水(对照)三种老化条件,来模拟CIPP内衬服役环境,并通过高温(80℃)加速老化。结果显示:三种条件下加速老化1440 h后CIPP内衬弯曲强度显著下降,而弯曲模量没有明显变化;酯键水解出的羟基被氧化为羰基,导致了树脂老化后颜色发黄;硫酸通过腐蚀表面玻璃纤维促进了水分的扩散,但是H+离子没有大量沿界面向深处扩散,劣化内部玻璃纤维,硫酸老化也降低了表面润湿性,可能更有利于硫细菌黏附;海水在树脂表面的结晶阻碍了水分扩散,却严重破坏了树脂表面。分析了界面的劣化机制,提出了延缓CIPP内衬老化的建议:重点抑制水分向树脂基体的扩散、抑制水分沿界面的扩散,也应该改善树脂表面性能。

    (a) 硫酸和海水腐蚀玻璃纤维/甲基丙烯酸酯基CIPP内衬;(b)树脂/纤维界面劣化;(c)弯曲断裂模式

    树脂基体化学结构变化

图(10)  /  表(2)
计量
  • 文章访问数:  288
  • HTML全文浏览量:  102
  • PDF下载量:  26
  • 被引次数: 14
出版历程
  • 收稿日期:  2024-02-21
  • 修回日期:  2024-03-30
  • 录用日期:  2024-04-19
  • 网络出版日期:  2024-05-23
  • 发布日期:  2024-05-06
  • 刊出日期:  2025-01-14

目录

/

返回文章
返回