Experimental study on compressive performance of new composite material “concrete confined with high-strength steel stranded wire meshes/ECC”
-
摘要: 考虑混凝土强度、工程水泥基复合材料(ECC)强度和横向高强钢绞线配筋率等因素,研究新型复合材料“高强钢绞线网/ECC约束素混凝土”(以下简称HSE约束素混凝土)的受压性能。HSE约束素混凝土轴心受压试验显示,达到最大荷载的30%左右时,约束层ECC出现约为0.01 mm的竖向裂缝;约为最大荷载的85%时,表面最大裂缝宽度约为0.07 mm;达到最大荷载时,最大裂缝宽度仅为0.20 mm;说明该新型复合材料具有很好的裂缝分散和控制能力。之后荷载缓慢下降至最大荷载75%左右,第一根横向钢绞线断裂;达到破坏时裂而不碎,约束层和核心混凝土未发生黏结破坏,完整性良好。HSE约束素混凝土与素混凝土相比,其开裂应力提高了88%~116%;轴心抗压强度提高了21%~49%、轴心压应变增加了约45%;极限压应变提高了106%~175%。ECC强度和混凝土强度及横向钢绞线配筋率的提高,均增大其开裂和最大荷载及极限压应变。
-
关键词:
- 高强钢绞线网/ECC /
- 约束素混凝土 /
- 新型复合材料 /
- 轴压性能 /
- 试验研究
Abstract: The compressive performance of new composite material “concrete confined with high-strength stainless steel stranded wire meshes/ECC” (hereinafter referred to as HSE confined concrete) was studied by considering the effects of parameters: concrete strength, strength of engineered cementitious composites (ECC) and reinforcement ratio of lateral high-strength stainless steel stranded wires. The axial compression test of HSE confined concrete shows that vertical cracks about 0.01 mm appears on ECC in constraint layer at about 30% of the peak load. When the applied load reaches about 85% and 100% of the peak load, the maximum crack width on the surfaces is about 0.07 mm, 0.20 mm, respectively. These phenomena show that the new composite material has excellent crack dispersion and crack-controlling ability. When the applied load decreases to 75% of the peak load, the first lateral steel stranded wires rupture for the first time. The HSE confined concrete specimens are cracked without breaking when completely destroyed, and maintain a good bond between the constraint layer and core concrete, which has a good integrity. Compared with the plain concrete column, the cracking stress, axial compressive strength, the axial compressive strain and ultimate compressive strain of HSE confined concrete are increased by 88%-116%, 21%-49%, 45%, 106%-175%, respectively. The increases of ECC strength, concrete strength grade and the reinforcement ratio of lateral steel stranded wires have improved the cracking load, peak load and ultimate compressive strain of HSE confined concrete. -
-
表 1 高强钢绞线网/工程水泥基复合材料(ECC)约束素混凝土(HSE约束素混凝土)试件参数设置
Table 1 Parameters of test concrete confined with high-strength stainless steel stranded wire meshes/ engineered cementitious composites (ECC) (HSE confined concrete) specimens
Group Number Water-binder ratio of ECC s/mm ρw/% A C30-E1-S50 0.25 50 0.18 C30-E2-S50 0.25 (Thickener) 50 0.18 C30-E3-S50 0.28 50 0.18 B C30-E1-S70 0.25 70 0.13 C30-E1-S50 0.25 50 0.18 C30-E1-S30 0.25 30 0.30 C C35-E1-S50 0.25 50 0.18 C40-E1-S50 0.25 50 0.18 D C30-E0-S0 − − − C35-E0-S0 − − − C40-E0-S0 − − − Notes: s—Spacing of lateral steel stranded wires; ρw—Reinforcement ratio of lateral steel stranded wires. 表 2 混凝土立方体抗压试验结果
Table 2 Test results of concrete cubes under compression
Strength grade of concrete fcu/MPa fco/MPa Ec/104MPa C30 33.5 22.4 3.0 C35 38.2 25.5 3.15 C40 42.9 28.6 3.25 Notes: fcu—Average values of cube compressive strength; fco—Axial compressive strength; Ec—Elastic modulus. 表 3 ECC抗压和抗拉试验结果
Table 3 Test results of ECC under compression or tensile
Group fm,cu/MPa Ee/104MPa fm,t/MPa Ultimate tensile strain/% C30-E1-S50 38.8 1.71 4.52 2.58 C30-E2-S50 35.5 1.45 4.01 3.05 C30-E3-S50 33.5 1.27 3.34 3.01 C30-E1-S70 37.5 1.40 4.59 2.47 C30-E1-S50 37.1 1.38 4.63 2.47 C30-E1-S30 37.6 1.41 4.65 2.47 C35-E1-S50 38.1 1.53 4.72 2.59 C40-E1-S50 38.9 1.52 4.70 2.69 Notes: fm,cu—Compressive strength of ECC; Ee—Elastic modulus; fm,t—Tensile strength. 表 4 HSE约束素混凝土主要试验结果
Table 4 Main test results of HSE confined concrete
Group number fm,t/MPa Pcr/kN Pu/kN Pcr/Pu εec0 Ps/kN Ps/P0 εecu fec0/MPa C30-E1-S50 4.52 500 1586 0.32 0.0034 1157 0.73 0.0076 30.47 C30-E2-S50 4.04 480 1542 0.31 0.0032 1156 0.75 0.0074 31.15 C30-E3-S50 3.34 470 1498 0.32 0.0033 1168 0.78 0.0073 28.21 C30-E1-S70 4.59 500 1510 0.33 0.0032 1144 0.76 0.0068 29.91 C30-E1-S50 4.63 510 1591 0.32 0.0034 1178 0.74 0.0078 31.61 C30-E1-S30 4.65 530 1660 0.32 0.0032 1260 0.75 0.0091 34.66 C35-E1-S50 4.72 540 1752 0.31 0.0033 1340 0.76 0.0076 34.42 C40-E1-S50 4.70 580 1926 0.33 0.0032 1466 0.76 0.0078 38.14 C30-E0-S0 − 250 930 0.27 0.0022 − − − 23.25 C35-E0-S0 − 275 1056 0.26 0.0023 − − − 26.40 C40-E0-S0 − 300 1147 0.26 0.0022 − − − 28.68 Notes: Pcr—Cracking load of specimens; Pu—Peak load; εec0—Compressive strain corresponding to peak load (axial compressive strain); Ps—Load at the first rupture of the lateral steel stranded wires; εecu—Strain at the first rupture of the lateral steel stranded wires (ultimate compressive strain); fec0—Peak load (axial compressive strength). -
[1] 徐世烺, 李贺东. 超高韧性水泥基复合材料研究进展及其工程应用[J]. 土木工程学报, 2008, 41(6):45-60. DOI: 10.3321/j.issn:1000-131X.2008.06.008 XU Shilang, LI Hedong. A review on the development of research and application of ultra high toughness cementitious composites[J]. China Civil Engineering Journal,2008,41(6):45-60(in Chinese). DOI: 10.3321/j.issn:1000-131X.2008.06.008
[2] 刘伟康. ECC受压和受拉性能及本构模型研究[D]. 郑州: 郑州大学, 2018. LIU Weikang. Study on the compression and tensile properties and the constitutive model of ECC[D]. Zhengzhou: Zhengzhou University, 2018(in Chinese).
[3] SAID S H, RAZAK H A, OTHMAN I. Flexural behavior of engineered cementitious composite (ECC) slabs with polyvinyl alcohol fibers[J]. Construction and Building Materials,2015,75:176-188. DOI: 10.1016/j.conbuildmat.2014.10.036
[4] Li V C, LEUNG C K Y. Steady-state and multiple cracking of short random fiber composites[J]. Journal of Engineering Mechanics,1992,118(11):2246-2264. DOI: 10.1061/(ASCE)0733-9399(1992)118:11(2246)
[5] 李悦, 朱金才, 吴玉生. 纤维对水泥基材料力学性能的影响[J]. 华中科技大学学报(自然科学版), 2017, 45(11):57-61. LI Rui, ZHU Jincai, WU Yusheng. Effect of fiber on mechanical property of cementitious composite[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition),2017,45(11):57-61(in Chinese).
[6] 张富文, 李向民, 王卓琳, 等. 纤维增强水泥基复合材料加固震损RC框架抗震性能试验研究[J]. 建筑结构学报, 2017, 38(6):61-69. ZHANG Fuwen, LI Xiangming, WANG Zhuolin, et al. Experimental study on seismic behavior of earthquake-damaged RC frame strengthened by ECC[J]. Journal of Building Structures,2017,38(6):61-69(in Chinese).
[7] LI B B, XIONG H B, JIANG J F, et al. Tensile behavior of basalt textile grid reinforced engineering cementitious composite[J]. Composites Part B: Engineering,2018,156(1):185-200.
[8] ZHENG Y, ZHANG L F, XIA L P. Investigation of the behaviour of flexible and ductile ECC link slab reinforced with FRP[J]. Construction and Building Materials,2018,166(3):694-711.
[9] AL-GEMEEL A N, ZHUGR Y, YOUSSF O. Experimental investigation of basalt textile reinforced engineered cementitious composite under apparent hoop tensile loading[J]. Journal of Building Engineering,2019,23(5):270-279.
[10] 江佳斐, 隋凯. 纤维网格增强超高韧性水泥复合材料加固混凝土圆柱受压性能试验[J]. 复合材料学报, 2019, 36(8):1957-1967. JIANG Jiafei, SUI Kai. Experimental study on compressive performance of concrete cylinder strengthened by textile reinforced engineering cement composites[J]. Acta Materiae Composite Sinica,2019,36(8):1957-1967(in Chinese).
[11] 卜良桃, 李易越, 袁超, 等. PVA-ECC加固RC方柱轴压性能试验研究[J]. 建筑结构, 2012, 42(7):97-102. BU Liangtao, LI Yiyue, YUAN Chao, et al. Experimental study on bearing capacity of PVA-ECC reinforced concrete square columns subjected to axial load[J]. Building Structure,2012,42(7):97-102(in Chinese).
[12] 卜良桃, 袁超, 鲁晨, 等. 聚乙烯醇纤维水泥砂浆钢筋网加固RC柱偏压性能试验研究[J]. 建筑结构, 2013, 43(8):82-88. BU Liangtao, YUAN Chao, LU Chen, et al. Study on bearing capacity of PVA-ECC steel mesh reinforced concrete column subjected to eccentric load[J]. Building Structure,2013,43(8):82-88(in Chinese).
[13] 王新玲, 苏会晓, 李可, 等. FRP网格增强ECC加固素混凝土柱受压性能数值分析[J]. 建筑科学, 2018, 34(3):22-29. WANG Xinling, SU Huixiao, LI Ke, et al. Numerical analysis of compressive performance of plain concrete columns strengthened with FRP-Grid and ECC[J]. Building Science,2018,34(3):22-29(in Chinese).
[14] AL-GEMEEL A N, ZHUGR Y. Experimental investigation of textile reinforced engineered cementitious composite (ECC) for square concrete column confinement[J]. Construction and Building Materials,2018,174(6):594-602.
[15] AL-GEMEEL A N, ZHUGR Y. Using textile reinforced engineered cementitious composite for concrete columns confinement[J]. Composite Structures,2019,210(2):695-706.
[16] 朱俊涛, 张凯, 王新玲, 等. 高强不锈钢绞线网与ECC黏结-滑移关系模型[J]. 土木工程学报, 2020, 53(4):83-92. ZHU Juntao, ZHANG Kai, WANG Xinling, et al. Bond-slip relational model between high-strength stainless steel wire mesh and ECC[J]. China Civil Engineering Journal,2020,53(4):83-92(in Chinese).
[17] 王新玲, 杨广华, 钱文文, 等. 高强不锈钢绞线网增强工程水泥基复合材料受拉应力-应变关系[J]. 复合材料学报, 2020, 37(12):3321-3329. WANG Xinling, YANG Guanghua, QIAN Wenwen, et al. Tensile stress-strain relationship of engineered cementitious composites reinforced by high-strength stainless steel wire mesh[J]. Acta Materiae Compositae Sinica,2020,37(12):3321-3329(in Chinese).
[18] 王新玲, 罗鹏程, 钱文文, 等. 高强不锈钢绞线网增强工程水泥基复合材料薄板受弯承载力研究[J/OL]. 建筑结构学报: 2020. 0155. WANG Xinling, LUO Pengcheng, QIAN Wenwen, et al. Study on flexural bearing capacity of high strength stainless steel wire strand mesh reinforced ECC thin plate[J/OL]. Journal of Building Structures: 1-9[2020-10-07](in Chinese). 2020. 0155.
[19] 中华人民共和国住房和城乡建筑部. 混凝土结构加固设计规范: GB 50367—2013[S]. 北京: 中国建筑工业出版社, 2013. Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for design of strengthening concrete structures: GB 50367—2013[S]. Beijing: China Architecture & Building Press, 2013(in Chinese).
[20] 中华人民共和国住房和城乡建筑部. 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2015. Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for design of concrete structures: GB 50010—2010[S]. Beijing: China Architecture & Building Press, 2015(in Chinese).
[21] XU S L, CAI X R. Experimental study and theoretical models on compressive properties of ultra high toughness cementitious composites[J]. Journal of Materials in Civil Engineering,2010,22(10):1067-1077. DOI: 10.1061/(ASCE)MT.1943-5533.0000109
[22] 白亮, 周枫, 谢鹏飞, 等. 高延性纤维增强水泥基复合材料力学性能试验研究[J]. 工业建筑, 2017, 47(6):108-113. BAI Liang, ZHOU Fen, XIE Pengfei, et al. Experimental research on mechanical properties of engineered cementitious composites[J]. Industrial Construction,2017,47(6):108-113(in Chinese).
-
期刊类型引用(2)
1. 柯俊,李志虎,秦玉林. 金属主簧-复合材料副簧复合刚度计算模型. 汽车实用技术. 2021(05): 39-43 . 百度学术
2. 曾婷,王咏莉,尹忠旺,苏婷慧,师志峰,饶猛. 端面凸轮下压机构支承轴承冲击失效分析及优化(英文). 机床与液压. 2017(24): 37-42 . 百度学术
其他类型引用(5)
-