木基柔性电子复合膜的制备及其在传感器中的应用

王怡仁, 周彤, 王露臻, 吴启静, 李大纲, 金永灿, 陈楚楚

王怡仁, 周彤, 王露臻, 等. 木基柔性电子复合膜的制备及其在传感器中的应用[J]. 复合材料学报, 2022, 39(8): 4057-4064. DOI: 10.13801/j.cnki.fhclxb.20211027.001
引用本文: 王怡仁, 周彤, 王露臻, 等. 木基柔性电子复合膜的制备及其在传感器中的应用[J]. 复合材料学报, 2022, 39(8): 4057-4064. DOI: 10.13801/j.cnki.fhclxb.20211027.001
WANG Yiren, ZHOU Tong, WANG Luzhen, et al. Preparation of flexible wood-based electronic films and its application for sensors[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 4057-4064. DOI: 10.13801/j.cnki.fhclxb.20211027.001
Citation: WANG Yiren, ZHOU Tong, WANG Luzhen, et al. Preparation of flexible wood-based electronic films and its application for sensors[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 4057-4064. DOI: 10.13801/j.cnki.fhclxb.20211027.001

木基柔性电子复合膜的制备及其在传感器中的应用

基金项目: 国家自然科学基金(31901254);江苏省研究生科研与实践创新计划项目(KYCX21_0873);第14批中国博士后科学基金(2021T140329);中国博士后科学基金面上项目(2020M671506);江苏省博士后科研资助计划(2020Z027)
详细信息
    通讯作者:

    陈楚楚,博士,副教授,硕士生导师,研究方向为纤维素、甲壳素、复合材料 E-mail:chuchu_chen@njfu.edu.cn

  • 中图分类号: TB332

Preparation of flexible wood-based electronic films and its application for sensors

  • 摘要: 为拓展木材多功能化及高值化应用,以轻木为原料,通过脱基质工艺去除木材基质,随后干燥处理获得轻木骨架(WF),进一步乙酰化改性后干燥可制得乙酰化轻木骨架(AWF)。利用浸渍法,将聚二甲基硅氧烷(PDMS)弹性体分别引入WF与AWF制备木基复合薄膜材料(PDMS/WF与PDMS/AWF)。系统性研究乙酰化改性对复合膜形貌特征、力学性能、化学组分及表面亲水性等的影响。结果表明,乙酰化处理能够有效促进PDMS分布于轻木骨架的孔隙结构中,二者结合紧密,界面结合性提高。同时,制得的PDMS/AWF木基复合膜具备较好的柔韧性,沿纤维生长方向断裂拉伸强度达176 MPa,韧性约6.58 MJ/m3,几乎是PDMS/WF复合膜的两倍。进一步将该PDMS/AWF木基复合膜作为柔性基材,组装柔性传感器件,在多种形变下表现出稳定及可重复的相对电阻值变化。预期在智能家居、软体机器人及柔性可穿戴电子等智能响应器件研究领域具有潜在的应用。
    Abstract: In order to expand multi-function and high-value application of wood, balsa wood was used as raw material. Firstly, they were performed with chemical treatment to remove the matrix including lignin and hemicellulose, followed with drying. The acetylated balsa wood frame (AWF) was prepared by acetylation modification. Afterwards, by vacuum impregnation, polydimethylsiloxane (PDMS) elastomer was introduced into balsa wood frame (WF) and AWF respectively, in order to fabricate composite film materials (PDMS/WF and PDMS/AWF). The effects of acetylation modification on morphology, mechanical properties, chemical composition and surface hydrophilicity of composite films were systematically studied. The results show that after acetylation, the interface between balsa wood frame and PDMS is more compact, and the pores between PDMS and white wood are smaller. At the same time, the tensile strength of PDMS/AWF composite film (along the fiber growth direction, L-direction) is around 176 MPa, and the toughness is about 6.58 MJ/m3, which is nearly twice as high as that of PDMS/WF compo-site film. Furthermore, the prepared PDMS/AWF wood-based composite film was used as a flexible substrate to assemble a flexible sensor. As a result, it shows stable and repeatable changes for relative resistance values under various deformations. Altogether, it has great potential to be applied in the research fields of smart furniture, elastic substrates of smart response devices, flexible electronic components and wearable devices.
  • 图  1   聚二甲基硅氧烷/乙酰化轻木骨架(PDMS/AWF)复合膜制备流程示意图

    Figure  1.   Preparation process of polydimethylsiloxane/acetylated balsa wood frame (PDMS/AWF) composite film

    WF—Balsa wood frame

    图  2   PDMS及木基复合膜试样表面微观形貌:(a) PDMS;(b) 轻木;(c) WF;(d) AWF;(e) PDMS/WF;(f) PDMS/AWF

    Figure  2.   Surface morphologies of PDMS and wood composite film samples: (a) PDMS; (b) Balsa wood; (c) WF; (d) AWF; (e) PDMS/WF; (f) PDMS/AWF

    图  3   木基复合膜试样断面微观形貌:((a), (b)) PDMS/WF;((c), (d)) PDMS/AWF

    Figure  3.   Fracture surface of wood composite film samples: ((a), (b)) PDMS/WF; ((c), (d)) PDMS/AWF

    图  4   WF、PDMS/WF及PDMS/AWF复合膜沿纤维生长方向(L-direction)拉伸应力-应变曲线

    Figure  4.   Tensile stress-strain curves of WF, PDMS/WF and PDMS/AWF composite films along longitudinal direction (L-direction)

    图  5   PDMS/WF及PDMS/AWF复合膜垂直于纤维生长方向(T-direction)的拉伸应力-应变曲线

    Figure  5.   Tensile stress-strain curves of PDMS/WF and PDMS/AWF composite films along perpendicular to the longitudinal direction (T-direction)

    图  6   PDMS、WF、AWF、PDMS/WF及PDMS/AWF复合膜的FTIR图谱

    Figure  6.   FTIR spectra of PDMS, WF, AWF, PDMS/WF andPDMS/AWF composite film

    图  7   PDMS/WF复合膜 (a) 及PDMS/AWF复合膜 (b) 水接触角测试

    Figure  7.   Water contact angle of PDMS/WF (a) and PDMS/AWF (b) film

    图  8   PDMS/AWF木基复合膜样品折叠(a)、打结(b)和组装柔性传感器(c)

    Figure  8.   PDMS/AWF composite film upon folding (a), knotting (b) and assembling into flexible sensors (c)

    图  9   木基柔性传感器弯曲折叠 (a)、点击 (b) 及书写 (c) 过程中的相对电阻(ΔR/R0)变化

    Figure  9.   Relative resistance (ΔR/R0) changes of flexible sensor upon repeated bending (a), clicking (b) and writing (c)

    表  1   WF膜、PDMS/WF复合膜及PDMS/AWF复合膜纤维生长方向拉伸应力-应变数值及PDMS在复合膜中质量分数

    Table  1   Tensile stress-strain values of WF, PDMS/WF and PDMS/AWF film along L-direction and the mass fraction of PDMS

    SamplePDMS/wt%Fracture strength/MPaYoung’s modulus/GPaFracture strain/%Toughness
    /(MJ·m−3)
    WF0213.26±3.5812.44±0.052.93±0.214.23±0.03
    PDMS/WF53.39±0.65164.58±12.6511.46±0.103.25±0.353.41±0.11
    PDMS/AWF35.33±2.98176.48±9.898.99±0.035.71±0.436.58±0.08
    下载: 导出CSV
  • [1] 李坚, 孙庆丰, 王成毓, 等. 木质仿生智能科学引论[M]. 北京: 科学出版社, 2018.

    LI Jian, SUN Qingfeng, WANG Chengyu, et al. Introduction to the science of wood bionic intelligence[M]. Beijing: Science Press, 2018(in Chinese).

    [2] 王成毓, 孙淼. 仿生人工木材的研究进展[J]. 林业工程学报, 2022, 7(3):1-10.

    WANG Chengyu, SUN Miao. Research of bioinspired artificial wood[J]. Journal of Forestry Engineering,2022, 7(3):1-10(in Chinese).

    [3] 吴义强. 木材科学与技术研究新进展[J]. 中南林业科技大学学报, 2021, 41(1):1-28.

    WU Yiqiang. Newly advances in wood science and technology[J]. Journal of Central South University of Forestry & Technology,2021,41(1):1-28(in Chinese).

    [4] 吴燕, 韩岩, 黄楠, 等. 脱木素工艺对透明木材性能的影响[J]. 林业工程学报, 2019, 4(6):98-104.

    WU Yan, HAN Yan, HUANG Nan, et al. Effect of delignification process on properties of transparent wood[J]. Journal of Forestry Engineering,2019,4(6):98-104(in Chinese).

    [5]

    ROWELL R M. Handbook of wood chemistry and wood composites[M]. Boca Raton: CRC press, 2005: 380-420.

    [6]

    FU Q, CHEN Y, SORIEUL M. Wood-based flexible electro-nics[J]. ACS Nano,2020,14(3):3528-3538. DOI: 10.1021/acsnano.9b09817

    [7]

    AJDARY R, TARDY B L, MATTOS B D, et al. Plant nanomaterials and inspiration from nature: Water interactions and hierarchically structured hydrogels[J]. Advanced Materials,2020,33(28):2001085.

    [8]

    FU Q, TU K, GOLDHAHN C, et al. Luminescent and hydrophobic wood films as optical lighting materials[J]. ACS Nano,2020,14(10):13775-13783. DOI: 10.1021/acsnano.0c06110

    [9] 王成毓, 杨照林, 王鑫, 等. 木材功能化研究新进展[J]. 林业工程学报, 2019, 4(3):10-18.

    WANG Chengyu, YANG Zhaolin, WANG Xin, et al. New research progress of functional wood[J]. Journal of Forestry Engineering,2019,4(3):10-18(in Chinese).

    [10] 卿彦, 易佳楠, 吴义强, 等. 纳米纤维素储能研究进展[J]. 林业科学, 2018, 54(3):134-143.

    QING Yan, YI Jianan, WU Yiqiang, et al. Advances in application of biomass nanocellulose to green-energy storage[J]. Scientia Silvae Sinicae,2018,54(3):134-143(in Chinese).

    [11]

    WAN Z, CHEN C, MENG T, et al. Multifunctional wet-spun filaments through robust nanocellulose networks wrapping to single-walled carbon nanotubes[J]. ACS Applied Materials & Interfaces,2019,11(45):42808-42817.

    [12]

    WU K, ZHANG Y, GONG F, et al. Highly thermo-conduc-tive but electrically insulating filament via a volume-confinement self-assembled strategy for thermoelectric wearables[J]. Chemical Engineering Journal, 2020, 421(2): 127764.

    [13]

    LARRAZA I, VADILLO J, CALVO-CORREAS T, et al. Cellulose and graphene based polyurethane nanocomposites for FDM 3D printing: Filament properties and printability[J]. Polymers,2021,13(5):839. DOI: 10.3390/polym13050839

    [14]

    ZHAN Y, NAN B, LIU Y, et al. Multifunctional cellulose-based fireproof thermal conductive nanocomposite films assembled by in-situ grown SiO2 nanoparticle onto MXene[J]. Chemical Engineering Journal,2021,421:129733. DOI: 10.1016/j.cej.2021.129733

    [15]

    SAEDI S, SHOKRI M, KIM J T, et al. Semi-transparent regenerated cellulose/ZnONP nanocomposite film as a potential antimicrobial food packaging material[J]. Jour-nal of Food Engineering,2021,307:110665. DOI: 10.1016/j.jfoodeng.2021.110665

    [16]

    MOHAMMADALINEIHAD S, ALMASI H, ESMAIILI M. Physical and release properties of poly(lactic acid)/nanosilver-decorated cellulose, chitosan and lignocellulose nanofiber composite films[J]. Materials Chemistry and Physics,2021,268:124719. DOI: 10.1016/j.matchemphys.2021.124719

    [17] 周可可, 唐亚丽, 卢立新, 等. 氧化纳米纤维素增强再生纤维素全纤维素复合薄膜的制备及性能[J]. 复合材料学报, 2020, 37(7):1657-1666.

    ZHOU Keke, TANG Yali, LU Lixin, et al. Preparation and properties of all-cellulose composite films with oxidized cellulose nanofibrils reinforcing regenerated cellulose[J]. Acta Materiae Compositae Sinica,2020,37(7):1657-1666(in Chinese).

    [18]

    ZHANG E, YANG J, LIU W. Cellulose-based hydrogels with controllable electrical and mechanical properties[J]. Zeitschrift Für Physikalische Chemie,2018,232(9-11):1707-1716.

    [19]

    CHEN C, LI D, ABE K, et al. Formation of high strength double-network gels from cellulose nanofiber/polyacrylamide via NaOH gelation treatment[J]. Cellulose,2018,25(9):5089-5097. DOI: 10.1007/s10570-018-1938-5

    [20]

    WU Y, SUN S, GENG A, et al. Using TEMPO-oxidized-nanocellulose stabilized carbon nanotubes to make pigskin hydrogel conductive as flexible sensor and supercapacitor electrode: Inspired from a Chinese cuisine[J]. Composites Science and Technology,2020,196:108226. DOI: 10.1016/j.compscitech.2020.108226

    [21]

    CHEN C, WANG Y, WU Q, et al. Highly strong and flexible composite hydrogel reinforced by aligned wood cellulose skeleton via alkali treatment for muscle-like sensors[J]. Chemical Engineering Journal,2020,400:125876. DOI: 10.1016/j.cej.2020.125876

    [22]

    WANG X, FANG J, ZHU W, et al. Bioinspired highly anisotropic, ultrastrong and stiff, and osteoconductive minera-lized wood hydrogel composites for bone repair[J]. Advanced Functional Materials,2021,31(20):2010068. DOI: 10.1002/adfm.202010068

    [23]

    CHEN G, LI T, CHEN C, et al. Scalable wood hydrogel membrane with nanoscale channels[J]. ACS Nano,2021,15(7):11244-11252. DOI: 10.1021/acsnano.0c10117

    [24]

    ZHU M, JIA C, WANG Y, et al. Isotropic paper directly from anisotropic wood: Top-down green transparent substrate toward biodegradable electronics[J]. ACS Applied Mater-ials & Interfaces,2018,10(34):28566-28571.

    [25]

    MI R, CHEN C, KEPLINGER T, et al. Scalable aesthetic transparent wood for energy efficient buildings[J]. Nature Communications,2020,11(1):1-9. DOI: 10.1038/s41467-019-13993-7

    [26]

    LI Y, YANG X, FU Q, et al. Towards centimeter thick transparent wood through interface manipulation[J]. Journal of Materials Chemistry A,2018,6(3):1094-1101. DOI: 10.1039/C7TA09973H

    [27]

    WANG X, SHAN S, SHI S Q, et al. Optically transparent bamboo with high strength and low thermal conductivity[J]. ACS Applied Materials & Interfaces,2020,13(1):1662-1669.

    [28]

    MI R, LI T, DALGO D, et al. A clear, strong, and thermally insulated transparent wood for energy efficient windows[J]. Advanced Functional Materials,2020,30(1):1907511. DOI: 10.1002/adfm.201907511

    [29] 秦建鲲, 白天, 邵亚丽, 等. 不同树种多层透明木材的制备与表征[J]. 北京林业大学学报, 2018, 40(7):113-120.

    QIN Jiankun, BAI Tian, SHAO Yali, et al. Fabrication and characterization of multilayer transparent wood of diffe-rent species[J]. Journal of Beijing Forestry University,2018,40(7):113-120(in Chinese).

    [30]

    GAN W, CHEN C, GIROUX M, et al. Conductive wood for high-performance structural electromagnetic interference shielding[J]. Chemistry of Materials,2020,32(12):5280-5289. DOI: 10.1021/acs.chemmater.0c01507

    [31]

    CHEN G, LI T, CHEN C, et al. A highly conductive cationic wood membrane[J]. Advanced Functional Materials,2019,29(44):1902772. DOI: 10.1002/adfm.201902772

    [32]

    CHENG Z, WEI Y, LIU C, et al. Lightweight and construable magnetic wood for electromagnetic interference shielding[J]. Advanced Engineering Materials,2020,22(10):2000257. DOI: 10.1002/adem.202000257

    [33]

    GAN W, GAO L, XIAO S, et al. Transparent magnetic wood composites based on immobilizing Fe3O4 nanoparticles into a delignified wood template[J]. Journal of Materials Science,2017,52(6):3321-3329. DOI: 10.1007/s10853-016-0619-8

    [34]

    NIE K, WANG Z, ZHOU H, et al. Improved dielectricity of anisotropic wood slices and bioinspired micropatterned film electrodes for highly sensitive flexible electronic sensors[J]. Journal of Materials Chemistry C,2020,8(45):16113-16120. DOI: 10.1039/D0TC03729J

    [35]

    FOSTER K E O, HESS K M, MIYAKE G M, et al. Optical pro-perties and mechanical modeling of acetylated transparent wood composite laminates[J]. Materials,2019,12(14):2256. DOI: 10.3390/ma12142256

    [36]

    ZHANG H, WU X, QIN Z, et al. Dual physically cross-linked carboxymethyl cellulose-based hydrogel with high stretchability and toughness as sensitive strain sensors[J]. Cellulose,2020,27(17):9975-9989. DOI: 10.1007/s10570-020-03463-5

    [37] 陈楚楚, 王怡仁, 卜香婷, 等. 聚二甲基硅氧烷/纳米纤维素复合膜的制备及性能分析[J]. 纤维素科学与技术, 2018, 26(4):39-44, 51.

    CHEN Chuchu, WANG Yiren, BU Xiangting, et al. Preparation and characterization of polydimethylsiloane/cellulose nanofiber nanocomposite[J]. Journal of Cellulose Science and Technology,2018,26(4):39-44, 51(in Chinese).

    [38]

    CHEN C, BU X, FENG Q, et al. Cellulose nanofiber/carbon nanotube conductive nano-network as a reinforcement template for polydimethylsiloxane nanocomposite[J]. Polymers,2018,10(9):1000. DOI: 10.3390/polym10091000

    [39]

    GAITAN-ALVAREZ J, BERROCAL A, MANTANIS G I, et al. Acetylation of tropical hardwood species from forest plantations in Costa Rica: An FTIR spectroscopic analysis[J]. Journal of Wood Science,2020,66(1):1-10. DOI: 10.1186/s10086-020-1848-7

    [40]

    SUN B, CHAI Y, LIU J, et al. Acetylation of plantation softwood without catalysts or solvents[J]. Wood Research,2019,64(5):799-810.

    [41]

    SULYM I, ZDARTA J, CIESIELCZYK F, et al. Pristine and poly(dimethylsiloxane) modified multi-walled carbon nanotubes as supports for lipase immobilization[J]. Materials,2021,14(11):2874. DOI: 10.3390/ma14112874

    [42] 魏阿静, 李运涛, 马忠雷. 柔性可拉伸硅橡胶@多壁碳纳米管/硅橡胶可穿戴应变传感纤维[J]. 复合材料学报, 2020, 37(8):2045-2054.

    WEI Ajing, LI Yuntao, MA Zhonglei. Flexible stretchable and highly sensitive silicone rubber@multiwalled carbon nanotubes/silicone rubber wearable strain sensing fibers[J]. Acta Materiae Compositae Sinica,2020,37(8):2045-2054(in Chinese).

    [43] 张明艳, 杨振华, 吴子剑, 等. 新型三明治结构聚二甲基硅氧烷/聚偏氟乙烯-纳米Ag线/聚二甲基硅氧烷柔性应变传感器的制备与性能[J]. 复合材料学报, 2020, 37(5):1024-1032.

    ZHANG Mingyan, YANG Zhenhua, WU Zijian, et al. Preparation and properties of a novel sandwich structure polydimethylsiloxane/polyvinylidene fluoride-Ag nanowires/polydimethylsiloxane flexible strain sensor[J]. Acta Materiae Compositae Sinica,2020,37(5):1024-1032(in Chinese).

  • 期刊类型引用(2)

    1. 徐金豪,马洁茹,周静,游沐秋,李大纲,徐朝阳,陈楚楚. 基于自上而下法木基复合凝胶的构筑及其功能化研究进展. 复合材料学报. 2025(02): 647-663 . 本站查看
    2. 孙佳文,朱曜峰. 多相碳粒硅橡胶柔性吸波膜的制备及其性能. 浙江理工大学学报(自然科学版). 2022(04): 533-541 . 百度学术

    其他类型引用(2)

图(9)  /  表(1)
计量
  • 文章访问数:  1364
  • HTML全文浏览量:  732
  • PDF下载量:  75
  • 被引次数: 4
出版历程
  • 收稿日期:  2021-08-01
  • 修回日期:  2021-10-15
  • 录用日期:  2021-10-17
  • 网络出版日期:  2021-10-26
  • 刊出日期:  2022-08-30

目录

    /

    返回文章
    返回