碳纤维/聚醚醚酮单向带各向异性导电行为的尺度效应

张金纳, 王朝阳, 朱世杰, 杨向涛, 吴海宏, 黄明

张金纳, 王朝阳, 朱世杰, 等. 碳纤维/聚醚醚酮单向带各向异性导电行为的尺度效应[J]. 复合材料学报, 2021, 38(3): 780-787. DOI: 10.13801/j.cnki.fhclxb.20200713.004
引用本文: 张金纳, 王朝阳, 朱世杰, 等. 碳纤维/聚醚醚酮单向带各向异性导电行为的尺度效应[J]. 复合材料学报, 2021, 38(3): 780-787. DOI: 10.13801/j.cnki.fhclxb.20200713.004
ZHANG Jinna, WANG Chaoyang, ZHU Shijie, et al. Thickness effect of anisotropic conductive behavior of carbon fiber/polyetheretherketone unidirectional tape[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 780-787. DOI: 10.13801/j.cnki.fhclxb.20200713.004
Citation: ZHANG Jinna, WANG Chaoyang, ZHU Shijie, et al. Thickness effect of anisotropic conductive behavior of carbon fiber/polyetheretherketone unidirectional tape[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 780-787. DOI: 10.13801/j.cnki.fhclxb.20200713.004

碳纤维/聚醚醚酮单向带各向异性导电行为的尺度效应

基金项目: 国家自然科学基金委-河南省联合基金重点项目(U1604253);国家重点研发计划(2016YFB0101602)
详细信息
    通讯作者:

    吴海宏,博士,教授,博士生导师,研究方向为碳纤维复合材料结构-功能一体化 E-mail:hhwu@haut.edu.cn

  • 中图分类号: TB332

Thickness effect of anisotropic conductive behavior of carbon fiber/polyetheretherketone unidirectional tape

  • 摘要: 具有导电各向异性的高分子复合材料(ACPCs)在场发射装置及传感器设计领域具有重要应用。常规的ACPCs很难获得超大导电各向异性系数,且力学性能有限。本文采用碳纤维(CF)宽展、表面浸润与树脂复合一体化超薄热塑性单向带制备方法,制备厚度为0.04 mm和0.1 mm的CF增强聚醚醚酮(CF/PEEK)复合材料单向带,以PEEK纤维为纬线制备CF/PEEK复合材料单向编织布,采用热成型工艺制备CF/PEEK复合材料单向层合板。利用数字万用表和霍尔效应系统测试层合板面内及厚度方向的电阻率和面内的电子迁移率;采用超景深显微镜观察CF/PEEK复合材料单向层合板面内和厚度方向的纤维排列形貌。结果表明,超薄CF/PEEK复合材料单向层合板面内(纤维方向与横向)导电率之比高达377,而面内横向和厚度方向的导电率之比接近1,表明CF/PEEK复合材料获得了良好的横观各向同性;超薄化CF/PEEK复合材料的面内电子迁移行为同样具有巨大的各向异性,这一结果为CF/PEEK复合材料在场发射器件、传感器设计及其灵敏度调控方面提供了实验基础。
    Abstract: The conductive anisotropic polymer composites (ACPC) have important applications like field emission devices and electronic sensors. Conventional ACPC are difficult to obtain large conductive anisotropy coefficients and present limited mechanical properties. In this paper, novel technology integrated carbon fiber (CF) spread, surface modification with stacking thermoplastic film was used to prepare CF reinforced polyetheretherketone (CF/PEEK) composite unidirectional tape with thicknesses of 0.04 mm and 0.1 mm. CF/PEEK composite unidirectional woven cloth was prepared with PEEK fiber was used as a binder weft, and CF/PEEK composite unidirectional laminate was prepared by thermoforming process. The in-plane and the thickness directional resistivities of unidirectional laminate were measured by digital multimeter and in-plane electron mobility was tested by Hall effect system. The fiber arrangement within in-planes along the fiber direction and the thickness direction of CF/PEEK composite unidirectional laminate were observed with an ultra-depth microscope. The results show that the in-plane (fiber direction to transverse direction) conductivity ratio of ultra-thin CF/PEEK composite unidirectional laminate reaches to 377, while conductive ratio in the transverse direction to the thickness direction is close to 1, indicating that thin CF/PEEK composite unidirectional laminate presents transverse isotropic electric performance. The results of electron migration also indicate in-plane huge anisotropic conductivity. The results are important for CF/PEEK composite to be used in field emission devices and electronic sensors.
  • 图  1   碳纤维增强聚醚醚酮(CF/PEEK)复合材料单向预浸带和片材制备过程示意图

    Figure  1.   Schematic diagram of carbon fiber reinforcedpolyetheretherketone (CF/PEEK) composite unidirectional prepreg tape and sheet preparation process

    图  2   CF/PEEK复合材料单向织物

    Figure  2.   CF/PEEK composite unidirectional fabric

    图  3   电阻率测试方法示意图

    Figure  3.   Schematic diagram of resistivity test method ((a) Thickness direction resistance test; (b) Fiber direction and transverse resistance test))

    图  4   霍尔效应原理示意图

    Figure  4.   Schematic diagram of Hall effect

    图  5   电子迁移率测试样品示意图

    Figure  5.   Schematic diagram of electron mobility test sample ((a) Schematic diagram of Hall rod sample; (b)Measured sample))

    图  6   CF/PEEK 复合材料三个方向的导电率

    Figure  6.   Conductivity of CF/PEEK compositealong three directions

    图  7   CF/PEEK复合材料面内电子的迁移率

    Figure  7.   Mobility of electron in plane of CF/PEEK composite

    图  8   CF/PEEK复合材料的微观形貌

    Figure  8.   Micro-morphology of CF/PEEK composites

    图  9   CF空间排列模型

    Figure  9.   Models of CF alignments

  • [1]

    WAN J Y, SONG J W, YANG Z, et al. Highly anisotropic conductors[J]. Advanced Materials,2017,29(41):1703331-1703339. DOI: 10.1002/adma.201703331

    [2]

    TAWFICK S, VOLDER M D, COPIC D, et al. Engineering of micro- and nanostructured surfaces with anisotropic geometries and properties[J]. Advanced Materials,2012,24(13):1628-1674. DOI: 10.1002/adma.201103796

    [3]

    TAI X Y, WU G Z, TOMINGAGA Y, et al. An approach to one-dimensional conductive polymer composites[J]. Journal of Polymer Science Part B: Polymer Physics,2005,43(2):184-189. DOI: 10.1002/polb.20305

    [4]

    GAO J F, YAN D X, YUAN B, et al. Large-scale fabrication and electrical properties of an anisotropic conductive polymer composite utilizing preferable location of carbon nanotubes in a polymer blend[J]. Composites Science and Technology,2010,70(13):1973-1979. DOI: 10.1016/j.compscitech.2010.07.019

    [5]

    KIMURA T, AGO H, TOBITA M, et al. Polymer composites of carbon nanotubes aligned by a magnetic field[J]. Advanced Materials,2002,14(19):1380-1383. DOI: 10.1002/1521-4095(20021002)14:19<1380::AID-ADMA1380>3.0.CO;2-V

    [6]

    MAO C, HUANG J R, ZHU Y T, et al. Tailored parallel graphene stripes in plastic film with conductive anisotropy by shear-induced self-assembly[J]. The Journal of Physical Chemistry Letters,2013,4(1):43-47. DOI: 10.1021/jz301811b

    [7]

    GAO J F, HUANG H D, YAN D X, et al. Resistivity relaxation of anisotropic conductive polymer composites[J]. Journal of Macromolecular Science Part B: Physics,2013,52(6):788-796. DOI: 10.1080/00222348.2012.730356

    [8]

    LI X H, CAI J, SHI Y Y, et al. Remarkable conductive anisotropy of metallic microcoil/PDMS composites made by electric field induced alignment[J]. ACS Applied Materials & Interfaces,2017,9(2):1593-1601.

    [9]

    WANG H W, CHEN M L, ZHU M G, et al. Gate tunable giant anisotropic resistance in ultra-thin GaTe[J]. Nature communications,2019,10:2302.

    [10]

    GUO Y L, JIA Y X, XU Y Z, et al. Enhanced lightning strike protection of carbon fiber composites using expanded foils with anisotropic electrical conductivity[J]. Composites Part A: Applied Science and Manufacturing,2019,117:211-218. DOI: 10.1016/j.compositesa.2018.11.022

    [11] 屈莹莹, 赵帅国, 代坤, 等. 各向异性导电高分子复合材料的研究进展[J]. 塑料工业, 2012, 40(5):22-25, 56.

    QU Y Y, ZHAO S G, DAI K, et al. Research progresson anisotropic conductive polymer composites[J]. China Plastics Industry,2012,40(5):22-25, 56(in Chinese).

    [12] 张诚, 陈孟奇, 马淳安. 降低导电高分子复合材料渗流阈值的研究进展[J]. 工程塑料应用, 2009, 37(2):76-79. DOI: 10.3969/j.issn.1001-3539.2009.02.020

    ZHANG C, CHEN M Q, MA C A. Research progress of reducing the percolation threshold for conductive composites[J]. Engineering Plastics Application,2009,37(2):76-79(in Chinese). DOI: 10.3969/j.issn.1001-3539.2009.02.020

    [13]

    CAO M S, SONG W L, HOU Z L, et al. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave absorption of short carbon fiber/silica composites[J]. Carbon,2010,48(3):788-796. DOI: 10.1016/j.carbon.2009.10.028

    [14] 樊玮, 张超, 刘天西. 石墨烯/聚合物复合材料的研究进展[J]. 复合材料学报, 2013, 30(1):14-21. DOI: 10.13801/j.cnki.fhclxb.2013.01.020

    FAN W, ZHANG C, LIU T X. Research progress of graphene/polymer composites[J]. Acta Materiae Compositae Sinica,2013,30(1):14-21(in Chinese). DOI: 10.13801/j.cnki.fhclxb.2013.01.020

    [15]

    PARK J B, HWANG T K, KIM H G. Experimental and numerical study of the electrical anisotropy in unidirectional carbon-fiber-reinforced polymer composites[J]. Smart Materials and Structures,2007,16(1):57-66. DOI: 10.1088/0964-1726/16/1/006

    [16] 姜恺悦, 张卫东, 邱华, 等. 飞机抗雷击复合材料的研究进展[J]. 粘接, 2017(11):60-63. DOI: 10.3969/j.issn.1001-5922.2017.11.011

    JIANG K Y, ZHANG W D, QIU H, et al. Research progress of anti-lightning composite materials for aircraft[J]. Adhesion,2017(11):60-63(in Chinese). DOI: 10.3969/j.issn.1001-5922.2017.11.011

    [17] 孙晋茹, 姚学玲, 许雯珺, 等. 非破坏雷电流A分量作用下碳纤维复合材料的动态特性[J]. 西安交通大学学报, 2016, 50(6):130-135. DOI: 10.7652/xjtuxb201606020

    SUN J R, YAO X L, XU W J, et al. Dynamic characteristics of carbon fiber composites under nondestructive lightning current A component[J]. Journal of Xi’an Jiaotong University,2016,50(6):130-135(in Chinese). DOI: 10.7652/xjtuxb201606020

    [18]

    EL-SAWI I, OLIVIER P A, DEMONT P, BOUGHERARA H. Processing and electrical characterization of a unidirectional CFRP composite filled with double walled carbon nanotubes[J]. Composites Science and Technology,2012,73:19-26. DOI: 10.1016/j.compscitech.2012.08.016

    [19]

    KIM K W, HAN W, KIM B S, et al. A study on EMI shielding enhancement behaviors of Ni-plated CFs-reinforced polymer matrix composites by post heat treatment[J]. Applied Surface Science,2017,415:55-60. DOI: 10.1016/j.apsusc.2017.01.108

    [20]

    SU Y C, ZHOU B Y, LIU L F, et al. Electromagnetic shielding and corrosion resistance of electroless Ni-P and Ni-P-Cu coatings on polymer/carbon fiber composites[J]. Polymer Composites,2015,36(5):923-930. DOI: 10.1002/pc.23012

    [21]

    REHBEIN J, WIERACH P, GRIES T, et al. Improved electrical conductivity of NCF-reinforced CFRP for higher damage resistance to lightning strike[J]. Composites Part A: Applied Science and Manufacturing,2017,100:352-360. DOI: 10.1016/j.compositesa.2017.05.014

    [22]

    CHAUHAN A K, GUPTA S K, TAGUCHI D, et al. Enhancement of the carrier mobility of conducting polymers by formation of their graphene composites[J]. RSC Advances,2017,7(20):11913-11920. DOI: 10.1039/C6RA26195G

    [23]

    FUHRER M S, DURKOP T, GETTY S A, et al. Extraordinary mobility in semiconducting carbon nanotubes[J]. Nano letters,2004,4(1):35-39. DOI: 10.1021/nl034841q

    [24] 刘青爽, 刘晓萍. 载流子迁移率测量方法总结[J]. 山西电子技术, 2009(4):9, 32.

    LIU Q S, LIU X P. The summary on methods of carrier mobility measuring[J]. Shanxi Electronic Technology,2009(4):9, 32(in Chinese).

    [25]

    CAO M S, FANG X Y, YU X X, et al. Temperature- and thickness-dependent electrical conductivity of few-layer graphene and graphene nanosheets[J]. Physics Letters A,2015,379(37):2245-2251. DOI: 10.1016/j.physleta.2015.06.063

    [26]

    BALCI O, POLAT E O, KAKENOV N, et al. Graphene-enabled electrically switchable radar-absorbing surfaces[J]. Nature communications,2015,6:6628.

    [27] 李世超, 张正, 巴文兰, 等. 超薄预浸料对碳纤维/环氧树脂复合材料导电性能的影响[J]. 复合材料学报, 2020, 37(3):539-545.

    LI S C, ZHANG Z, BA W L, et al. Effect of ultra-thin prepreg on conductive properties of carbon fiber/epoxy composites[J]. Acta Materiae Compositae Sinica,2020,37(3):539-545(in Chinese).

    [28]

    ZHAO K, LI S S, HUANG M, et al. Remarkably anisotropic conductive MWCNTs/polypropylene nanocomposites with alternating microlayers[J]. Chemical Engineering Journal,2019,358:924-935. DOI: 10.1016/j.cej.2019.02.185

    [29] 刘恩科, 朱秉升, 罗晋生, 等. 半导体物理学[M]. 第七版. 北京: 电子工业出版社, 2011.

    LIU E K, ZHU B S, LUO J S, et al. The physics of semiconductors[M]. 7th Edition, Beijing: Publishing House of Electronics Industry, 2011(in Chinese).

    [30]

    YU H, HEIDER D, ADVANI S. A 3D microstructurebased resistor network model for the electrical resistivity of unidirectional carbon composites[J]. Composite Structures,2015,134:740-749. DOI: 10.1016/j.compstruct.2015.08.131

    [31]

    BODAGHI M, CATALANOTTI G, CORREIA N. On the statistics of transverse permeability of randomly distributed fibers[J]. Composite Structures,2016,158:323-332. DOI: 10.1016/j.compstruct.2016.09.045

    [32]

    HOLM R. The electric tunnel effect across thin insulator films in contacts[J]. Journal of Applied Physics,1951,22(5):569-574. DOI: 10.1063/1.1700008

图(9)
计量
  • 文章访问数:  1274
  • HTML全文浏览量:  551
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-05
  • 录用日期:  2020-06-15
  • 网络出版日期:  2020-07-12
  • 刊出日期:  2021-03-14

目录

    /

    返回文章
    返回