Al2O3-Sn57Bi43/环氧树脂复合材料的导热及电性能

Thermal conductivity and electrical properties of Al2O3-Sn57Bi43/epoxy composites

  • 摘要: 在聚合物基体中构建由高导热填料相互连接而成的导热通路是提高复合材料导热性能的有效策略。本文采用共还原法,在Al2O3微球表面沉积低熔点纳米锡铋合金颗粒(Sn57Bi43),制备杂化材料(Al2O3-Sn57Bi43),用于环氧树脂的导热绝缘填料。当环氧树脂受热固化时,Al2O3-Sn57Bi43表面Sn57Bi43纳米颗粒熔融,将填料相互连接而形成有效的导热通路,提高复合体系导热性能。当填料体积含量为60vol%时,Al2O3-Sn57Bi43/环氧树脂复合材料的导热系数为2.95 W·(m·K)−1,比Al2O3/环氧树脂复合材料的导热系数(1.82 W·(m·K)−1)提高了62.1%。Fogyel及Agari模型分析表明,Al2O3表面沉积Sn57Bi43有利于降低填料间接触热阻,形成导热通路。与Al2O3/环氧树脂复合材料相比,Al2O3-Sn57Bi43/环氧树脂复合材料的介质损耗增加,介电强度及体积电阻率降低,但仍具有电绝缘性能。由于填料-基体间界面性能改善及Al2O3-Sn57Bi43形成的网链结构能起到传递应力,阻止裂纹扩张的作用,Al2O3-Sn57Bi43/环氧树脂复合材料的拉伸断裂强度提高。

     

    Abstract: Constructing thermal conductive pathways in polymer matrix with interconnected high conductive thermal fillers is an effective strategy to enhance the thermal conductivity of the composites. In this paper, eutectic Sn-Bi alloy (Sn57Bi43) nanoparticles are deposited on the surface of Al2O3 microspheres by coreduction method to prepare Al2O3-Sn57Bi43 hybrids as thermal conductive and electrical insulating fillers for epoxy resin. During the heat curing of epoxy resin, Sn57Bi43 nanoparticles on the Al2O3 surface melt and bridge the separate fillers together to form effective thermal conductive pathway, and thus enhance the thermal conductivity of the composites. When filler volume fraction is 60vol%, the thermal conductivity of Al2O3-Sn57Bi43/epoxy composites is 2.95 W·(m·K)−1, 62.1% higher than that of Al2O3/epoxy composites (1.82 W·(m·K)−1). The results of Fogyel and Agari simulation demonstrate that the deposition of Sn57Bi43 on Al2O3 surface reduces the thermal contact resistance between fillers and forms thermally conductive networks more easily. The Al2O3-Sn57Bi43/epoxy composites exhibit higher dielectric loss, lower dielectric strength and volume resistivity than Al2O3/epoxy composites, still with electrical insulating properties. What is more, the tensile strength of the Al2O3-Sn57Bi43/epoxy composites is improved, because the improved interfacial properties of filler-matrix and the formed networks could transfer stress and prevent crack expansion.

     

/

返回文章
返回