填充泡沫混凝土铝管组合挂板的吸能性能

周宏元, 樊家乐, 王小娟, 刘浩

周宏元, 樊家乐, 王小娟, 等. 填充泡沫混凝土铝管组合挂板的吸能性能[J]. 复合材料学报, 2023, 40(5): 2885-2896. DOI: 10.13801/j.cnki.fhclxb.20220811.004
引用本文: 周宏元, 樊家乐, 王小娟, 等. 填充泡沫混凝土铝管组合挂板的吸能性能[J]. 复合材料学报, 2023, 40(5): 2885-2896. DOI: 10.13801/j.cnki.fhclxb.20220811.004
ZHOU Hongyuan, FAN Jiale, WANG Xiaojuan, et al. Energy absorption of foam concrete filled aluminum tube composite cladding[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2885-2896. DOI: 10.13801/j.cnki.fhclxb.20220811.004
Citation: ZHOU Hongyuan, FAN Jiale, WANG Xiaojuan, et al. Energy absorption of foam concrete filled aluminum tube composite cladding[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2885-2896. DOI: 10.13801/j.cnki.fhclxb.20220811.004

填充泡沫混凝土铝管组合挂板的吸能性能

基金项目: 国家重点研发计划(2019YFD1101005);国家自然科学基金(52178096;51808017;51778028)
详细信息
    通讯作者:

    王小娟,博士,副教授,博士生导师,研究方向为建筑材料力学性能 E-mail: xiaojuanwang@bjut.edu.cn

  • 中图分类号: TB301;TB333

Energy absorption of foam concrete filled aluminum tube composite cladding

Funds: National Key Research and Development Program (2019YFD1101005); National Nature Science Foundation of China (52178096; 51808017; 51778028)
  • 摘要: 为提高金属圆管组合挂板的吸能性能,提出一种填充泡沫混凝土铝管组合挂板。在铝管中分别填充不同密度(300 kg/m3、700 kg/m3、1100 kg/m3)的泡沫混凝土,并对单根填充泡沫混凝土铝管和填充泡沫混凝土铝管组合挂板在准静态压缩下的变形模式、力学性能和吸能性能进行试验研究。结果表明:与单根空铝管相比,填充300 kg/m3泡沫混凝土会小幅降低填充铝管的吸能性能,随着填充物密度增加至700 kg/m3和1100 kg/m3,填充铝管的吸能性能大幅提升,能量吸收总量分别提高286%和815%;与单根铝管压缩相比,组合挂板中填充铝管产生的挤压作用会大幅提升空铝管和填充300 kg/m3泡沫混凝土铝管组合挂板的比吸能,分别提升28.6%和68.9%,而降低填充700 kg/m3和1100 kg/m3泡沫混凝土铝管组合挂板的比吸能,分别降低42.7%和38.1%。因此,考虑组合挂板实际应用,当泡沫混凝土填充物密度较小时,建议选择较小铝管间距;当泡沫混凝土填充物密度较大时,建议选择较大铝管间距防止芯层铝管发生挤压。
    Abstract: To improve the energy absorption performance of metal circular tube composite cladding, foam concrete filled aluminum tube composite cladding was proposed in the present study. With consideration of different foam concrete densities of 300 kg/m3, 700 kg/m3 and 1100 kg/m3, the deformation mode, mechanical properties and energy absorption performance of single foam concrete filled aluminum tube, as well as foam concrete filled aluminum tube composite cladding under quasi-static compression, were experimentally investigated. The results show that the energy absorption of the aluminum tube filled with 300 kg/m3 foam concrete is slightly inferior to that of the hollow aluminum tube. With increasing the foam concrete density to 700 kg/m3 and 1100 kg/m3, the energy absorption performance of the filled aluminum tube is significantly improved with the increased total energy absorption by 286% and 815%, respectively. Compared to the single aluminum tube, the mutual extrusion among tubes would greatly improve the specific energy absorption of the hollow aluminum tube and 300 kg/m3 foam concrete filled composite claddings, which are increased by 28.6% and 68.9%, respectively. Nevertheless, the specific energy absorptions of 700 kg/m3 and 1100 kg/m3 foam concrete filled aluminum tube composite cladding decrease by 42.7% and 38.1% due to the mutual extrusion effect of aluminum tubes. Therefore, from the point view of the practical application of the proposed foam concrete filled aluminum tube composite cladding, a small aluminum tube spacing is suggested with the low density of foam concrete filler, meanwhile, a large aluminum tube spacing is recommended to prevent the extrusion of aluminum tube with the high density of foam concrete filler.
  • 图  1   不同密度泡沫混凝土浆体流动度

    Figure  1.   Slurry fluidity of foam concrete with different densities

    图  2   填充泡沫混凝土铝管试件制作过程

    Figure  2.   Fabrication process of foam concrete filled aluminum tube

    图  3   准静态压缩试验装置

    Figure  3.   Expremental set-up for quasi-static compressive test

    图  4   700 kg/m3的泡沫混凝土立方体试块准静态压缩变形破坏模式

    Figure  4.   Deformation process and failure mode of cubic foam concrete specimen with density of 700 kg/m3 under quasi-static compression

    图  5   4种不同密度泡沫混凝土名义应力-应变曲线

    Figure  5.   Nominal stress-strain curves of foam concrete with four different densities

    图  6   300 kg/m3泡沫混凝土压实应变测定

    σ—Stress; ε—Strain

    Figure  6.   Determination of densification strain of 300 kg/m3 foam concrete

    图  7   不同密度泡沫混凝土的能量吸收总量和比吸能ESA

    Figure  7.   Total energy absorption and specific energy absorption ESA of foam concrete with different densities

    图  8   填充不同密度泡沫混凝土铝管破坏模式

    Figure  8.   Failure modes of aluminum tubes filled with different densities of foam concrete

    图  9   空铝管和填充泡沫混凝土铝管的变形模式

    Figure  9.   Deformation modes of hollow and foam concrete filled aluminum tube

    图  10   填充不同密度泡沫混凝土铝管的载荷-位移曲线

    Ef—Energy absorption efficiency

    Figure  10.   Force-displacement curves of aluminum tubes filled with different densities of foam concrete

    图  11   填充不同密度泡沫混凝土铝管的能量吸收总量和ESA

    Figure  11.   Total energy absorption and specific energy absorption ESA of aluminum tubes filled with different densities of foam concrete

    图  12   组合挂板安装示意图

    Figure  12.   Installation diagram of composite cladding

    图  13   填充不同密度泡沫混凝土组合挂板的破坏模式

    CC—Composite hanging plate

    Figure  13.   Failure mode of composite cladding with hollow and different densities of foam concrete filled aluminium tubes

    图  14   空铝管和填充不同密度泡沫混凝土铝管组合挂板的载荷-位移曲线

    Figure  14.   Force-displacement curves of composite cladding with hollow and different densities of foam concrete filled aluminium tubes

    图  15   单根填充铝管和组合挂板中填充铝管在准静态压缩下的吸能性能

    Figure  15.   Energy absorption of single foam concrete filled aluminium tube and filled aluminum tube in composite cladding under quasi-static compression

    图  16   单根填充铝管和组合挂板中填充铝管的压实应变

    Figure  16.   Densification displacement of single foam concrete filled aluminium tube and filled aluminum tube in composite cladding under quasi-static compression

    表  1   水泥基本参数

    Table  1   Basic parameters of cement

    CementSpecific surface area/(m2·kg−1)Setting time/minFlexural strength/MPaCompressive strength/MPa
    InitialFinal1 d3 d1 d3 d
    R.SAC 42.5 40 10 15 6.1 6.5 37.2 45.1
    下载: 导出CSV

    表  2   不同密度的泡沫混凝土配合比

    Table  2   Mix proportion of foam concrete with different densities

    Foam concrete density/(kg·m−3)Mix proportion/(kg·m−3)Water-cement ratio
    CementWaterWater reducerFoam
    300 159.92 79.96 0.48 60.12 0.5
    700 438.04 219.02 1.31 42.95 0.5
    1100 716.16 358.08 2.15 25.77 0.5
    1700 1133.33 566.67 3.40 0 0.5
    下载: 导出CSV

    表  3   泡沫混凝土和填充泡沫混凝土铝管试件汇总

    Table  3   Summary of foam concrete and aluminum tubes filled with foam concrete

    SpecimenFoam concrete density/(kg·m−3)SpecimenFoam concrete density/(kg·m−3)
    FC-300 345 AT-FC-0 0
    FC-700 713 AT-FC-300 313
    FC-1100 1126 AT-FC-700 689
    FC-1700 1784 AT-FC-1100 1098
    Notes: FC—Foam concrete; AT-FC—Aluminum tubes filled with foam concrete.
    下载: 导出CSV

    表  4   泡沫混凝土填充铝管的吸能性能

    Table  4   Energy absorption of the foam concrete filled aluminum tube

    SpecimenDensification displacement/mmTotal energy absorption/JSpecific energy
    absorption/(J·kg−1)
    Aluminum tubeFoam concrete fillerFoam concrete filled
    aluminum tube
    AT-FC-0 32.3 203.1 203.1 1460.9
    AT-FC-300 22.6 133.0 13.9 146.9 457.8
    AT-FC-700 21.4 124.7 458.0 582.7 1294.8
    AT-FC-1100 17.7 68.6 1586.4 1655.0 2713.1
    下载: 导出CSV
  • [1] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. DOI: 10.3321/j.issn:1000-3851.2007.01.001

    DU Shanyi. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica,2007,24(1):1-12(in Chinese). DOI: 10.3321/j.issn:1000-3851.2007.01.001

    [2]

    WANG Z, ZHOU Y, WANG X, et al. Multi-objective optimization design of a multi-layer honeycomb sandwich structure under blast loading[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering,2017,231(10):1449-1458. DOI: 10.1177/0954407016672606

    [3] 周昊, 郭锐, 刘荣忠, 等. 碳纤维增强聚合物复合材料方形蜂窝夹层结构水下爆炸动态响应数值模拟[J]. 复合材料学报, 2019, 36(5):1226-1234.

    ZHOU Hao, GUO Rui, LIU Rongzhong, et al. Simulations on dynamic responses of carbon fiber reinforced polymer composite sandwich plates with square honeycomb cores subjected to water blast[J]. Acta Materiae Compositae Sinica,2019,36(5):1226-1234(in Chinese).

    [4]

    ZHANG J, ZHOU R, WANG M, et al. Dynamic response of double-layer rectangular sandwich plates with metal foam cores subjected to blast loading[J]. International Journal of Impact Engineering,2018,122:265-275. DOI: 10.1016/j.ijimpeng.2018.08.016

    [5] 薛启超, 邹广平, 何建, 等. 聚氨酯弹性体隔板夹层结构的等效参数计算[J]. 复合材料学报, 2017, 34(3):564-573.

    XUE Qichao, ZOU Guangping, HE Jian, et al. Equivalent parameters calculation for sandwich plate with polyurethane elastomer core reinforced by crossing walls[J]. Acta Materiae Compositae Sinica,2017,34(3):564-573(in Chinese).

    [6] 宋延泽, 王志华, 赵隆茂, 等. 撞击载荷下泡沫铝夹层板的动力响应[J]. 爆炸与冲击, 2010, 30(3):301-307. DOI: 10.11883/1001-1455(2010)03-0301-07

    SONG Yanze, WANG Zhihua, ZHAO Longmao, et al. Dynamic response of foam sandwich plates subjected to impact loading[J]. Explosion and Shock Waves,2010,30(3):301-307(in Chinese). DOI: 10.11883/1001-1455(2010)03-0301-07

    [7] 周宏元, 贾昆程, 王小娟, 等. 负泊松比三明治结构填充泡沫混凝土的面内压缩性能[J]. 复合材料学报, 2020, 37(8):2005-2014.

    ZHOU Hongyuan, JIA Kuncheng, WANG Xiaojuan, et al. In-plane compression properties of negative Poisson's ratio sandwich structure filled with foam concrete[J]. Acta Materiae Compositae Sinica,2020,37(8):2005-2014(in Chinese).

    [8] 柯力, 王自力, 王哲, 等. 空中爆炸冲击载荷下折叠式夹层板塑性动力响应研究[J]. 哈尔滨工程大学学报, 2020, 41(6):797-804. DOI: 10.11990/jheu.201901039

    KE Li, WANG Zili, WANG Zhe, et al. Plastic dynamic response of folded sandwich panels under air-blast loading[J]. Journal of Harbin Engineering University,2020,41(6):797-804(in Chinese). DOI: 10.11990/jheu.201901039

    [9]

    ZHOU H Y, ZHANG X J, WANG X J, et al. Response of foam concrete-filled aluminum honeycombs subject to quasi-static and dynamic compression[J]. Composite Structures,2020,239:112025. DOI: 10.1016/j.compstruct.2020.112025

    [10]

    XU F X, ZHANG X, ZHANG H. A review on functionally graded structures and materials for energy absorption[J]. Engineering Structures,2018,171:309-325. DOI: 10.1016/j.engstruct.2018.05.094

    [11]

    BAROUTAJI A, ARJUNAN A, STANFORD M, et al. Deformation and energy absorption of additively manufactured functionally graded thickness thin-walled circular tubes under lateral crushing[J]. Engineering Structures,2021,226:111324. DOI: 10.1016/j.engstruct.2020.111324

    [12] 刘伟明, 程和法, 黄笑梅, 等. 开孔泡沫铝填充圆管的准静态压缩行为[J]. 爆炸与冲击, 2009, 29(6):654-658. DOI: 10.3321/j.issn:1001-1455.2009.06.017

    LIU Weiming, CHENG Hefa, HUANG Xiaomei, et al. Quasi-static compression behaviors of cylindrical tubes filled with open-cell aluminum foam[J]. Explosion and Shock Waves,2009,29(6):654-658(in Chinese). DOI: 10.3321/j.issn:1001-1455.2009.06.017

    [13] 张光成, 郭超群, 闫治坤, 等. 泡沫钢填充管的准静态压缩变形模式、力学性能及吸能特性[J]. 材料导报, 2021, 35(24):24158-24163. DOI: 10.11896/cldb.20080301

    ZHANG Guangcheng, GUO Chaoqun, YAN Zhikun, et al. Quasi-static compression deformation mode, mechanical property and energy absorption performance of steel foam filled tube[J]. Materials Reports,2021,35(24):24158-24163(in Chinese). DOI: 10.11896/cldb.20080301

    [14]

    YUEN S C K, CUNLIFFE G, DU PLESSIS M C. Blast response of cladding sandwich panels with tubular cores[J]. International Journal of Impact Engineering,2017,110:266-278. DOI: 10.1016/j.ijimpeng.2017.04.016

    [15]

    WANG C, XU B, YUEN S C K. Numerical analysis of cladding sandwich panels with tubular cores subjected to uniform blast load[J]. International Journal of Impact Engi-neering,2019,133:103345. DOI: 10.1016/j.ijimpeng.2019.103345

    [16]

    RAMAMURTHY K, NAMBIAR E K K, RANJANI G I S. A classification of studies on properties of foam concrete[J]. Cement and Concrete Composites,2009,31(6):388-396. DOI: 10.1016/j.cemconcomp.2009.04.006

    [17]

    CRANE B, GOODWORTH A D, LIQUORI M, et al. Multidisciplinary testing of floor pads on stability, energy absorption, and ease of hospital use for enhanced patient safety[J]. Journal of Patient Safety,2016,12(3):132-139. DOI: 10.1097/PTS.0000000000000079

    [18] 宋强, 张鹏, 鲍玖文, 等. 泡沫混凝土的研究进展与应用[J]. 硅酸盐学报, 2021, 49(2):398-410. DOI: 10.14062/j.issn.0454-5648.20200316

    SONG Qiang, ZHANG Peng, BAO Jiuwen, et al. Research progress and application of foam concrete[J]. Journal of the Chinese Ceramic Society,2021,49(2):398-410(in Chinese). DOI: 10.14062/j.issn.0454-5648.20200316

    [19] 周明杰, 王娜娜, 赵晓艳, 等. 泡沫混凝土的研究和应用最新进展[J]. 混凝土, 2009(4):104-107. DOI: 10.3969/j.issn.1002-3550.2009.04.031

    ZHOU Mingjie, WANG Nana, ZHAO Xiaoyan, et al. Latest development of research and application on foam concrete[J]. Concrete,2009(4):104-107(in Chinese). DOI: 10.3969/j.issn.1002-3550.2009.04.031

    [20] 支旭东, 郭梦慧, 王臣, 等. 泡沫混凝土填充圆钢管的轴压力学性能[J]. 浙江大学学报(工学版), 2019, 53(10):1927-1935, 1945. DOI: 10.3785/j.issn.1008-973X.2019.10.010

    ZHI Xudong, GUO Menghui, WANG Chen, et al. Mechani-cal properties of circular steel tube filled with foam concrete under axial loads[J]. Journal of Zhejiang University (Engineering Science),2019,53(10):1927-1935, 1945(in Chinese). DOI: 10.3785/j.issn.1008-973X.2019.10.010

    [21] 李方贤, 李建新, 肖民, 等. 轻钢龙骨-泡沫混凝土复合墙板的抗冲击性能[J]. 硅酸盐通报, 2022, 41(1):68-75. DOI: 10.16552/j.cnki.issn1001-1625.20211123.002

    LI Fangxian, LI Jianxin, XIAO Min, et al. Impact resistance of lightweight steel-framed foamed concrete composite wall panels[J]. Journal of the Chinese Ceramic Society,2022,41(1):68-75(in Chinese). DOI: 10.16552/j.cnki.issn1001-1625.20211123.002

    [22]

    ZHOU H Y, ZHANG X J, WANG X J, et al. Improving energy absorption capacity of foam concrete with gradient and layered architecture[J]. Construction and Building Materials,2022,319:126140. DOI: 10.1016/j.conbuildmat.2021.126140

    [23]

    ZHOU H Y, JIA K C, WANG X J, et al. Experimental and numerical investigation of low velocity impact response of foam concrete filled auxetic honeycombs[J]. Thin-Walled Structures,2020,154:106898. DOI: 10.1016/j.tws.2020.106898

    [24] 中华人民共和国住房和城乡建设部. 泡沫混凝土应用技术规程: JGJ/T 341—2014[S]. 北京: 中国建筑工业出版社, 2014.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical specification for application of foamed concrete: JGJ/T 341—2014[S]. Beijing: China Architecture & Building Press, 2014(in Chinese).

    [25]

    MILTZ J, GRUENBAUM G. Evaluation of cushioning pro-perties of plastic foams from compressive measurements[J]. Polymer Engineering & Science,1981,21(15):1010-1014.

    [26]

    BAO R H, YU T X. Impact and rebound of an elastic-plastic ring on a rigid target[J]. International Journal of Mechani-cal Sciences,2015,91:55-63. DOI: 10.1016/j.ijmecsci.2014.03.031

    [27]

    SHEN J H, LU G X, RUAN D, et al. Lateral plastic collapse of sandwich tubes with metal foam core[J]. International Journal of Mechanical Sciences,2015,91:99-109. DOI: 10.1016/j.ijmecsci.2013.11.016

  • 期刊类型引用(8)

    1. 丁能鑫,侯夫庆,杨会康,张春辉. 石英纤维的表面改性及分散特性研究. 中国造纸. 2023(06): 56-63 . 百度学术
    2. 杨娜,苏韬,黄锴荻,王文俊. 通过与苯乙烯共聚改善含硅芳炔树脂及其复合材料性能. 复合材料学报. 2023(09): 5002-5010 . 本站查看
    3. 束长朋,王茂源,周权,宋宁,倪礼忠. 苯并噁嗪-氨基稀释剂改性硅炔杂化树脂及其复合材料性能. 复合材料学报. 2020(11): 2718-2725 . 本站查看
    4. 成滨,扈艳红,邓诗峰,杜磊,周燕,杨藤,崔方旭. 一种含腈基的硅烷偶联剂改性石英纤维/含硅芳炔复合材料. 复合材料学报. 2019(03): 545-554 . 本站查看
    5. 王卓,王欢,任鹏刚,王明存. 硅氧烷杂化苯并恶嗪及其耐高温复合材料. 热固性树脂. 2019(02): 13-20 . 百度学术
    6. 杨海荟,崔丽平. 新型含醚酰亚胺端炔硅烷偶联剂的合成研究. 广东化工. 2019(18): 69-71+78 . 百度学术
    7. 宋来福,杨彩云. 复合材料界面理论及石英纤维表面处理与改性方法研究进展. 纺织科学与工程学报. 2018(01): 171-176 . 百度学术
    8. 杨海荟,扈艳红,杜磊,顾渊博,张芳芳. 新型硅烷偶联剂对石英纤维/含硅芳炔复合材料界面增强增韧改性. 玻璃钢/复合材料. 2016(08): 13-21 . 百度学术

    其他类型引用(4)

图(16)  /  表(4)
计量
  • 文章访问数:  1012
  • HTML全文浏览量:  474
  • PDF下载量:  49
  • 被引次数: 12
出版历程
  • 收稿日期:  2022-05-26
  • 修回日期:  2022-07-15
  • 录用日期:  2022-07-27
  • 网络出版日期:  2022-08-11
  • 刊出日期:  2023-05-14

目录

    /

    返回文章
    返回