Loading [MathJax]/jax/output/SVG/jax.js

吸湿对单向亚麻纤维复合材料力学性能的影响

贾云龙, FIEDLERBodo

贾云龙, FIEDLER Bodo. 吸湿对单向亚麻纤维复合材料力学性能的影响[J]. 复合材料学报, 2022, 39(2): 608-616. DOI: 10.13801/j.cnki.fhclxb.20210526.001
引用本文: 贾云龙, FIEDLER Bodo. 吸湿对单向亚麻纤维复合材料力学性能的影响[J]. 复合材料学报, 2022, 39(2): 608-616. DOI: 10.13801/j.cnki.fhclxb.20210526.001
JIA Yunlong, FIEDLER Bodo. Influence of moisture absorption on the mechanical properties of unidirectional flax fibre composites[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 608-616. DOI: 10.13801/j.cnki.fhclxb.20210526.001
Citation: JIA Yunlong, FIEDLER Bodo. Influence of moisture absorption on the mechanical properties of unidirectional flax fibre composites[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 608-616. DOI: 10.13801/j.cnki.fhclxb.20210526.001

吸湿对单向亚麻纤维复合材料力学性能的影响

基金项目: 常州工学院高层次人才科研启动项目 (YN20075);国家建设高水平大学公派研究生项目 (留金发[2015]3022)
详细信息
    通讯作者:

    贾云龙,博士研究生,讲师,研究方向为纤维增强复合材料、植物纤维表面改性 E-mail:jiayl@czu.cn

  • 中图分类号: TB332

Influence of moisture absorption on the mechanical properties of unidirectional flax fibre composites

  • 摘要: 为探明亚麻纤维增强树脂复合材料(FFRPs)在长期潮湿环境中的力学性能变化规律,基于真空辅助树脂模塑传递成型(VARTM)手段制备了的干燥状态的单向FFRPs(纤维体积分数为40vol%)。试验研究了 FFRPs在30°C、80%相对湿度(RH)环境中放置5天、35天、86天后拉伸力学性能变化。结果表明,FFRPs在湿热环境中吸水量近似符合一维情况下的Fickian第二定律,饱和吸水量为5.3%左右。FFRPs在垂直于纤维方向上的拉伸强度和模量随吸湿度增加递减,断口微观分析表明吸湿降低了纤维基体界面结合性能。然而,FFRPs在纤维方向上的拉伸强度并未因吸湿降低,反而在吸湿过程呈现出先减小后增加的趋势,此变化规律文献中尚未报道:相比干燥状态,放置5天后拉伸强度下降5.7%;放置35天后拉伸强度增加18.7%;放置86天时样品已处在饱和吸湿状态,拉伸强度略微减小,但仍比干燥状态增加13.7%。FFRPs在纤维取向上拉伸强度变化可解释为多因素共同作用的结果。
    Abstract: This paper investigated the evolution of mechanical properties of flax fibre reinforced polymer compo-sites (FFRPs) conditioned in humid condition for a long term. Dry unidirectional FFRPs having fibre volume fraction of 40vol% were manufactured via vacuum assisted resin transfer moulding (VARTM). FFRPs were conditioned in 30°C, 80% relative humidity (RH) for different time (5 days, 35 days and 86 days) and their tensile properties were tested and analyzed. The results demonstrate that the moisture absorption of FFRPs fairly follows one dimensional Fickian’s second law. The equilibrated water content is around 5.3%. Tensile strength and modulus perpendicular to fibre direction decrease with moisture absorption. Fracture morphology shows that fibre-matrix bonding strength decreases after moisture absorption. Tensile strength in fibre direction is not degraded by moisture absorption, and exhibits a trend featured by a first drop followed by an increase, which has not been reported in literatures. Tensile strength in fiber direction decreases by 5.7% after being conditioned in humid for 5 days, and increases by 18.7% after 35 days. Further absorption of moisture up to 86 days (already saturated) causes a slight decrease in tensile strength but is still 13.7% higher than that at dry state. The change trend of tensile strength in fibre direction during moisture absorption can be explained as a consequence of averaging effects of several factors.
  • 图  1   单向亚麻纤维织物(左)和亚麻纱线结构(右)

    Figure  1.   Unidirectional (UD) flax fiber fabric (left) and structure of flax yarn (right)

    图  2   获取不同含水量亚麻纤维纱线的方法

    Figure  2.   Method to obtain flax yarns with different water contents

    F—Tensile force

    图  3   纤维预干燥及真空辅助树脂传递模塑成型(VARTM)过程中的温度和压力周期

    Figure  3.   Temperature and pressure cycle in fiber pre-drying and vacuum assisted resin transfer moulding (VARTM) process

    图  4   亚麻纤维增强树脂复合材料(FFRPs)吸湿实验数据及Fickian拟合吸湿曲线

    Figure  4.   Experimental and Fickian’law fitted weight uptake of flax fibre reinforced polymer composites (FFRPs) in humid

    RH—Relative humidity

    图  5   不同含水量亚麻纤维纱线的典型拉伸应力-应变曲线

    Figure  5.   Representative tensile stress-strain curves of flax yarns having different water contents

    图  6   [90°]FFRPs样品在不同吸湿时间下的典型拉伸应力-应变曲线

    Figure  6.   Representative tensile stress-strain curves of [90°] FFRPs specimens at different conditioning time

    σ—Tensile stress

    图  7   [90°] FFRPs样品在不同吸湿时间下的拉伸力学性能

    Figure  7.   Evolution of tensile properties of [90°] FFRPs specimens at different conditioning time

    图  8   [90°] FFRPs样品不同吸湿时间下(30℃、80%RH)的断裂面微观形貌

    Figure  8.   Fracture morphologies of [90°] FFRPs specimens conditioned in humid (30℃, 80%RH)

    图  9   [0°] FFRPs样品在不同吸湿时间下的拉伸力学性能

    Figure  9.   Evolution of tensile properties of [0°] FFRPs specimens at different conditioning time

    图  10   [0°] FFRPs样品在不同吸湿时间下的典型拉伸应力-应变曲线

    Figure  10.   Representative tensile stress-strain curves of [0°] FFRPs specimens at different conditioning time

    图  11   [0°] FFRPs样品在不同吸湿时间下的刚度变化

    Figure  11.   Stiffness evolution of [0°] FFRPs specimens at different conditioning time

    图  12   影响吸湿后[0°] FFRPs样品拉伸强度的因素趋势线

    Figure  12.   Trend lines that would influence on tensile strength of [0°] wet-conditioned FFRPs specimens

    图  13   干湿状态下[0°] FFRPs样品的断裂面形貌比较

    Figure  13.   Comparison of fracture morphologies of [0°] dry and wet-conditioned FFRPs specimens

    表  1   [0°]和[90°]FFRPs样品的计算Fickian扩散系数

    Table  1   Calculated Fickian diffusion coefficients of [0°] and [90°] FFRPs

    De1/(10−7 mm2·s−1)Dc2/(10−7 mm2·s−1)Mm3/%
    [0°] 2.40 1.84 5.41
    [90°] 3.27 2.74 5.25
    Notes: De—Diffusion coefficient calculated from experimental data; Dc—Corrected diffusion coefficient; Mm—Absorption of water at saturation.
    下载: 导出CSV

    表  2   亚麻纤维纱线的拉伸性能 (n≥20)

    Table  2   Tensile properties of tested flax yarns (n≥20)

    Water content/%Strength/MPaModulus1/GPaElongation at break/%
    ~0.5 486.0±74.9 22.0±2.9 2.5±0.2
    ~3.0 517.2±92.2 16.4±2.9 3.4±0.5
    ~5.5 544.1±81.2 14.4±1.9 4.1±0.4
    ~50.0 598.8±136.4 10.7±0.9 5.6±0.9
    Notes: Modulus1 was calculated as the gradient of the regression line between 100 MPa and 200 MPa; n—Sample size of each condition.
    下载: 导出CSV
  • [1]

    SHEKAR H S, RAMACHANDRA M. Green composites: A review[J]. Materials Today: Proceedings,2018,5(1):2518-2526. DOI: 10.1016/j.matpr.2017.11.034

    [2]

    PICKERING K L, EFENDY M A, LE T M. A review of recent developments in natural fibre composites and their mechanical performance[J]. Composites Part A: Applied Science and Manufacturing,2016,83:98-112. DOI: 10.1016/j.compositesa.2015.08.038

    [3]

    LIBO YAN, CHOUW N, JAYARAMAN K. Flax fibre and its composites–A review[J]. Composites Part B: Engineering,2014,56:296-317. DOI: 10.1016/j.compositesb.2013.08.014

    [4]

    IBRAHIM M. Natural-fibre composites: An overview[EB/OL]. [2020-11-04]. .

    [5]

    HALLAK PANZERA T, JEANNIN T, GABRION X, et al. Static, fatigue and impact behaviour of an autoclaved flax fibre reinforced composite for aerospace engineering[J]. Composites Part B: Engineering,2020,197:108049. DOI: 10.1016/j.compositesb.2020.108049

    [6]

    MOKHOTHU T H, JOHN M J. Review on hygroscopic aging of cellulose fibres and their biocomposites[J]. Carbohydrate polymers,2015,131:337-354. DOI: 10.1016/j.carbpol.2015.06.027

    [7]

    MOUDOOD A, RAHMAN A, CHSNER A, et al. Flax fiber and its composites: An overview of water and moisture absorption impact on their performance[J]. Journal of Rnforced Plastics and Composites,2018,38(7):1-17.

    [8]

    WANG A, XIAN G, LI H. Effects of fiber surface grafting with nano-clay on the hydrothermal ageing behaviors of flax fiber/epoxy composite plates[J]. Polymers,2019,11(8):1278-1289. DOI: 10.3390/polym11081278

    [9]

    ASSARAR M, SCIDA D, EL MAHI A, et al. Influence of water ageing on mechanical properties and damage events of two reinforced composite materials: Flax-fibres and glass-fibres[J]. Materials & Design,2011,32(2):788-795.

    [10]

    SCIDA D, ASSARAR M, POILÂNE C, et al. Influence of hygrothermal ageing on the damage mechanisms of flax-fibre reinforced epoxy composite[J]. Composites Part B: Engineering,2013,48:51-58. DOI: 10.1016/j.compositesb.2012.12.010

    [11]

    LE DUIGOU A, DAVIES P, BALEY C. Exploring durability of interfaces in flax fibre/epoxy micro-composites[J]. Composites Part A: Applied Science and Manufacturing,2013,48:121-128. DOI: 10.1016/j.compositesa.2013.01.010

    [12]

    BERGES M, LÉGER R, PLACET V, et al. Influence of moisture uptake on the static, cyclic and dynamic behaviour of unidirectional flax fibre-reinforced epoxy laminates[J]. Composites Part A: Applied Science and Manufacturing,2016,88:165-177. DOI: 10.1016/j.compositesa.2016.05.029

    [13]

    MUNOZ E, GARCÍA-MANRIQUE J A. Water absorption behaviour and its effect on the mechanical properties of flax fibre reinforced bioepoxy composites[J]. International Journal of Polymer Science,2015,6:1-10.

    [14]

    MOUDOOD A, HALL W, ÖCHSNER A, et al. Effect of moisture in flax fibres on the quality of their composites[J]. Journal of Natural Fibers,2019,16(2):209-224. DOI: 10.1080/15440478.2017.1414651

    [15]

    GOUTIANOS S, PEIJS T, NYSTROM B, et al. Development of flax fibre based textile reinforcements for composite applications[J]. Applied Composite Materials,2006,13(4):199-215. DOI: 10.1007/s10443-006-9010-2

    [16]

    ASTM. Standard test method for tensile properties of polymer matrix composite materials: D3039M—17[S]. West Conshohocken: ASTM International, 2017.

    [17]

    ASTM. Standard test method for moisture absorption properties and equilibrium conditioning of polymer matrix composite materials: D5229M—12[S]. West Conshohocken: ASTM International, 2012.

    [18] 边佳燕, 刘钧, 鲍铮. 聚合物基复合材料吸湿研究进展[J]. 材料导报, 2016, 30(28):340-344.

    BIAN Jiayan, LIU Jun, BAO Zheng. Research progress in moisture absorption of polymer matrix composites[J]. Materials Reports,2016,30(28):340-344(in Chinese).

    [19]

    SHEN C H, SPRINGER G S. Moisture absorption and desorption of composite materials[J]. Journal of Composite Materials,1976,10(1):2-20. DOI: 10.1177/002199837601000101

    [20]

    MASSETEAU B, MICHAUD F, IRLE M, et al. An evaluation of the effects of moisture content on the modulus of elasticity of a unidirectional flax fiber composite[J]. Compo-sites Part A: Applied Science and Manufacturing,2014,60:32-37. DOI: 10.1016/j.compositesa.2014.01.011

    [21]

    STAMBOULIS A, BAILLIE C A, PEIJS T. Effects of environmental conditions on mechanical and physical properties of flax fibers[J]. Composites Part A: Applied Science and Manufacturing,2001,32(8):1105-1115. DOI: 10.1016/S1359-835X(01)00032-X

    [22]

    BALEY C, LE DUIGOU A, BOURMAUD A, et al. Influence of drying on the mechanical behaviour of flax fibres and their unidirectional composites[J]. Composites Part A: Applied Science and Manufacturing,2012,43(8):1226-1233. DOI: 10.1016/j.compositesa.2012.03.005

    [23]

    DEBORAH D L. Carbon composites (Second edition)[M]. Netherlands: Elsevier, 2017: 88-160.

    [24]

    LEFEUVRE A, BOURMAUD A, MORVAN C, et al. Elementary flax fibre tensile properties: Correlation between stress-strain behaviour and fibre composition[J]. Industrial Crops and Products,2014,52:762-769. DOI: 10.1016/j.indcrop.2013.11.043

    [25]

    LEFEUVRE A, LE DUIGOU A, BOURMAUD A, et al. Analysis of the role of the main constitutive polysaccharides in the flax fibre mechanical behaviour[J]. Industrial Crops and Products,2015,76:1039-1048. DOI: 10.1016/j.indcrop.2015.07.062

    [26]

    BALEY C. Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase[J]. Composites Part A: Applied Science and Manufacturing,2002,33(7):939-948. DOI: 10.1016/S1359-835X(02)00040-4

    [27]

    PUCCI M F, LIOTIER P J, SEVENO D, et al. Wetting and swelling property modifications of elementary flax fibres and their effects on the liquid composite molding process[J]. Composites Part A: Applied Science and Manufacturing,2017,97:31-40. DOI: 10.1016/j.compositesa.2017.02.028

  • 期刊类型引用(2)

    1. 张永文,杨郁,杨倩倩,李艳安,禹兴海. 生物炭/聚乙二醇复合相变材料的制备及其性能研究. 化学工程师. 2024(06): 6-11 . 百度学术
    2. 江慧珍,罗凯,王艳,费华,吴登科,叶卓铖,曹雄金. 废弃生物质复合相变材料的构建与应用. 化工进展. 2024(07): 3934-3945 . 百度学术

    其他类型引用(6)

图(13)  /  表(2)
计量
  • 文章访问数:  1409
  • HTML全文浏览量:  928
  • PDF下载量:  77
  • 被引次数: 8
出版历程
  • 收稿日期:  2021-02-21
  • 修回日期:  2021-04-22
  • 录用日期:  2021-05-17
  • 网络出版日期:  2021-05-25
  • 刊出日期:  2022-01-31

目录

    /

    返回文章
    返回