Loading [MathJax]/jax/output/SVG/jax.js

钛/铝层合板双面电子束焊接接头界面行为及力学性能

巩鹏飞, 陈洪胜, 王文先, 柴斐, 汪卓然, 高会良

巩鹏飞, 陈洪胜, 王文先, 等. 钛/铝层合板双面电子束焊接接头界面行为及力学性能[J]. 复合材料学报, 2023, 40(11): 6439-6449. DOI: 10.13801/j.cnki.fhclxb.20221221.002
引用本文: 巩鹏飞, 陈洪胜, 王文先, 等. 钛/铝层合板双面电子束焊接接头界面行为及力学性能[J]. 复合材料学报, 2023, 40(11): 6439-6449. DOI: 10.13801/j.cnki.fhclxb.20221221.002
GONG Pengfei, CHEN Hongsheng, WANG Wenxian, et al. Interface behavior and mechanical properties of double-sided electron beam welded joint of Ti/Al laminate plates[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6439-6449. DOI: 10.13801/j.cnki.fhclxb.20221221.002
Citation: GONG Pengfei, CHEN Hongsheng, WANG Wenxian, et al. Interface behavior and mechanical properties of double-sided electron beam welded joint of Ti/Al laminate plates[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6439-6449. DOI: 10.13801/j.cnki.fhclxb.20221221.002

钛/铝层合板双面电子束焊接接头界面行为及力学性能

基金项目: 山西省重点研发计划(202102150401003);中央引导地方项目(YDZJSX2022 A018);大学生创新创业训练计划项目(20210078)
详细信息
    通讯作者:

    陈洪胜,博士,副教授,硕士生导师,研究方向为先进金属基复合材料制备及成形技术 E-mail: chenhongsheng@tyut.edu.cn

  • 中图分类号: TB331

Interface behavior and mechanical properties of double-sided electron beam welded joint of Ti/Al laminate plates

Funds: Key R&D Plan of Shanxi Province (202102150401003); Central Government Guides Local Projects (YDZJSX2022 A018); Innovation and Entrepreneurship Training Program for College Students (20210078)
  • 摘要: 钛/铝层状复合板兼具了钛合金高强耐腐蚀和铝合金轻质、价格低廉的多重优势,在航空航天、汽车制造、水下装备等领域具有广泛的潜在应用前景。为探究Ti/Al层状复合构件的连接行为,采用真空电子束焊(EBW)对Ti/Al层状复合板进行焊接,对焊接接头的微观组织、界面行为及力学性能进行了研究。研究结果表明:相比于单面焊,先Al后Ti双面焊可以有效提高Ti/Al层状复合板焊接接头的力学性能,焊接接头界面处无明显缺陷,在焊接接头Ti/Al界面处存在明显的金属间化合物(IMCs)层,化合物的形成顺序分别为TiAl3、TiAl、TiAl2。其中,TiAl2是TiAl作为中间物经过一系列反应的产物。在保持Al层电子束流为43 mA不变条件下,随着Ti层焊接电子束流的增大,焊接接头的抗拉强度和延伸率均呈现先增大后减小的趋势,抗拉强度和延伸率最高可达304.6 MPa和10.4%,达到了母材强度的57%,焊接接头的断裂机制主要为在IMCs位置产生的脆性断裂。

     

    Abstract: Ti/Al laminated composite plates have the advantages of high strength and corrosion resistance of titanium alloy, light mass and low price of aluminum alloy, and have a wide range of potential applications in aerospace, automobile manufacturing, underwater equipment and other fields. In order to investigate the connection behavior of Ti/Al laminated composite members, vacuum electron beam welding (EBW) was used to weld Ti/Al laminated composite members, and the microstructure, interface behavior and mechanical properties of the welded joints were studied. The results showed that: Compared with single-side welding, the mechanical properties of welded Ti/Al laminated composite plates can be effectively improved by double-sided Al welding followed by Ti welding. There are no obvious defects at the interface of welded Ti/Al joints, and there are obvious intermetallic compounds (IMCs) layers at the interface of welded Ti/Al joints. The formation sequence of the compounds is TiAl3, TiAl and TiAl2. TiAl2 is the product of a series of reactions in which TiAl is used as an intermediate. Under the condition that the electron beam of Al layer remains unchanged at 43 mA, with the increase of the electron beam of Ti layer, the tensile strength and elongation of the welded joint both increase first and then decrease. The maximum tensile strength and elongation can reach 304.6 MPa and 10.4%, which is 57% of the strength of the base metal. The fracture mechanism of welded joint is mainly brittle fracture at IMCs position.

     

  • 连续碳化硅纤维增韧碳化硅陶瓷基复合材料(SiC/SiC)具备高强度、耐高温、低密度等特点,可作为新型航空发动机的优选材料之一[1-5]。随着SiC/SiC复合材料应用范围愈加广泛,不仅应用于航空领域,在化工领域中也是制造密封环的理想材料,在核聚变反应堆中可用于包层结构、包层流道内衬和转换器等方面[6],这些尖端领域均对复合材料的稳定性提出要求。化学气相渗透法(CVI)工艺导致陶瓷基复合材料(CMC)内部普遍存在一些缺陷(束内外孔隙、分层、预制体铺层错位和基体开裂等),故其力学性能具有较大的离散性,强度作为结构设计的一项重要参数势必会受到其离散性的影响,从而限制结构的高可靠性设计。

    CMC成型编织和致密化工艺复杂,易形成损伤源,有必要综合考虑制备工艺中的损伤对复合材料力学性能的影响,建立概率论可靠性模型[7]。大量研究表明CMC拉伸强度服从Weibull分布[8-13]。陶永强等[14]通过渐进损伤的简化剪滞理论得到了各层应力分布及90°层裂纹密度与施加应力之间的关系;Curtin等[15]基于基体裂纹随机开裂、纤维随机破坏理论,对单向增强CMC的应力-应变行为进行了模拟;孟志新等[16]探究了不同纤维束下SiC CMC的拉伸行为;Vagaggini等[17]计算了界面性能参数对复合材料拉伸行为的影响,表明增大界面脱粘能和界面滑移应力利于提高拉伸强度。目前CMC已实现工程化应用,评估工艺放大对复合材料性能分散性的影响成为主要的技术问题,分析单向纤维束复合材料拉伸强度的可靠性,评估结构单元和微结构特征对分散性的影响,也是该材料由小试走向中试的重要环节,小试指实验室开发优化阶段,中试指在小试的基础上继续放大、量产化。关于各组元对CMC性能影响的研究已有很多报道,但是关于小试炉与中试炉对CMC力学性能及其各组元影响的研究鲜有报道。

    本文采用CVI技术分别在小试炉与中试炉中制备了单向纤维束SiC/SiC复合材料(Mini-SiC/SiC)的两批试样,探究工艺放大制备对复合材料力学性能离散的影响,并讨论造成复合材料力学性能离散的来源。其中小试炉为实验室制备,一台CVI沉积炉,中试为90台沉积炉,小试炉膛直径为600 mm,中试炉膛直径为1200 mm。通过双参数Weibull分布模型对Mini-SiC/SiC复合材料强度分布和可靠性进行分析,并基于双参数Weibull分布损伤模型建立拉伸载荷-位移关系,最终采用ORS Dragonfly软件分割各组元,结合基体间距裂纹公式分析分散性对可靠性的影响。

    采用CVI法制备Mini-SiC/SiC复合材料,见图1。首先,均匀地将SiC纤维束缠绕到石墨框上,获得纤维预制体。然后,在纤维预制体表面沉积BN界面层,其中以BCl3作为硼源,NH3作为氨源,Ar为稀释气体,沉积温度600℃[18]。最后,将沉积BN界面层的SiC纤维预制体在化学气相沉积炉中浸渗SiC基体,选择三氯甲基硅烷(MTS)为SiC基体的源物质,以H2为载气,Ar为稀释气体,MTS与H2摩尔比1∶10,沉积温度1150℃。Mini-SiC/SiC复合材料制备工艺参数如表1所示,Mini-SiC/SiC A为小试炉制备(炉膛直径为600 mm),Mini-SiC/SiC B为中试炉制备(炉膛直径为1200 mm),小试炉制备复合材料平均密度为3.09 g/cm2,中试炉制备复合材料平均密度为3.07 g/cm2。SiC纤维耐温为1350℃,故制备温度对其影响不大。

    图  1  单向纤维束SiC/SiC (Mini-SiC/SiC)复合材料制备示意图
    Figure  1.  Schematic diagram of preparation of unidirectional fiber bundle SiC/SiC (Mini-SiC/SiC) composites
    MTS—Methyltrichlorosilane
    表  1  Mini-SiC/SiC复合材料的制备工艺参数
    Table  1.  Process parameters of Mini-SiC/SiC composites
    Material nameDeposition time/h Inside diameter/mm
    BN interfaceSiC matrix
    Mini-SiC/SiC A 100 160 600
    Mini-SiC/SiC B 100 160 1200
    Notes: Mini-SiC/SiC A—Preparation in a small test furnace (Furnace diameter of 600 mm); Mini-SiC/SiC B—Preparation in a pilot test furnace (Furnace diameter of 1200 mm).
    下载: 导出CSV 
    | 显示表格

    拉伸测试在美特斯(MTS)公司生产的CMT6203型微机控制电子万能试验机上进行。实验执行标准为GB/T 1040.5—2008[19],标距50 mm,加载速度3 mm/min。其拉伸测试特定夹具组件见图2

    图  2  拉伸测试特定夹具组件
    Figure  2.  Stretch test specific fixture assembly
    F—Force

    Mini-SiC/SiC复合材料性能分析,采用以概率论为根据的结构可靠性模型,基于双参数Weibull分布模型对Mini-SiC/SiC复合材料的强度分布和可靠性进行分析。

    采用扫描电子显微镜(SEM,SU3800,日本日立)观察Mini-SiC/SiC复合材料的显微结构和微观形貌。ORS Dragonfly软件在阈值分割的基础上,对Mini-SiC/SiC复合材料断层扫描(CT,AX-2000,宁波奥影检测)图像使用深度学习工具分割出灰度值相近的部分进行处理[20]

    图3为典型Mini-SiC/SiC复合材料载荷-位移曲线。该图由两组曲线组成,图3(a)3(b)分别为小试炉与中试炉制备,可见曲线规律一致,故各选取其中一条曲线分析,曲线分三阶段:第一阶段加载初期,复合材料整体发生弹性变形,拉伸曲线斜率保持不变;第二阶段曲线呈非线性,且斜率逐渐减小,SiC基体产生新裂纹,随应力增加而增多;当达到最大载荷时曲线进入第三阶段,该阶段曲线未表现出韧性现象,呈现当基体裂纹达到饱和时,直接发生脆性断裂,其断口主要以纤维单丝形式拔出,未出现纤维簇形式拔出。

    图  3  Mini-SiC/SiC复合材料典型的拉伸载荷-位移曲线
    Figure  3.  Typical tensile load-displacement curves of Mini-SiC/SiC composites

    采用中位估计法获取材料强度分布,计算每个强度所对应的失效概率,该失效概率为试验估计值。中位估计法失效概率估计值Fn可表示为

    Fn(σ)=i0.5N (1)

    式中:i为强度从小到大排列的序数,即强度σ所对应的序号,i的最大值为 NN为样本总量。

    双参数Weibull分布模型累积失效分布函数F(σ) 数学表达式为

    F(σ)=1exp[(σσ0)m] (2)

    式中:σ0为尺度参数,当 σ0=σ时,Weibull函数取最大值;m为形状参数,表示材料强度的分布规则,m越大,强度分散性越小。

    将式(2)整理得:

    ln{ln[11F(σ)]}=mlnσmlnσ0 (3)

    由式(3)将ln{ln[1/(1F(σ))]}作为y轴,lnσ作为x轴,可得:

    y=mxmlnσ0 (4)

    将式(4)进行作图,并线性拟合分析,由此可得mσ0值。

    Weibull分布参数求解及检验主要数据(见附录表4),线性拟合如图4所示。以Mini-SiC/SiC A复合材料为例,进行双参数Weibull分布模型的参数估计。

    图  4  Mini-SiC/SiC复合材料拉伸强度Weibull分布的线性拟合图
    Figure  4.  Linear fitting diagram of Weibull distribution of tensile strength of Mini-SiC/SiC composites
    Fn(σ)—Failure probability; σ—Strength value

    图4(a)可得,Mini-SiC/SiC A线性拟合曲线函数为

    y=20.59x122.03 (5)

    由此可知,m=20.59,σ0=374.79 MPa。同理可得,Mini-SiC/SiC B的m=5.01,σ0=400.74 MPa,前者m值大于后者,表明小试炉制备稳定性更优。此外,Weibull分布参数和线性相关系数如表2所示。由表可得,线性相关系数r都接近于1,变量之间存在高度相关性,线性拟合合理,因此mσ0接近真实值。

    表  2  两种Mini-SiC/SiC复合材料拉伸强度双参数Weibull分布的参数和线性相关系数
    Table  2.  Parameters and linear correlation coefficient of two-parameter Weibull distribution for tensile strength of two Mini-SiC/SiC composites
    Name Shape parameter b Scale parameter a/mm r
    Mini-SiC/SiC A 20.59 374.79 0.94
    Mini-SiC/SiC B 5.01 400.74 0.98
    下载: 导出CSV 
    | 显示表格

    将上述得到的mσ0代入式(2),Mini-SiC/SiC A复合材料的双参数Weibull累积失效分布函数可表示为

    F(σ)=1exp[(σ374.79)20.59] (6)

    同理可得,Mini-SiC/SiC B的双参数Weibull累积失效分布函数可表示为

    F(σ)=1exp[(σ400.74)5.01] (7)

    图5为两种Mini-SiC/SiC复合材料双参数Weibull累积失效分布函数曲线与中位估计数据曲线对比图。分析可知,分别采用式(6)、式(7)计算的曲线与中位估计法得到的曲线能够较好吻合。因此,拉伸强度分布规律能够采用双参数Weibull分布模型表征,且效果较好。

    图  5  Mini-SiC/SiC复合材料Weibull累积分布函数曲线与中位估计数据的对比
    Figure  5.  Weibull cumulative distribution function curve compared with the median estimated data for Mini-SiC/SiC composites

    为检验Mini-SiC/SiC A复合材料拉伸强度与双参数Weibull分布的拟合优度。本文引入Kolmogorov-Smirnov(K-S)检验,可通过样本观测值的失效概率估计值Fn(σ)与假设的双参数Weibull累积失效概率分布F(σ)的差值进行对比分析,从而确定该失效概率的分布类型。

    Fn(σ)与F(σ)的最大差值DN由下式得出:

    DN=max|Fn(σ)F(σ)| (8)

    Fn(σ)和F(σ)在上文中已完成计算,前者由中位估计法获得,后者则通过双参数Weibull分布函数计算得到,都代表材料在强度达到σ时发生失效的概率。DN数据见附录表4。

    工程上一般采取显著水平α=0.05或α=0.01。经查阅DN临界值表,当N大于35,DN临界值等于D35N的比值,如附录表1所示。

    当复合材料Mini-SiC/SiC A拉伸强度为356.48 MPa时(附录表4),Kolmogorov距离取最大值DN=0.1252<D60,0.05=0.1756<D60,0.01=0.2104,可知DN小于显著水平α=0.05和α=0.01的DN临界标准值。

    采用相同方法可检验Mini-SiC/SiC B拉伸强度是否服从双参数Weibull分布,检验结果数据如附录表2所示。由表可知,DN分别为0.0995均小于D60,0.01D60,0.05,故拉伸强度均服从双参数Weibull分布,且拟合优度良好。

    根据K-S检验可知,DN小于显著水平α=0.05和α=0.01的DN临界标准值。故拉伸强度均服从双参数Weibull分布,且拟合优度良好。

    可靠度R是度量可靠性的标准,其与失效概率关系可表示为

    R(σ)=1F(σ) (9)

    该式意味着给定任意强度,都可计算出其可靠度为多大,并随着强度增大,失效概率会增大,可靠度会减小。由于给出任意强度数据便可计算其可靠度,因此对于每个给定的可靠度,也可以计算出相应的可靠拉伸强度。联立式(2)和式(9)并求反函数,可获得给定可靠度下的可靠拉伸强度σ如下式:

    σ(R)=σ0(ln1R)1m (10)

    由此就可获得任意可靠度所对应的可靠强度值。在工程上,一般将5%、25%、50%、75%、95%可靠度作为可靠质量标准。5个可靠度下的可靠拉伸强度值如附录表3所示。同时,不同可靠度下的可靠拉伸强度如附录图1所示。

    研究表明,可靠度为50%时的可靠拉伸强度与平均拉伸强度较为接近,表3给出了可靠度为50%的可靠拉伸强度与平均拉伸强度。由表中数据通过计算绝对偏差和相对偏差可知:最大绝对偏差仅4.69 MPa,最大相对偏差仅1.2%。因此,采用平均拉伸强度可准确预测50%可靠度所对应的可靠强度,且误差较小。

    表  3  两种Mini-SiC/SiC复合材料在可靠度50%时的可靠拉伸强度与平均拉伸强度
    Table  3.  Reliable tensile strength and average tensile strength of two Mini-SiC/SiC composites at 50% reliability
    NameMean tensile strength/MPaTensile strength of 50% reliability/MPaAbsolute deviation/MPaRelative deviation/%
    Mini-SiC/SiC A 365.08 368.18 3.10 0.8
    Mini-SiC/SiC B 367.78 372.47 4.69 1.2
    下载: 导出CSV 
    | 显示表格

    复合材料拉伸应力σ与载荷P关系为

    σ=PS (11)

    复合材料拉伸应变ε与伸长量∆l关系为

    ε=Δll0 (12)

    式中:S为材料截面积;l0为标距,值为50 mm。

    材料宏观损伤变量服从双参数Weibull分布,由式(2)与拉伸强度建立联系。在拉伸加载时,损伤贯穿整个过程,故累积损伤量和位移x同样服从双参数Weibull分布。因此累积损伤因子Da随着位移x变化的分布函数可表示为类似于式(2)形式,如下所示:

    Da=1exp[(xa)b] (13)

    由于SiC/SiC复合材料为脆性材料,为便于计算参数ab,获取Weibull分布模型,因此将x视为断裂位移xmax

    将式(13)整理得:

    ln{ln[11Da]}=blnxmaxblna (14)

    可将ln{ln[1/(1Da)]}作为y轴,lnxmax作为x轴,得:

    y=bxmaxblna (15)

    SiC/SiC复合材料中,SiC纤维和SiC基体均为脆性材料,各组分材料达到破坏极限前几乎未发生塑性变形。因此,基于双参数Weibull分布的弹性损伤模型表征Mini-SiC/SiC复合材料拉伸加载过程:

    P=k(1Da)x (16)

    式中,k为抗拉刚度。

    Weibull分布参数求解及检验的详细数据见附录表5,线性拟合如图6所示。以Mini-SiC/SiC A复合材料为例,进行双参数Weibull分布模型参数估计。

    图  6  Mini-SiC/SiC复合材料断裂位移Weibull分布线性拟合
    Figure  6.  Linear fitting of Weibull distribution for fracture displacement of Mini-SiC/SiC composites
    Da—Cumulative damage factor

    Mini-SiC/SiC A复合材料拟合曲线函数为

    y=3.09x+0.42 (17)

    由此可得,b=3.09,a=0.87 mm。同理可得,Mini-SiC/SiC B的b=2.50,a=1.16 mm。此外,Weibull分布参数和线性相关系数r表4所示。可知,线性相关系数都接近于1,变量之间存在高度相关关系,线性拟合合理,ab接近真实数据。

    表  4  两种Mini-SiC/SiC复合材料断裂位移双参数Weibull分布参数、线性相关系数
    Table  4.  Weibull distribution parameters and linear correlation coefficients of two Mini-SiC/SiC composites with two-parameter fracture displacement
    NameShape parameter bScale parameter a/mmr
    Mini-SiC/SiC A 3.09 0.87 0.97
    Mini-SiC/SiC B 2.50 1.16 0.99
    下载: 导出CSV 
    | 显示表格

    代入参数后,双参数Weibull累积损失因子损伤函数可分别表示为

    Da=1exp[(x0.87)3.09] (18)
    Da=1exp[(x1.16)2.50] (19)

    图7为拉伸强度的Weibull累积损伤因子函数拟合结果与试验结果对比图。分析可知,中位估计数据分别和式(18)、式(19)函数曲线吻合较好,因此,双参数Weibull模型能较好地表征累积损伤因子分布规律。

    图  7  Mini-SiC/SiC复合材料Weibull累积损伤因子分布函数曲线与中位估计数据的对比
    Figure  7.  Weibull cumulative damage factor distribution function curves for Mini-SiC/SiC composites compared with median estimated data

    DN为Kolmogorov距离;D60,0.01为样本总量为60,显著水平α取0.01;D60,0.05为样本总量为60,显著水平α取0.05。

    采用K-S检验进行拟合优度分析,计算估计值DDa最大差异值可获得DN。如表5所示,经比对发现,两种材料DN值均小于D60,0.01D60,0.05,故断裂位移均服从双参数Weibull分布,且拟合优度良好。

    表  5  Mini SiC/SiC复合材料的DND60,0.01D60,0.05
    Table  5.  DN and D60,0.01, D60,0.05 of Mini SiC/SiC composites
    NameDND60,0.01D60,0.05
    Mini-SiC/SiC A 0.1139 0.2104 0.1756
    Mini-SiC/SiC B 0.1036 0.2104 0.1756
    Notes: DN—Kolmogorov distance; D60,0.01—Total sample size is 60 and the significance level α is taken as 0.01; D60,0.05—Total sample size is 60 and α is taken as 0.05.
    下载: 导出CSV 
    | 显示表格

    将式(13)代入式(16)得拉伸载荷-位移关系模型:

    P=k(exp[(xa)b])x (20)

    为求解k值,假设拉伸载荷-位移为线性关系。将每个试样断裂位移和最大载荷数据代入式(20),可得每个试样值,取平均值,即为k值。经计算,两种材料k值分别为370.89 N/mm、251.09 N/mm。将abk值代入式(20),得Mini-SiC/SiC A、Mini-SiC/SiC B拉伸载荷-位移模型分别为

    P=370.89(exp[(x0.87)3.09])x (21)
    P=251.09(exp[(x1.16)2.50])x (22)

    将拉伸应力和载荷关系(式(11))与拉伸应变和加载位移之间的关系(式(12))及拉伸载荷-位移模型(式(20))联立进行求解,得拉伸应力-应变关系如下式:

    σ=kexp[(εl0/a)b]εl0S (23)

    代入相关数据得上述两种材料拉伸应力-应变关系分别如下式所示:

    σ=370.89exp[(50ε/0.87)3.09]50εS (24)
    σ=251.09exp[(50ε/1.16)2.50]50εS (25)

    为验证拉伸应力-应变关系合理性,抽取拉伸强度接近于平均值的试样进行检验。Mini-SiC/SiC A中选取最大载荷128.79 N,断裂位移0.83 mm的试样。Mini-SiC/SiC B中选取最大载荷132.60 N,断裂位移为1.03 mm的试样。求出试样断裂应变εmax后,将该值分别代入式(24)、式(25)可获得采用拉伸应力-应变关系计算强度值(表6)。比对发现,与真实强度误差不超过7%。因此,该关系建立合理,可预测应力-应变关系。

    表  6  Mini-SiC/SiC复合材料拉伸应力-应变关系检验过程主要数据
    Table  6.  Main data of the test process of tensile stress-strain relationship of Mini-SiC/SiC composites
    NameMini-SiC/
    SiC A
    Mini-SiC/
    SiC B
    Maximum load P/N128.79132.60
    Fracture displacement xmax/mm0.831.03
    True strength value σ/MPa368.72393.48
    Fracture strain εmax0.01660.0205
    Strength calculation value of con-
    stitutive model/MPa
    373.50366.40
    Error between calculated value
    and real value
    +1.2%–6.8%
    下载: 导出CSV 
    | 显示表格

    源于CVI工艺的复杂性,故复合材料内部存在缺陷,这些缺陷导致复合材料宏观力学性能具有分散性。图8为Mini-SiC/SiC复合材料初始态与断口SEM图像。图8(a)为初始态单向纤维,可看出纤维束表面沉积基体较粗糙,存在参差不齐菜花状β-SiC,表明基体沉积状态具有不稳定性。由图8(b)8(c)可见,Mini-SiC/SiC复合材料断口纤维呈纤维单丝形式拔出,基体裂纹未出现大范围偏转,表现瞬间断裂。当纤维束表面存在缺陷时,拉伸过程中会由于应力集中而成为断裂源,造成纤维早期破环,故降低纤维表面缺陷可提高纤维束强度,从而降低强度的分散性。

    图  8  Mini-SiC/SiC复合材料初始态与断口SEM图像
    Figure  8.  SEM images of initial state and fracture of Mini-SiC/SiC composites

    图9采用ORS Dragonfly软件对Mini-SiC/SiC复合材料拉断CT图进行处理,图9(a)为初始状态下的正视断口,在阈值分割基础上采用深度学习方法提取拉伸断口裂纹分布(图9(b))情况,其中近似垂直于纤维且相互平行的线条为复合材料周期性裂纹。接着提取SiC纤维(图9(c)),可看出纤维分布并不均匀,纤维少的地方为基体与孔隙填充。随后,对断口俯视角度也进行学习处理(图9(d)),先提取SiC基体(图9(e)),可清楚看到纤维与基体分布状况,证实纤维少的地方由基体填充。最后,提取纤维表面BN界面相(图9(f)),可以看出界面相均匀覆盖纤维表面,形成一根根圆柱管。

    图  9  ORS Dragonfly软件处理Mini-SiC/SiC复合材料断层扫描图像
    Figure  9.  ORS Dragonfly software for processing Mini-SiC/SiC composite tomography images

    图8图9从Mini-SiC/SiC复合材料宏观表面和分离复合材料内部各组元来看,制备态表面状态与复合材料内部纤维分布情况,会影响界面相与基体分布状态 ,导致复合材料分散性大,影响其可靠性。

    复合材料拉伸断裂强度σu如下式所示:

    σu=σfuVf (26)

    式中:σfu为纤维断裂强度;Vf为纤维体积分数。

    由式(26)求得理论拉伸强度为499.45 MPa,但由于单向复合材料断裂时,连续纤维(l>30lc)并非同时断裂,下式中载荷传递因子β为0.7,其纤维承载效率大于99%:

    σfu=σfu(11βl/lc) (27)

    式中:σfu为纤维的原位断裂强度;l/lc为比长度;l为纤维长度;lc为临界纤维长度。

    此时求得理论拉伸强度为349.61 MPa,该值与实测拉伸强度365.08 MPa相差仅4.24%。表明纤维基本全部承载,纤维对复合材料分散性影响较小。

    图10对Mini-SiC/SiC复合材料拉伸产生的周期性裂纹间距进行测量,最小裂纹间距为83.2 μm,最大裂纹为107.8 μm。根据图9(f)可知界面相均匀分布,故视界面滑移应力(τ)为定值,不影响复合材料的分散性。由式(28)可计算出(附录表8、表9) Mini-SiC/SiC复合材料基体裂纹宽度为89.43 μm,该宽度处于实际裂纹宽度范围内。验证了该式可以较好地描述Mini-SiC/SiC复合材料力学断裂行为。

    图  10  ORS Dragonfly软件提取Mini-SiC/SiC复合材料周期性裂纹间距图
    Figure  10.  Extraction of periodic crack spacing diagram of Mini-SiC/SiC composites by ORS Dragonfly software

    将最小与最大裂纹间距代入式(25),分别求出其对应拉伸强度为376.16 MPa和406.14 MPa,该值同样处于该批试样实际拉伸强度(331.02 MPa,407.82 MPa)内,表明基体裂纹间距具有离散性,基体是影响Mini-SiC/SiC复合材料可靠性的主要来源。

    ς=b2(1a1Vf)2Rσp24dτ0EmVf2 (28)

    式中:Vf为纤维体积分数;σp为峰值应力;R为纤维半径;d为裂纹间距;Em为基体模量。

    通过双参数Weibull分布模型可知,小试炉与中试炉拟合良好,故裂纹间距仍选用图10。此时中试炉试样拉伸强度(附录表6)范围为(161.09 MPa,540.95 MPa),该范围大于小试炉试样拉伸强度范围,这是由于中试炉沉积基体工艺的放大化所导致,这种现象与m值对应,表明中试炉具有更大离散性(图3)。最大和最小裂纹间距对应的拉伸强度仍处于该范围内。

    图11为基体影响复合材料形状参数m与力学性能离散的机制图。根据图9(f)与式(26)、式(27)可知,纤维与界面对复合材料性能离散的影响不大,故基体为影响复合材料可靠性的重要原因。m值影响应力-应变曲线非线性段的平稳性[21]m越大非线性段越平稳,表明复合材料在达到基体最大开裂后曲线越规律,离散性越小。图3表2可明显看出小试炉制备的复合材料更加稳定,这是由于在小试炉中CVI沉积复合材料基体更加均匀,复合材料孔隙分布集中在内部中心区域(图11(a)),该区域的形成主要原因是基体在沉积时会形成沉积梯度,靠近表层区域的部分复合材料密度大、孔隙被充分填充,致使复合材料内部孔隙无法填充。反观中试炉制备,CVI工艺得到放大,同批次制备试样大大增多,造成复合材料内部孔隙发生不均匀分布现象(图11(b)),进而导致制备出的试样离散性增大、m值减小,影响其可靠性。

    图  11  基体对Mini-SiC/SiC复合材料形状参数m与力学性能离散的影响
    Figure  11.  Matrix effects on the shape parameter m and mechanical property dispersion of Mini-SiC/SiC composites

    (1) 双参数Weibull分布模型可准确表征小试炉制备单向纤维束 SiC/SiC (Mini-SiC/SiC A)、中试炉制备Mini-SiC/SiC B拉伸强度分布,其拉伸强度分别为365.08 MPa和367.78 MPa,形状参数分别为20.59和5.01。

    (2) 基于双参数Weibull分布模型建立的可靠度分析模型可准确预测不同可靠度下的可靠强度。其中,当可靠度为50%时,可靠强度与拉伸强度最大误差为1.2%,故在工程中可采用材料的平均拉伸强度预测50%可靠拉伸强度。

    (3) 基于双参数Weibull分布模型建立的拉伸载荷-位移关系可准确预测拉伸应力-应变关系,与真实强度误差不超过7%。

    (4) 复合材料内部界面相均匀包裹纤维,界面相滑移应力视为定值;连续纤维承载大于99%,纤维对复合材料性能离散性影响较小;通过基体裂纹间距公式可知,最小和最大裂纹间距所对应的拉伸强度为376.16 MPa和406.14 MPa,该值均处于Mini-SiC/SiC A复合材料拉伸强度(331.02 MPa,407.82 MPa)和Mini-SiC/SiC B复合材料拉伸强度(161.09 MPa,540.95 MPa)范围内。然而,Mini-SiC/SiC B复合材料拉伸强度范围大于Mini-SiC/SiC A,且前者 Weibull模数5.01比后者 Weibull模数 20.59低75.7%,中试分散性更大是由于中试炉尺寸放大所致,基体非均匀性是影响复合材料可靠性的主要原因。

  • 图  1   示意图:(a) 热压工艺流程;(b) 电子束焊接(EBW)设备原理;(c) 焊接方式

    TC4—Ti6Al4V; LMCs—Laminar composites

    Figure  1.   Schematic diagram: (a) Hot pressing process flow; (b) Principle of vacuum electron beam welding (EBW) equipment; (c) Welded types

    图  2   Type A焊接接头微观形貌: ((a), (c)) 60 mA;((b), (d)) 70 mA

    BM—Base metal; HAZ—Heat affected zone; FZ—Fusion zone

    Figure  2.   Microstructure of Type A welded joint: ((a), (c)) 60 mA; ((b), (d)) 70 mA

    图  3   Type B焊接接头微观组织形貌:(a) Ti/Al界面处;(b) Ti层FZ处;(c) Al层FZ处;(d) Al层HAZ和BM处

    Figure  3.   Microstructure of Type B welded joint: (a) Ti/Al interface; (b) Ti layer FZ; (c) Al layer FZ; (d) Al layer HAZ and BM

    图  4   Type C焊接接头成形示意图:((a)~(c)) 70 mA;((d)~(f)) 75 mA;((g)~(i)) 80 mA

    IMCS—Intermetallic compounds

    Figure  4.   Type C welding joint forming diagram: ((a)-(c)) 70 mA; ((d)-(f)) 75 mA; ((g)-(i)) 80 mA

    图  5   焊接接头成形示意图:(a) Type A;(b) Type B;(c) Type C

    Figure  5.   Welding joint forming diagram: (a) Type A; (b) Type B; (c) Type C

    图  6   焊接接头熔合区界面处EDS图谱:(a) 界面处SEM图像;(b) 面扫图;(c) Line 1线扫图;(d) Line 2线扫图;(e) 点扫图

    Figure  6.   EDS spectrum at the interface of fusion zone: (a) SEM image at the interface; (b) Map scanning; (c) Line scanning of Line 1; (d) Line scanning of Line 2; (e) Point scanning

    图  7   Type C焊接接头的XRD图谱

    Figure  7.   XRD patterns of Type C welded joint

    图  8   Type C焊接接头显微硬度:(a) 沿焊缝深度方向;(b) 垂直焊缝方向

    Figure  8.   Type C microhardness of welded joint: (a) Along the depth of the weld; (b) Vertical weld direction

    图  9   Type C焊接接头拉伸性能:(a) 应力-应变曲线;(b) 极限抗拉强度(UTS)、屈服强度(YS)和延伸率(EL)

    R—Radius

    Figure  9.   Type C tensile properties of welded joints: (a) Stress-strain curves; (b) Ultimate tensile strength (UTS), yield strength (YS) and elongation (EL)

    图  10   Type C焊接接头断口形貌:(a) 宏观图;(b) 断口EDS图谱;(c) Ti/Al界面处;(d) 图10(c)中(d)处的放大图;(e) 图10(c)EDS面扫图;(f) Ti层;((g), (h)) Al层

    Figure  10.   Type C fracture profile of welded joint: (a) Macrograph; (b) Fracture EDS; (c) Ti/Al interface; (d) Put a large area of (d) in Fig.10(c); (e) EDS scanning map of Fig.10(c); (f) Ti layer; ((g), (h)) Al layer

    表  1   TC4钛合金化学成分

    Table  1   Chemical composition of TC4 titanium alloy wt%

    TiAlVFeOCNH
    Balance6.24.00.250.150.0980.010.004
    下载: 导出CSV

    表  2   6061铝合金化学成分

    Table  2   Chemical composition of 6061 aluminum alloy wt%

    AlMgTiSiZnFeCuMnCr
    Balance1.050.10.620.180.410.20.120.17
    下载: 导出CSV

    表  3   EBW工艺参数

    Table  3   EBW process parameters

    Electron
    beam
    current/mA
    Single-side welding
    (Type A)
    Double-side welding
    Type BType C
    Ti side60/70/8050/60/6570/75/80
    Al side40/4543/45
    下载: 导出CSV

    表  4   不同温度下Ti-Al IMCs的吉布斯自由能[19]

    Table  4   Gibbs free energy of Ti-Al IMCs at different temperatures[19]

    IMCsGibbs free energy ΔGf
    TiAl3−40349.6+10.37T
    TiAl−37445.1+16.79T
    Ti3Al−29633.6+6.71T
    TiAl2−43858.4+11.02T
    Ti2Al5−40495.4+9.53T
    Note: T—Temperature.
    下载: 导出CSV
  • [1] 李蕊, 王浩. Ti811和TC4钛合金基材属性对激光熔覆自润滑耐磨复合涂层组织与性能的影响[J]. 复合材料学报, 2022, 39(12): 5984-5995.

    LI Rui, WANG Hao. Effect of Ti811 and TC4 titanium alloy substrate on microstructures and properties of laser cladding self-lubricating composite coatings[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5984-5995(in Chinese).

    [2]

    CHEN C, SUN G R, DU W B, et al. Influence of heat input on the appearance, microstructure and microhardness of pulsed gas metal arc welded Al alloy weldment[J]. Journal of Materials Research and Technology,2022,21:121-130. DOI: 10.1016/j.jmrt.2022.09.028

    [3]

    MO T Q, CHEN J, CHEN Z J, et al. Effect of intermetallic compounds (IMCs) on the interfacial bonding strength and mechanical properties of pre-rolling diffusion arbed Al/Ti laminated composites[J]. Materials Characterization,2020,170:110731. DOI: 10.1016/j.matchar.2020.110731

    [4]

    XU M F, CHEN Y H, ZHANG T M, et al. Microstructure evolution and mechanical properties of wrought/wire arc additive manufactured Ti-6Al-4V joints by electron beam welding[J]. Materials Characterization,2022,190:112090. DOI: 10.1016/j.matchar.2022.112090

    [5] 陈国庆, 树西, 柳峻鹏, 等. 真空电子束焊接技术应用研究现状[J]. 精密成形工程, 2018, 10(1):31-39. DOI: 10.3969/j.issn.1674-6457.2018.01.004

    CHEN Guoqing, SHU Xi, LIU Junpeng, et al. Development status of applications of vacuum electron beam welding technology[J]. Journal of Netshape Forming Engineering,2018,10(1):31-39(in Chinese). DOI: 10.3969/j.issn.1674-6457.2018.01.004

    [6] 范林好. Re/GH3128电子束焊接接头组织和力学性能研究[D]. 上海: 上海工程技术大学, 2021.

    FAN Linhao. Study on microstructure and mechanical properties of Re/GH3128 electron beam welded joint[D]. Shanghai: Shanghai University of Engineering Science, 2021(in Chinese).

    [7] 曲树平. 7075/TC4(TA1)异种金属电子束焊接工艺及机制研究[D]. 兰州: 兰州理工大学, 2019.

    QU Shuping. Study on electron beam welding process and mechanism of 7075/TC4(TA1) dissimilar metals[D]. Lanzhou: Lanzhou University of Technology, 2019(in Chinese).

    [8] 赵啸, 高恩志, 徐荣正. 铜/铝异质金属层状复合板搅拌摩擦焊接技术研究[J]. 稀有金属材料与工程, 2022, 51(5):1752-1758.

    ZHAO Xiao, GAO Enzhi, XU Rongzheng. Research on friction stir welding technology of Al-Cu composite plates[J]. Rare Metal Materials and Engineering,2022,51(5):1752-1758(in Chinese).

    [9] 李福山. 铝/铜复合板电子束焊接技术研究[D]. 沈阳: 沈阳航空航天大学, 2020.

    LI Fushan. Study on electron beam welding technology of Al/Cu composite plate[D]. Shenyang: Shenyang Aerospace University, 2020(in Chinese).

    [10] 王毅. Ti/Al异种金属电子束熔钎焊重熔改性连接工艺研究[D]. 南京: 南京理工大学, 2018.

    WANG Yi. Study on modified bonding technology of Ti/Al dissimilar metals by electron beam welding and brazing[D]. Nanjing: Nanjing University of Science and Technology, 2018(in Chinese).

    [11] 吴新勇, 廖娟, 薛新, 等. 钛/铝异种合金脉冲激光焊接接头裂纹产生机制[J]. 精密成形工程, 2018, 10(6):95-101. DOI: 10.3969/j.issn.1674-6457.2018.06.016

    WU Xinyong, LIAO Juan, XUE Xin, et al. Mechanism of crack generation inpulsed laser welded joint of titanium/aluminum dissimilar alloy[J]. Journal of Netshape Forming Engineering,2018,10(6):95-101(in Chinese). DOI: 10.3969/j.issn.1674-6457.2018.06.016

    [12] 吴新勇. 钛/铝异种轻合金脉冲激光焊接工艺及接头性能研究[D]. 福州: 福州大学, 2020.

    WU Xinyong. Study on pulse laser welding technology and joint properties of Ti/Al dissimilar light alloy[D]. Fuzhou: Fuzhou University, 2020(in Chinese).

    [13]

    LIU J P, CHEN G Q, MA Y R, et al. Formation mechanism and control of welding cracks in dissimilar materials of Ni50Ti50 SMA and Ti-6Al-4V[J]. Journal of Manufacturing Processes,2022,75:552-564. DOI: 10.1016/j.jmapro.2022.01.014

    [14] 宋玉强, 马圣东, 李世春. Al/Ti扩散层形成的扩散溶解机制[J]. 焊接学报, 2014, 35(6):49-52, 89,115.

    SONG Yuqiang, MA Shengdong, LI Shichun. Diffusion and dissolve mechanism of Al/Ti diffusion layer formation[J]. Transactions of the China Welding Institution,2014,35(6):49-52, 89,115(in Chinese).

    [15] 韩建超, 刘畅, 贾燚, 等. 钛/铝复合板研究进展[J]. 中国有色金属学报, 2020, 30(6):1270-1280. DOI: 10.11817/j.ysxb.1004.0609.2020-35787

    HAN Jianchao, LIU Chang, JIA Yi, et al. Research progress on titanium/aluminum composite plate[J]. The Chinese Journal of Nonferrous Metals,2020,30(6):1270-1280(in Chinese). DOI: 10.11817/j.ysxb.1004.0609.2020-35787

    [16]

    LU R H, LIU Y T, YAN M, et al. Theoretical, experimental and numerical studies on the deep drawing behavior of Ti/Al composite sheets with different thickness ratios fabricated by roll bonding[J]. Journal of Materials Processing Technology,2021,297:117246. DOI: 10.1016/j.jmatprotec.2021.117246

    [17]

    PUKENAS A, CHEKHONIN P, SCHARNWEBER J, et al. TiAl-based semi-finished material produced by reaction annealing of Ti/Al layered composite sheets[J]. Materials Today Communications,2022,30:103083. DOI: 10.1016/j.mtcomm.2021.103083

    [18]

    GLASSER L. Additive single atom values for thermodynamics II: Enthalpies, entropies and Gibbs energies for formation of ionic solids[J]. Chemical Thermodynamics and Thermal Analysis,2022,7:100069. DOI: 10.1016/j.ctta.2022.100069

    [19]

    KATTNER U R, LIN J C, CHANG Y A. Thermodynamic assessment and calculation of the Ti-Al system[J]. Metallurgical Transactions A,1992,23(8):2081-2090. DOI: 10.1007/BF02646001

    [20] 孙彦波, 马凤梅, 肖文龙, 等. Ti-Al系金属间化合物基叠层结构材料的制备技术与组织性能特征[J]. 航空材料学报, 2014, 34(4):98-111. DOI: 10.11868/j.issn.1005-5053.2014.4.010

    SUN Yanbo, MA Fengmei, XIAO Wenlong, et al. Preparation and performance characteristics for multilayered Ti-Al intermetallics alloys[J]. Journal of Aeronautical Materials,2014,34(4):98-111(in Chinese). DOI: 10.11868/j.issn.1005-5053.2014.4.010

    [21] 袁树春, 章文滔, 陈玉华, 等. 焊接工艺参数对Ti/Al异种金属磁脉冲焊接接头微观组织及力学性能的影响[J]. 电焊机, 2022, 52(6):118-125. DOI: 10.7512/j.issn.1001-2303.2022.06.15

    YUAN Shuchun, ZHANG Wentao, CHEN Yuhua, et al. Effects of welding parameters on microstructure and mechanical properties of Ti/Al dissimilar metal magnetic pulse welded joints[J]. Electric Welding Machine,2022,52(6):118-125(in Chinese). DOI: 10.7512/j.issn.1001-2303.2022.06.15

    [22] 张立辉. 使用高熵合金填充材料的钛合金/铝合金激光搭接焊接头组织与性能研究[D]. 长春: 吉林大学, 2022.

    ZHANG Lihui. Microstructure and properties of laser lap joints of titanium/aluminum alloy using high entropy alloy filler materials[D]. Changchun: Jilin University, 2022(in Chinese).

  • 期刊类型引用(1)

    1. 李新娅,王宁,卢佳浩,张鹏,夏兆鹏,侯耒. 基于改进Weibull模型的高强缝合锚钉缝线强度预测. 现代纺织技术. 2024(06): 52-60 . 百度学术

    其他类型引用(1)

  • 目的 

    钛/铝层状复合板既具有钛合金高强度、耐高温、耐腐蚀的优势,同时也满足铝合金轻量化的特点,在航空航天、汽车制造、水下装备等领域具有重要的应用前景。但由于Ti、Al物化性能差异较大,焊接过程中极易产生大量的金属间化合物,实现Ti/Al复合构件的有效连接较为困难。本文采用电子束焊接技术实现Ti/Al层合板之间的连接,探究不同的焊接方式对焊接接头力学性能的影响。

    方法 

    本文以TC4和6061Al为原材料,将钛、铝板材按照热压模具堆叠组胚,并置于真空热压炉中,在热压温度550℃、压强20MPa下的条件下保温2h,随炉冷却到室温后取出。将热压制备的Ti/Al层状复合板进行表面处理后,采用电子束焊接技术对Ti/Al层合板进行焊接,分别通过Ti层单面焊接(Type A)、先Ti后Al双面焊接(Type B)和先Al后Ti双面焊接(Type C)三种焊接方式进行焊接。保持Ti层加速电压50kV,Al层加速电压40kV不变,焊接速度均为1000mm/min,电子束焦点距板材距离均为300mm,通过改变电子束流的大小,获得不同参数下的焊接接头。采用金相显微镜(OM)、配有能谱仪(EDS)的扫描电子显微镜(SEM)和X射线衍射仪(XRD)对不同工艺参数下的焊接接头微观组织和物相组成进行观察分析,探究焊接接头界面处的元素扩散机制及IMCs的形成机制。通过显微硬度仪和万能拉伸试验机对焊接接头的力学性能进行测试分析,结合拉伸断口形貌对断裂机制进行分析。

  • Ti/Al层状复合板既具有钛合金高强度、耐高温、耐腐蚀的优势,同时也满足铝合金轻量化的特点,在航空航天、汽车制造、水下航行等领域具有重要的应用前景。在一些特殊的工况下,需涉及到层状复合板之间的连接问题,其中,焊接方法最为常用。但由于焊接过程中Ti/Al界面处容易生成大量的金属间化合物,导致其焊接接头成形性能较差,严重限制了它的实际应用。

    本文通过将热压态Ti/Al层状复合板进行电子束焊接,采用双面焊接的方式实现Ti/Al层状复合板的焊接成形,它可以有效的降低焊接过程中Ti-Al金属间化合物的形成,从而提高焊接接头的力学性能。由于钛合金的高熔点和较大的元素结合能,在焊接过程中的相同温度下,铝原子向钛层扩散比较容易,而钛原子向铝层几乎不扩散,这在一定程度上也减少了Ti-Al金属间化合物的生成。因此,相较于单面焊,先Al后Ti双面焊得到的焊接接头力学性能良好,抗拉强度和延伸率分别达到了304.6 MPa和10.4%。

    Ti/Al层状复合板电子束焊接接头界面行为:(a)焊接设备及方案示意图;(b)焊接接头成形示意图;(c)焊接接头界面行为

图(10)  /  表(4)
计量
  • 文章访问数:  839
  • HTML全文浏览量:  551
  • PDF下载量:  35
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-11-15
  • 修回日期:  2022-12-12
  • 录用日期:  2022-12-13
  • 网络出版日期:  2022-12-22
  • 刊出日期:  2023-10-31

目录

/

返回文章
返回