聚合物转化SiBN系陶瓷组分对其热稳定性及电磁透波性能的影响

崔雪峰, 王俊珩, 张聪琳, 成来飞, 叶昉, 刘持栋

崔雪峰, 王俊珩, 张聪琳, 等. 聚合物转化SiBN系陶瓷组分对其热稳定性及电磁透波性能的影响[J]. 复合材料学报, 2023, 40(11): 6416-6429. DOI: 10.13801/j.cnki.fhclxb.20230706.001
引用本文: 崔雪峰, 王俊珩, 张聪琳, 等. 聚合物转化SiBN系陶瓷组分对其热稳定性及电磁透波性能的影响[J]. 复合材料学报, 2023, 40(11): 6416-6429. DOI: 10.13801/j.cnki.fhclxb.20230706.001
CUI Xuefeng, WANG Junheng, ZHANG Conglin, et al. Effect of polymer derived SiBN ceramic components on thermal stability and electromagnetic wave transparency[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6416-6429. DOI: 10.13801/j.cnki.fhclxb.20230706.001
Citation: CUI Xuefeng, WANG Junheng, ZHANG Conglin, et al. Effect of polymer derived SiBN ceramic components on thermal stability and electromagnetic wave transparency[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6416-6429. DOI: 10.13801/j.cnki.fhclxb.20230706.001

聚合物转化SiBN系陶瓷组分对其热稳定性及电磁透波性能的影响

基金项目: 国家自然科学基金(52072304;51872229);国家111项目(B08040);ND基础研究基金(G2022WD)
详细信息
    通讯作者:

    刘持栋,博士,副研究员,硕士生导师,研究方向为陶瓷基复合材料 E-mail:liuchidong@nwpu.edu.cn

  • 中图分类号: TB332

Effect of polymer derived SiBN ceramic components on thermal stability and electromagnetic wave transparency

Funds: Natural Science Foundation of China (52072304; 51872229); 111 Project of China (B08040); ND Basic Research Funds (G2022WD)
  • 摘要: 对聚硅硼氮烷(PSNB)、三甲胺环硼氮烷(PBN)及混合先驱体陶瓷化过程分别进行了研究,掌握了热处理温度对先驱体转化陶瓷微结构及性能的影响规律。经NH3裂解后,聚合物转化陶瓷(PDC)-SiBN中形成了B—Si—O—N多元网络,具有良好的抗析晶能力,经过不超过1500℃的热处理后,陶瓷抗吸潮能力提升,介电常数在3.0~3.6之间,损耗约0.003。经NH3裂解的PDC-BN中形成了B—N—O结构,随温度升高逐渐分解,转变为BN。将先驱体按照一定比例混合,可以实现对聚合物转化陶瓷元素组分的调控。混合先驱体转化陶瓷中由于异质界面的存在及多元网络减少,陶瓷热稳定性及介电性能均介于单种先驱体转化陶瓷之间,具有一定的性能可设计性。

     

    Abstract: The ceramization process of polyborosilazane (PSNB), tris(methylamino)borane (PBN) and mixed precursors were studied respectively, and the influence of heat treatment temperature on the microstructure and properties of polymer derived ceramics was mastered. After pyrolysis under NH3, the B—Si—O—N multielement network was formed in PDC-SiBN, which had good crystallization resistance. After heat treatment at less than 1500℃, the moisture resistance of ceramics was improved, the dielectric constant was between 3.0 and 3.6, and the loss was about 0.003. After pyrolysis under NH3, the B—N—O structure was formed in PDC-BN, which gradually decomposed into BN with the increase of temperature. The precursor can be mixed in a certain proportion to control the elements of polymer derived ceramics. Due to the existence of heterogeneous interfaces in the mixed precursor derived ceramics, the multiple networks were reduced. The thermal stability and dielectric properties of mixed polymer derived ceramics are between those of single polymer derived ceramics, which have certain performance designability.

     

  • 图  1   聚硅硼氮烷(PSNB)先驱体特征:(a)分子结构示意图;(b) TG-DSC曲线

    Figure  1.   Characteristics of polyborosilazane (PSNB): (a) Molecule structure; (b) TG-DSC curves

    图  2   NH3裂解后SiBN陶瓷的Raman图谱

    ID—Intensity of D peak ; IG—Intensity of G peak

    Figure  2.   Raman spectrum of SiBN ceramic after pyrolysis under NH3

    图  3   NH3裂解后SiBN陶瓷XPS图谱:(a)全谱;Si (b)、B (c)、N (d)、O (e)、C (f)元素的高分辨图谱

    Figure  3.   XPS spectra of elements in SiBN ceramic after pyrolysis under NH3: (a) Full spectrum; High-resolution spectra of Si (b), B (c), N (d), O (e) and C (f) in ceramic

    图  4   不同温度热处理SiBN陶瓷后性能变化:(a)质量变化;(b)密度及开气孔率;(c)线收缩率;(d) XRD图谱

    Figure  4.   Performance evolution of SiBN ceramics after heat treatment at different temperatures: (a) Mass residual; (b) Density and open porosity; (c) Linear shrinkage; (d) XRD patterns of SiBN ceramics

    图  5   陶瓷化过程中PSNB和不同温度热处理后SiBN陶瓷的红外图谱

    Figure  5.   FTIR spectra of PSNB during ceramization process and SiBN ceramics after heat treatment at different temperatures

    图  6   不同温度热处理后SiBN陶瓷XPS高分辨图谱:(a) Si;(b) N;(c) B

    Figure  6.   XPS high-resolution spectra of elements in SiBN ceramic after heat treatment at different temperatures: (a) Si; (b) N; (c) B

    图  7   不同温度热处理后SiBN陶瓷介电性能:(a)介电常数;(b)介电损耗

    Figure  7.   Dielectric properties of SiBN ceramics after heat treatment at different temperatures: (a) Dielectric constant; (b) Dielectric loss

    ε'—Real part of dielectric constant; ε''—Imaginary part of dielectric constant

    图  8   三甲胺环硼氮烷(PBN)先驱体特征:(a)分子结构示意图;(b) TG-DSC曲线

    Figure  8.   Characteristics of tris(methylamino)borane (PBN): (a) Molecule structure; (b) TG-DSC curves

    图  9   NH3裂解后BN陶瓷XPS图谱:全谱(a)及B (b)、N (c)、O (d)、C (e)元素的高分辨图谱

    Figure  9.   XPS spectra of elements in BN ceramic after pyrolysis under NH3: Full spectrum (a) and high-resolution spectra of B (b), N (c), O (d) and C (e) in ceramic

    图  10   不同温度热处理后BN陶瓷性能:(a)质量变化;(b) XRD图谱;(c) 1600℃热处理后BN陶瓷显微结构

    Figure  10.   Properties of BN ceramics after heat treatment at different temperatures: (a) Mass residual; (b) XRD patterns of BN ceramics; (c) Microstructure of BN ceramic after heat treatment at 1600℃

    图  11   陶瓷化过程中PBN和不同温度热处理后BN陶瓷的红外图谱

    Figure  11.   FTIR spectra of PBN during ceramization process and BN ceramics after heat treatment at different temperatures

    图  12   不同温度热处理后BN陶瓷XPS图谱:B (a)和N (b)元素的高分辨图谱

    Figure  12.   XPS spectra of elements in BN ceramic after heat treatment at different temperatures: High-resolution spectra of B (a) and N (b) elements in BN ceramics

    图  13   不同温度热处理后BN陶瓷介电性能:(a) 介电常数;(b) 介电损耗

    Figure  13.   Dielectric properties of BN ceramics after heat treatment at different temperatures: (a) Dielectric constant; (b) Dielectric loss

    图  14   PSNB、PBN及混合先驱体的红外图谱

    Figure  14.   FTIR spectra of PSNB, PBN and mixed precursor

    图  15   混合先驱体陶瓷化过程:(a)理论和实际产率;(b)裂解后陶瓷中B元素含量

    Figure  15.   Ceramization process of mixed precursor with different proportions: (a) Theoretical and actual yield; (b) B element content of ceramics derived from mixed precursor

    图  16   混合先驱体转化SiBN陶瓷XPS图谱:全谱(a)及Si (b)、B (c)、N (d)、O (e)、C (f)元素的高分辨图谱

    Figure  16.   XPS spectra of elements in mixed precursor derived SiBN ceramic: Full spectrum (a) and high-resolution spectra of Si (b), B (c), N (d), O (e) and C (f) in ceramic

    图  17   不同比例混合先驱体转化陶瓷介电性能:(a) 介电常数;(b) 介电损耗;(c) 介电常数实部随B含量变化关系

    Figure  17.   Dielectric properties of mixed precursor derived ceramics with different precursor proportions: (a) Dielectric constant; (b) Dielectric loss; (c) Relationship between real part of permittivity and B content

    图  18   不同温度热处理后不同比例混合先驱体转化陶瓷的XRD图谱

    Figure  18.   XRD patterns of mixed precursor derived ceramics with different precursor proportions after heat treatment at different temperatures

    图  19   不同温度热处理后混合先驱体转化SiBN陶瓷XPS高分辨图谱:(a) Si;(b) N;(c) B

    Figure  19.   XPS high-resolution spectra of elements in mixed precursor derived SiBN ceramics after heat treatment at different temperatures: (a) Si; (b) N; (c) B

    表  1   PSNB先驱体及在不同气氛下裂解后陶瓷(PDC)元素含量及产率

    Table  1   Element contents and yields of PSNB and polymer derived ceramics (PDC) after pyrolysis in different atmospheres

    Element content/wt%PDC
    yield/%
    SiBNOC
    PSNB34-365-724-261-227-29
    900℃-N252.6817.9914.9014.4383.67
    900℃-NH348.912.8022.65 7.79 0.6079.13
    下载: 导出CSV

    表  2   PBN先驱体及在NH3气氛下裂解后陶瓷元素含量及产率

    Table  2   Element content and yield of PBN and PDC after pyrolysis under NH3

    Element content/wt%PDC yield/%
    BNOC
    PBN19.64501-221.43
    800℃-NH334.4636.7023.96 4.2444.38
    下载: 导出CSV

    表  3   不同比例混合先驱体产率及裂解后陶瓷中B元素含量

    Table  3   Yield and B element content of ceramics derived from mixed precursor with different proportions

    Sample m(PSNB)/
    m(PBN)
    Curing
    yield/%
    PDC
    yield/%
    B content/wt%
    S-SiBN 1∶0 98.65 79.13 2.80
    S-31 3∶1 91.24 65.26 9.02
    S-21 2∶1 85.68 59.38 12.13
    S-11 1∶1 83.89 62.79 15.27
    S-12 1∶2 68.65 60.94 20.05
    S-13 1∶3 65.33 58.57 21.03
    S-BN 0∶1 59.71 44.38 34.46
    Note: m(PSNB)/m(PSN)—Mass ratio of PSNB precursor to PSN precursor.
    下载: 导出CSV
  • [1]

    SUZDAL'TSEV E I. Radio-transparent ceramics: Yesterday, today, tomorrow[J]. Refractories and Industrial Ceramics,2015,55(5):377-390. DOI: 10.1007/s11148-015-9731-6

    [2] 张大海, 黎义, 高文, 等. 高温天线罩材料研究进展[J]. 宇航材料工艺, 2001, 31(6):1-3.

    ZHANG Dahai, LI Yi, GAO Wen, et al. Development and application of high temperature radome materials[J]. Aerospace Materials & Technology,2001,31(6):1-3(in Chinese).

    [3] 张煜东, 苏勋家, 侯根良. 高温透波材料研究现状和展望[J]. 飞航导弹, 2006(3):56-58.

    ZHANG Yudong, SU Xunjia, HOU Genliang. Research status and prospect on high temperature wave transparent materials[J]. Aerodynamic Missile Journal,2006(3):56-58(in Chinese).

    [4] 崔雪峰, 李建平, 李明星, 等. 氮化物基陶瓷高温透波材料的研究进展[J]. 航空材料学报, 2020, 40(1):21-34.

    CUI Xuefeng, LI Jianping, LI Mingxing, et al. Research progress of nitride based ceramic high temperature wave transparent materials[J]. Journal of Aeronautical Materials,2020,40(1):21-34(in Chinese).

    [5] 孙聪. 高超声速飞行器强度技术的现状、挑战与发展趋势[J]. 航空学报, 2022, 43(6):8-27.

    SUN Cong. Development status, challenges and trends of strength technology for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica,2022,43(6):8-27(in Chinese).

    [6] 李燚. 短时高温工作的透波隔热天线罩设计[J]. 无线互联科技, 2017(13):62-65.

    LI Yi. Design of the microwave transparent and heat insolated antenna that works in short-time high-tempera-ture[J]. Wireless Internet Technology,2017(13):62-65(in Chinese).

    [7] 千粉玲, 谢志鹏, 孙加林, 等. Al2O3陶瓷微波介电性能的研究与进展[J]. 陶瓷学报, 2012, 33(4):519-527.

    QIAN Fenling, XIE Zhipeng, SUN Jialin, et al. Research status on microwave dielectric properties of Al2O3ceramics[J]. Journal of Ceramics,2012,33(4):519-527(in Chinese).

    [8] 孙银宝, 张宇民, 韩杰才. 耐高温透波材料及其性能研究进展[J]. 宇航材料工艺, 2008, 38(3):11-14.

    SUN Yinbao, ZHANG Yumin, HAN Jiecai. High-tempera-ture resistant microwave-transmitting materials and their properties[J]. Aerospace Materials & Technology,2008,38(3):11-14(in Chinese).

    [9]

    YANG X J, LI B, ZHANG C R, et al. Fabrication and properties of porous silicon nitride wave-transparent ceramics via gel-casting and pressureless sintering[J]. Materials Science and Engineering A,2016,663:174-180. DOI: 10.1016/j.msea.2016.03.116

    [10]

    YANG X J, LI B, LI D, et al. High-temperature properties and interface evolution of silicon nitride fiber reinforced silica matrix wave-transparent composite materials[J]. Journal of the European Ceramic Society,2019,39(2):240-248.

    [11]

    COLOMBO P, MERA G, RIEDEL R, et al. Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics[J]. Journal of the American Ceramic Society,2010,93(7):1805-1837.

    [12] 李斌. 氮化物陶瓷基耐烧蚀、透波复合材料及其天线罩的制备与性能研究[D]. 长沙: 国防科学技术大学, 2007.

    LI Bin. Preparation and performance of ablation resistant, wave-transparent nitride ceramic matrix composites and radome[D]. Changsha: National University of Defense Technology, 2007(in Chinese).

    [13]

    TANG Y, WANG J, LI X D, et al. Polymer-derived SiBN fiber for high-temperature structural/functional applications[J]. Chemistry-A European Journal,2010,16(22):6458-6462. DOI: 10.1002/chem.200902974

    [14] 黄先华, 刘勇, 张晨宇, 等. SiBN陶瓷纤维的脱碳工艺研究[J]. 合成纤维工业, 2017, 40(2):1-5.

    HUANG Xianhua, LIU Yong, ZHANG Chenyu, et al. Decarburization research of SiBN ceramic fibers[J]. China Synthetic Fiber Industry,2017,40(2):1-5(in Chinese).

    [15]

    MAEDA M, MAKINO T. Low dielectric constant amorphous SiBN ternary films prepared by plasma-enhanced deposition[J]. Japanese Journal of Applied Physics,1987,26(5R):660. DOI: 10.1143/JJAP.26.660

    [16]

    BARTA J, MANELA M, FISCHER R. Si3N4 and Si2N2O for high performance radomes[J]. Materials Science and Engineering,1985,71:265-272. DOI: 10.1016/0025-5416(85)90236-8

    [17]

    GANESH I. Novel composites of β-SiAlON and radome manufacturing technology developed at ARCI, hyderabad, for hypervelocity vehicles[J]. Bulletin of Materials Science,2017,40(4):719-735. DOI: 10.1007/s12034-017-1424-y

    [18]

    LONG X, SHAO C W, WANG Y D. Effects of boron content on the microwave-transparent property and high-temperature stability of continuous SiBN fibers[J]. Journal of the American Ceramic Society,2020,103(8):4436-4444. DOI: 10.1111/jace.17151

    [19]

    TAVAKOLI A H, GERSTEL P, GOLCZEWSKI J A, et al. Kinetic effect of boron on the crystallization of Si3N4 in Si-B-C-N polymer-derived ceramics[J]. Journal of Materials Research,2011,26(4):600-608. DOI: 10.1557/jmr.2010.53

    [20] 李贞, 殷小玮, 成来飞, 等. 液态聚硼硅氮烷的陶瓷化过程[J]. 硅酸盐学报, 2012, 40(7):979-982.

    LI Zhen, YIN Xiaowei, CHENG Laifei, et al. Polymer-ceramic conversion of liquid polyborosilazanes[J]. Journal of the Chinese Ceramic Society,2012,40(7):979-982(in Chinese).

    [21] 国家质量技术监督局. 致密定形耐火制品体积密度、显气孔率和真气孔率试验方法: GB/T 2997—2000[S]. 北京: 中国标准出版社, 2000.

    State Bureau of Quality and Technical Supervision of China. Test method for bulk density, apparent porosity and true porosity of dense shaped refractory products: GB/T 2997—2000[S]. Beijing: China Standards Press, 2000(in Chinese).

    [22]

    GALUSEK D, RESCHKE S, RIEDEL R, et al. In-situ carbon content adjustment in polysilazane derived amorphous SiCN bulk ceramics[J]. Journal of the European Ceramic Society,1999,19(10):1911-1921. DOI: 10.1016/S0955-2219(98)00288-X

    [23]

    YE F, ZHANG L T, YIN X W, et al. Dielectric and EMW absorbing properties of PDCs-SiBCN annealed at different temperatures[J]. Journal of the European Ceramic Society,2013,33(8):1469-1477. DOI: 10.1016/j.jeurceramsoc.2013.01.006

    [24]

    XU Y, HU J, TAO M, et al. Study of pyrolysis mechanism of SiBCN polymer precursor[J]. Aerospace Materials & Technology,2018,48(1):44-48.

    [25]

    MO R, YIN X W, YE F, et al. Mechanical and microwave absorbing properties of Tyranno® ZMI fiber annealed at elevated temperatures[J]. Ceramics International,2017,43(12):8922-8931. DOI: 10.1016/j.ceramint.2017.04.030

    [26]

    ZHANG X W, YOU J B, CHEN N F. Recent advances in synthesis and properties of cubic boron nitride films[J]. Journal of Inorganic Materials,2007,22(3):385-390.

  • 期刊类型引用(6)

    1. 刘应书,张璇,卞文博,姜理俊,刘文海,侯环宇,孙方舟,杨雄,李子宜. 涂覆型蜂窝体催化剂的制备与烟气一氧化碳催化净化性能. 复合材料学报. 2023(08): 4539-4548 . 本站查看
    2. 李婷婷,王薇,范迎迎,薛东涵,戴明珏,张琦,刘博,韩博林,关桦楠. 接枝功能化磁性纳米粒子去除饮用水中Cu~(2+)研究. 哈尔滨商业大学学报(自然科学版). 2020(01): 25-29 . 百度学术
    3. 龙星宇,陈柯锦,谭兴力,李秋华. Fe_3O_4@MnO_2复合纳米材料的制备及其对染料刚果红的吸附研究. 化工新型材料. 2020(05): 255-260+265 . 百度学术
    4. 张磊. Fe_3O_4-MnO_2复合材料催化降解水中有机污染物的研究进展. 化工环保. 2020(05): 474-479 . 百度学术
    5. 杨思楠,赵萍,陈永春,安士凯,郑刘根. 改性蛭石-蒙脱土对煤矸石充填复垦区镉污染土壤的修复. 环境化学. 2020(10): 2777-2783 . 百度学术
    6. 于常武,刘春怡,周立岱,陈国伟,郭星. 磁载TiO_2光催化剂处理喷漆废水的影响因素及动力学特性. 环境污染与防治. 2019(10): 1137-1141 . 百度学术

    其他类型引用(9)

  • 目的 

    聚合物转化陶瓷(PDC)具有先驱体成分可设计、陶瓷组分可调等优点,通过PDC法制备的陶瓷已经广泛应用于各行各业,取得了很多成果,在热透波领域具有极大的应用前景。针对聚合物陶瓷化过程以及聚合物转化陶瓷微结构及性能的研究对复合材料基体的制备具有指导意义。相比Si3N4等二元陶瓷,多组元陶瓷能够在更高温下保持非晶态,具有更加优异的高温稳定性、高温抗氧化性等性能,很有潜力应用于透波陶瓷材料中。针对聚合物转化陶瓷中不同元素组分及其含量对陶瓷性能的影响已有大量研究,但对于多种先驱体共混转化陶瓷的研究还鲜有报道。共混先驱体陶瓷化过程尚不清晰,不同先驱体裂解后元素的键合方式、元素含量是否会相互影响,以及转化获得的陶瓷的热稳定性能、介电性能特征还有待研究。

    方法 

    采用德国NETZSCH公司生产的STA 449 F3型同步热分析仪(TG-DSC)表征先驱体的陶瓷化过程。采用荷兰帕纳科公司生产的X' Pert Pro型X射线衍射仪(XRD)测试陶瓷的物相以及结晶度。采用雷尼绍公司生产的激光拉曼光谱仪(Raman)表征陶瓷中碳的存在形式。用岛津Kratos公司生产的Axis Supra型X射线光电子能谱(XPS)以及IRAfinitty-1S型傅里叶变换红外光谱仪(FT-IR)表征陶瓷的键合组成。采用日本日立公司生产的S-4700型场发射扫描电子显微镜(SEM)观察陶瓷的微观形貌。采用美国FEI公司生产的Tecnai G2 F30S-TWIN型透射电镜(TEM)观察陶瓷的微观结构。使用碳硫分析仪和氧氮联测仪测试陶瓷中C、O、N的质量分数;采用美国Thermo Fisher Scientific公司生产的Thermo ICP 6300型电感耦合等离子体光谱/质谱(ICP)测试陶瓷中B的质量分数;采用重量法测试陶瓷中Si的质量分数。采用日本Anritsu公司生产的MC-4644A型矢量网络分析仪(VNA)测试陶瓷的电磁透波性能。

    结果 

    (1)在NH3气氛下裂解可以实现PSNB先驱体中含C烷基的去除,得到聚合物转化SiBN陶瓷。裂解后陶瓷为非晶态,由多元B-Si-O-N网络组成,具有优异的热稳定性,抗析晶温度可达1600℃。热处理温度高于1300℃时,开始出现相分离,B-Si-O-N网络逐渐分解,转变为Si-O-N、Si-N、B-N。同时,不超过1500℃的热处理使陶瓷稳定性提升,吸潮现象得到缓解,介电常数实部及损耗有所降低;热处理温度超过1500℃时,陶瓷中晶界的产生,使介电常数实部及损耗迅速升高。(2)PBN先驱体在NH3气氛下裂解后得到非晶BN陶瓷,由于先驱体性质,BN陶瓷O含量较高,以B-N-O形式存在。随热处理温度升高,陶瓷中含氧相首先发生分解,B-N-O逐渐转变为B-N,这也造成了热处理过程中较大的质量损失。热处理温度超过1000℃时,PDC-BN开始析晶,介电常数也随之升高。(3)混合先驱体经固化后,官能团特征表现为两种先驱体的加和,先驱体结构并未受到混合和固化过程的影响。陶瓷产率与理论值具有一定一致性,并且通过比例调控,实现了PDC元素组分的调控。900℃裂解后,陶瓷中以Si-O-N、B-N为主,相比单种先驱体转化陶瓷,由于先驱体混合带来的异质界面,裂解态下已经出现多元陶瓷网络的分解,热稳定性能介于PDC-SiBN和PDC-BN之间。陶瓷的介电常数以及析晶温度受先驱体比例影响,面向不同使用环境,可通过比例调控,对聚合物转化陶瓷的性能进行设计。

    结论 

    PSNB经NH3裂解后,基本实现陶瓷化,形成了B-Si-O-N多元网络结构,具有良好的热稳定性,抗析晶温度可达1600℃,但热处理温度超过1300℃时,多元网络分解,开始出现相分离。热处理温度不超过1500℃时,PDC-SiBN抗吸潮性能提升,介电常数和损耗有所降低,超过1500℃时,晶界的产生使材料透波性能下降。PBN经NH3裂解后,形成了以B-N-O结构为主的陶瓷,随温度升高,含氧相逐渐分解,转变为h-BN。由于PBN对氧气和水比较敏感,陶瓷中O含量较高,热处理后质量损失较大,且热处理温度超过1000℃时,陶瓷开始出现析晶现象,介电常数增大。混合先驱体经NH3裂解后,陶瓷中元素组分可由先驱体比例调控,在先驱体共同陶瓷化的过程中,其陶瓷产率与理论产率相吻合,但由于异质界面的存在,多元网络减少。混合先驱体转化陶瓷热稳定性及介电性能均介于两种PDC之间,具有一定的性能可设计性。

  • 随着航空航天技术的发展,高超音速飞行器得到了极大发展,因此需要综合性能更加优异的高温透波材料。聚合物转化陶瓷的热稳定性能受元素组分影响很大,但对于多种先驱体共混转化陶瓷的研究还鲜有报道。共混先驱体陶瓷化过程尚不清晰,不同先驱体裂解后元素的键合方式、元素含量是否会相互影响,以及转化获得的陶瓷的热稳定性能、介电性能特征还有待研究。本文对PSNB、PBN、混合先驱体陶瓷化过程及微结构性能变化分别进行了研究,通过先驱体混合,实现了聚合物转化Si-B-N陶瓷元素组分的调控,使聚合物转化陶瓷具有一定的性能可设计性。PSNB经NH3裂解后,基本实现陶瓷化,形成了B-Si-O-N多元网络结构,具有良好的热稳定性,抗析晶温度可达1600℃,但热处理温度超过1300℃时,多元网络分解,开始出现相分离。热处理温度不超过1500℃时,PDC-SiBN抗吸潮性能提升,介电常数和损耗有所降低,超过1500℃时,晶界的产生使材料透波性能下降。PBN经NH3裂解后,形成了以B-N-O结构为主的陶瓷,随温度升高,含氧相逐渐分解,转变为h-BN。由于PBN对氧气和水比较敏感,陶瓷中O含量较高,热处理后质量损失较大,且热处理温度超过1000℃时,陶瓷开始出现析晶现象,介电常数增大。混合先驱体经NH3裂解后,陶瓷中元素组分可由先驱体比例调控,在先驱体共同陶瓷化的过程中,其陶瓷产率与理论产率相吻合,但由于异质界面的存在,多元网络减少。混合先驱体转化陶瓷热稳定性及介电性能均介于两种PDC之间,具有一定的性能可设计性。

    Dielectric properties of mixed precursor derived ceramics with different precursor proportions: (a) Dielectric constant and (b) loss of ceramics. (c) Relationship between real part of permittivity and B content

图(19)  /  表(3)
计量
  • 文章访问数:  719
  • HTML全文浏览量:  266
  • PDF下载量:  63
  • 被引次数: 15
出版历程
  • 收稿日期:  2023-05-07
  • 修回日期:  2023-06-05
  • 录用日期:  2023-06-10
  • 网络出版日期:  2023-07-06
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回