Crushing energy absorption characteristics and damage mechanism of carbon fiber-glass fiber hybrid reinforced epoxy 3D braided composite thin-walled circular tube
-
摘要: 基于三维编织成型及真空辅助树脂传递成型技术,制备了编织纱和轴纱不同混杂方式(编织纱/轴纱:碳纤维-碳纤维(CF-CF)、碳纤维-玻璃纤维(CF-GF);玻璃纤维-碳纤维(GF-CF))增强环氧树脂(EP)的三类三维编织复合材料薄壁圆管,通过准静态轴向压溃及详细的破坏断面观察,研究了纤维混杂方式对薄壁圆管的能量吸收性能和破坏模式的影响。研究发现:CF-CF/EP样品的比能量吸收值分别比GF-CF/EP大36%,比CF-GF/EP大12%。编织纱为碳纤维时(CF-CF/EP及CF-GF/EP),圆管的破坏模式均为折叠破坏模式,编织纱采用碳纤维能有效地遏制中央裂纹的轴向扩展,折叠变形的三维结构内部发生了较多细小的微观破坏。而编织纱为玻璃纤维的GF-CF/EP,破坏模式则为开花内外弯曲式,中央裂纹产生,三维结构呈现分层并向圆管内外弯曲。Abstract: Based on 3D braiding and vacuum assisted resin transfer molding, three types of epoxy (EP) matrix three-dimensional braided composite thin-walled circular tubes with different hybrid modes (braided yarn/axial yarn: carbon fiber-carbon fiber (CF-CF), carbon fiber-glass fiber (CF-GF), glass fiber-carbon fiber (GF-CF)) were prepared. Through quasi-static axial crushing and detailed observation of failure section, the influence of fiber hybrid mode of thin-walled tube on energy absorption performance and failure mode was studied. The results show that: the specific energy absorption values of CF-CF/EP samples are 36% and 12% higher than those of GF-CF/EP and CF-GF/EP, respectively. When the braided yarns are made of carbon fiber (CF-CF/EP and CF-GF/EP), the failure mode of circular tube is folding failure mode. Carbon fiber is used in braided yarn to effectively restrain the axial expansion of central crack, and more tiny micro damage occurs in the 3D structure of folding deformation. However, when the braided yarn is made of glass fiber (GF-CF/EP), and the failure mode is flowering and bending inside and outside, the central crack is produced, and the 3D structure presents delamination and bends to the inside and outside of circular tube.
-
-
表 1 原材料性能
Table 1 Properties of raw materials
Property T700 CF 398 GF JC-02A epoxy σ/MPa 4900 2450 — E/GPa 230 81.95 — ρ/(g·cm−3) 1.8 2.64 1.12 Notes:CF—Carbon fiber;GF—Glass fiber;σ—Tensile strength;E—Tensile modulus;ρ—Density. 表 2 三维编织复合材料薄壁圆管的参数
Table 2 Parameters of 3D braided composite thin-walled circular tube
Specimen θ/(°) T/mm Vcf/% Vgf/% CF-CF/EP 32 3.28 45.56 0 CF-GF/EP 33 3.47 27.67 18.86 GF-CF/EP 35 3.88 19.98 26.56 Notes:CF—Carbon fiber;GF—Glass fiber;EP—Epoxy resin; CF-CF/EP—Braiding yarn is CF,axial yarn is CF; CF-GF/EP—Braiding yarn is CF,axial yarn is GF;GF-CF/EP—Braiding yarn is GF,axial yarn is CF;Vcf—Fiber volume fraction of carbon fiber,Vgf—Fiber volume fraction of glass fiber;T—Thickness of wall;θ—Braiding angle. 表 3 三维编织复合材料薄壁圆管的能量吸收性能
Table 3 Energy absorption properties of 3D braided composite thin-walled circular tube
Type specimen Pmax/N SPmax UT/J SUT Es/(kJ·kg−1) SEs CF-CF/EP 42606.31 1205.96 996.36 47.34 80.58 4.12 CF-GF/EP 46503.92 1794.68 1124.13 9.24 70.45 0.37 GF-CF/EP 43561.49 1267.68 902.15 28.42 51.64 1.81 Notes:Pmax—Maximum load;UT—Total energy absorption;Es—Specific energy absorption;SPmax and SEs ,SUT—Standard deviation of Pmax and standard deviation of Es,UT. -
[1] 王宏雁, 周升波. 复合材料在汽车轻量化中的应用[J]. 汽车研究与开发, 2005(9):20-23. WANG H Y, ZHOU S B. Application of composite materials in automobile lightweight[J]. Automotive Research and Development,2005(9):20-23(in Chinese).
[2] 凌静, 王庆明. 复合材料部件在汽车轻量化中的应用[J]. 现代零部件, 2013(2):34-37. LING J, WANG Q M. Application of composite components in automobile lightweight[J]. Modern Parts,2013(2):34-37(in Chinese).
[3] 曾汉民. 高分子复合材料的进展−纤维增强树脂基复合材料Ⅰ:略论高分子复合材料的发展及其结构和性能的关系[J]. 材料工程, 1989(5):6-13. ZENG H M. Progress of polymer composites fiber reinforced resin matrix composites Ⅰ. Development of polymer composites and relationship between structure and properties[J]. Materials Engineering,1989(5):6-13(in Chinese).
[4] 曾汉民. 高分子复合材料的进展−纤维增强树脂基复合材料(续)Ⅱ:纤维增强材料和纤维增强热固性树脂复合材料[J]. 材料工程, 1989(6):8-20. ZENG H M. Progress of polymer composites fiber reinforced resin matrix composites (Continued) Ⅱ:Fiber reinforced materials and fiber reinforced thermosetting resin composites[J]. Materials Engineering,1989(6):8-20(in Chinese).
[5] 曾汉民. 高分子复合材料的进展−纤维增强树脂基复合材料(续)Ⅲ:纤维增强热塑性树脂复合材料最近的进展[J]. 材料工程, 1990(1):6-15. ZENG H M. Progress of polymer composites−fiber reinforced resin matrix composites(Continued)Ⅲ. Recent progress of fiber reinforced thermoplastic resin composites[J]. Materials Engineering,1990(1):6-15(in Chinese).
[6] BOISSE P, BAI R, COLMARS J, et al. The need to use generalized continuum mechanics to model 3D textile composite forming[J]. Springer Netherlands,2018,25(4):58-67.
[7] 肖丽华, 李嘉禄. 三维纺织复合材料[J]. 材料导报, 1993(6):68-73. XIAO L H, LI J L. 3D textile composites[J]. Materials Guide,1993(6):68-73(in Chinese).
[8] 郝新超, 胡杰. 三维编织技术在航空航天中的应用[J]. 中国科技信息, 2019(21):25-26. HAO X C, HU J. Application of 3D braiding technology in aerospace[J]. China Science and Technology Information,2019(21):25-26(in Chinese).
[9] ZHOU H L, HU D M, GU B H, et al. Transverse impact performance and finite element analysis of three dimensional braided composite tubes with different braiding layers[J]. Composite Structures,2017,168(15):345-359.
[10] GU B H, CHANG F K. Energy absorption features of 3-D braided rectangular composite under different strain rates compressive loading[J]. Aerospace Science and Technology,2007,11(7-8):535-545. DOI: 10.1016/j.ast.2007.03.004
[11] ZHANG D, ZHENG X T, WANG Z B, et al. Effects of braiding architectures on damage resistance and damage tolerance behaviors of 3D braided composites[J]. Composite Structures,2020(232):55-65.
[12] CHIU C H, LU C K, WU C M. Energy absorption characteristics of 3-D braided composite square tubes[J]. Composite Material,1997(31):2309-2327.
[13] 荆云娟, 韦鑫, 张元, 等. 三维编织复合材料的发展及应用现状[J]. 棉纺织技术, 2019, 47(11):79-84. DOI: 10.3969/j.issn.1001-7415.2019.11.020 JING Y J, WEI X, ZHANG Y, et al. Development and application status of 3D braided composites[J]. Cotton Textile Technology,2019,47(11):79-84(in Chinese). DOI: 10.3969/j.issn.1001-7415.2019.11.020
[14] XIE C, TAO G Q, LI Q, et al. Experiments and progressive damage analyses of three-dimensional five-directional braided composite joints for propeller[J]. Polymer Composites,2020,41(8):123-129.
[15] XIANG Y, DA Y L, ZHONG Z, et al. Thermo-mechanical stress analyses of solid oxide fuel cell anode based on three-dimensional microstructure reconstruction[J]. International Journal of Hydrogen Energy,2020,45(38):156-157.
[16] WANG Z Y, REN J, LIU R, et al. Three dimensional core-shell structured liquid metal/elastomer composite via coaxial direct ink writing for electromagnetic interference shielding[J]. Composites Part A: Applied Science and Manufacturing,2020,136:167-179.
[17] JEE Y C, MUSTAFA M, et al. Three dimensional optimisation for the enhancement of astaxanthin recovery from shrimp shell wastes by Aeromonas hydrophila[J]. Biocatalysis and Agricultural Biotechnology,2020,27:367-350.
[18] 陈利, 李嘉禄, 李学明. 三维四步法圆型编织结构分析[J]. 复合材料学报, 2003(02):76-80. DOI: 10.3321/j.issn:1000-3851.2003.02.014 CHEN L, LI J L, LI X M. Three dimensional four step circular braiding structure analysis[J]. Acta Materiae Compositae Sinica,2003(02):76-80(in Chinese). DOI: 10.3321/j.issn:1000-3851.2003.02.014
[19] ADARSH R, BHASKAR K. Three- dimensional analysis of composite FGM rectangular plates with in-plane heterogeneity[J]. International Journal of Mechanical Sciences,2019,160:156-168. DOI: 10.1016/j.ijmecsci.2019.06.031
[20] 陈旭元. 三维编织复合材料力学性能分析及其方法初探[J]. 建材与装饰, 2019(28):68-69. DOI: 10.3969/j.issn.1673-0038.2019.28.049 CHEN X Y. Analysis of mechanical properties of 3D braided composites and preliminary study on its methods[J]. Building Materials and Decoration,2019(28):68-69(in Chinese). DOI: 10.3969/j.issn.1673-0038.2019.28.049
[21] LI Y Y, PAN Z J, GU B H, et al. Numerical analysis of punch shear failure and stress characteristics of three-dimensional braided composite with different braiding angles[J]. International Journal of Damage Mechanics,2019,28(9):198-210.
[22] ZHANG W, MA Q S, DAI K W, et al. Fabrication and properties of three-dimensional braided carbon fiber reinforced SiO2-rich mullite composites[J]. Journal of Wuhan University of Technology(Materials Science),2019,34(4):569-577.
[23] FARLEY G L. Effect of specimen geometry on the energy absorption capability of composite materials[J]. Journal of Composite Materials,1986,20(4):390-400. DOI: 10.1177/002199838602000406
[24] THORNTON P H, EDWARDS P J. Energy absorption in composite tubes[J]. Journal of Composite Material,1982,16(6):521-545. DOI: 10.1177/002199838201600606
[25] 马岩, 阳玉球. 圆-方异形截面复合材料管件物能量吸收机制[J]. 复合材料学报, 2015, 32(1):243-249. MA Y, YANG Y Q. Energy absorption mechanism of composite pipe with round square cross section[J]. Acta Composite,2015,32(1):243-249(in Chinese).
-
期刊类型引用(2)
1. 向东,张学忠,陈小雨,武元鹏,叶勇,张杰,赵春霞,李云涛,王俊杰. 基于双向拉伸制备还原氧化石墨烯-碳纳米管复合薄膜的高性能柔性压阻传感器. 复合材料学报. 2022(03): 1120-1130 . 本站查看
2. 王亭亭,李巍,郑婵,陈文哲. 石墨烯纳米片/Si-Pb二元复合凝胶玻璃光限幅性能研究. 红外与激光工程. 2019(11): 23-27 . 百度学术
其他类型引用(3)
-