纳米SiO2与间苯二酚-双(二苯基磷酸酯)对聚碳酸酯-ABS合金的协同阻燃机制

高顺, 郭正虹

高顺, 郭正虹. 纳米SiO2与间苯二酚-双(二苯基磷酸酯)对聚碳酸酯-ABS合金的协同阻燃机制[J]. 复合材料学报, 2020, 37(11): 2897-2907. DOI: 10.13801/j.cnki.fhclxb.20200311.002
引用本文: 高顺, 郭正虹. 纳米SiO2与间苯二酚-双(二苯基磷酸酯)对聚碳酸酯-ABS合金的协同阻燃机制[J]. 复合材料学报, 2020, 37(11): 2897-2907. DOI: 10.13801/j.cnki.fhclxb.20200311.002
GAO Shun, GUO Zhenghong. Synergistic flame retardant mechanism of nano SiO2 and resorcinol bis(diphenylphosphate) on polycarbonate-ABS blends[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2897-2907. DOI: 10.13801/j.cnki.fhclxb.20200311.002
Citation: GAO Shun, GUO Zhenghong. Synergistic flame retardant mechanism of nano SiO2 and resorcinol bis(diphenylphosphate) on polycarbonate-ABS blends[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2897-2907. DOI: 10.13801/j.cnki.fhclxb.20200311.002

纳米SiO2与间苯二酚-双(二苯基磷酸酯)对聚碳酸酯-ABS合金的协同阻燃机制

基金项目: 国家自然科学基金(51991355)
详细信息
    通讯作者:

    郭正虹,博士,副教授,研究方向为阻燃高分子复合材料 E-maill:guozhenghong@nit.zju.edu.cn

  • 中图分类号: TB324

Synergistic flame retardant mechanism of nano SiO2 and resorcinol bis(diphenylphosphate) on polycarbonate-ABS blends

  • 摘要: 选用以凝聚相阻燃机制为主的间苯二酚-双(二苯基磷酸酯)(RDP)作为阻燃剂,纳米SiO2为协效剂,以熔融共混法制备了聚碳酸酯(PC)-丙烯腈-丁二烯-苯乙烯共聚物(ABS)阻燃合金。通过垂直燃烧(UL94)和锥形量热测试(Cone)探究了纳米SiO2与RDP复配对PC-ABS合金阻燃性能和燃烧行为的影响。采用SEM观察燃烧残炭的微观形貌,用EDS分析炭层表面元素含量的变化,进一步探究了纳米SiO2与RDP在PC-ABS凝聚相中的协效阻燃机制。通过拉伸性能和冲击性能测试研究纳米SiO2与RDP复配对PC-ABS合金力学性能的影响及甲基丙烯酸甲酯-丁二烯-苯乙烯(MBS)对PC-ABS合金的增韧增容作用。结果表明,纳米SiO2与RDP可以在凝聚相中形成Si—O—P化合物,对PC-ABS合金的燃烧炭层起到增强作用,从而改善PC-ABS合金的阻燃性能;适量MBS的加入可以提高PC-ABS合金的冲击强度和断裂伸长率,但会降低其阻燃性能。
    Abstract: The flame retardant polycarbonate (PC)-acrylonitrile-butadiene-styrene (ABS) blends was prepared by melt blending with resorcinol bis(diphenylphosphate) (RDP) (mainly based on condensed phase flame retardant mechanism) and nano SiO2 as the synergist. The effects of nano SiO2 and RDP on the flame retardancy and combustion behavior of PC-ABS blends were investigated by vertical combustion (UL94) and cone calorimetry (Cone). SEM was used to observe the micro morphology of burning carbon residue, and EDS was used to analyze the change of element content on the surface of carbon layer, so as to further explore the synergistic flame retardant mechanism of nano SiO2 and RDP in the condensed phase of PC-ABS. The effects of nano SiO2 and RDP on the mechanical properties of PC-ABS blends and the toughening and compatibilizing effects of methyl methacrylate-butadiene-styrene (MBS) on the blends were studied by tensile and impact tests. The results show that nano SiO2 and RDP can form Si—O—P compound in the condensed phase, which can enhance the combustion carbon layer, thus improving the flame retardancy of PC-ABS blends; The impact strength and elongation at break of the PC-ABS blends can be increased with the addition of MBS, but the flame retardancy can be decreased.
  • 图  1   SiO2-RDP/(PC-ABS)阻燃合金的热释放速率、质量损失、总热释放量、总生烟量、烟释放速率、CO生成率和CO2生成率的曲线

    Figure  1.   Heat release rate, mass loss, total heat release, total smoke release, smoke production rate, volume fraction of CO and volume fraction of CO2 curves of SiO2-RDP/PC-ABS flame retardant blends

    图  2   10RDP/(PC-ABS)((a)~(c))、1SiO2-10RDP/(PC-ABS)((d)~(f))和1SiO2/(PC-ABS)((g)~(i))阻燃合金的燃烧残炭形貌

    Figure  2.   Morphologies of char residues of 10RDP/(PC-ABS)((a)–(c)), 1SiO2-10RDP/(PC-ABS)((d)–(f)) and 1SiO2/(PC-ABS)((g)–(i)) flame retardant blends

    图  3   10RDP/(PC-ABS)(a)、1SiO2-10RDP/(PC-ABS)(b)和1SiO2/(PC-ABS)(c)阻燃合金燃烧残炭的SEM图像

    Figure  3.   SEM images of char residues of 10RDP/(PC-ABS)(a), 1SiO2-10RDP/(PC-ABS)(b) and 1SiO2/(PC-ABS)(c) flame retardant blends

    图  4   1SiO2-10RDP/(PC-ABS)阻燃合金燃烧残炭表面的P元素(a)和Si元素(b)分布

    Figure  4.   P distribution(a) and Si distribution(b) of char residues of 1SiO2-10RDP/(PC-ABS) flame retardant blends

    图  5   SiO2-RDP-MBS/(PC-ABS)阻燃合金的力学性能

    Figure  5.   Mechanical properties of SiO2-RDP-MBS/(PC-ABS) flame retardant blends

    图  6   PC-ABS ((a)、(b))、10RDP/(PC-ABS) ((c)、(d))、1SiO2-10RDP/(PC-ABS) ((e)、(f))和1SiO2-10RDP-20MBS/(PC-ABS)((g)、(h))阻燃合金缺口冲击断面的SEM图像

    Figure  6.   SEM images of notched impact cross section of PC-ABS ((a),(b)), 10RDP/(PC-ABS) ((c),(d)), 1SiO2-10RDP/(PC-ABS) ((e),(f)) and 1SiO2-10RDP-20MBS/(PC-ABS) ((g),(h)) flame retardant blends

    表  1   SiO2-间苯二酚-双(二苯基磷酸酯)-甲基丙烯酸甲酯-丁二烯-苯乙烯/(聚碳酸酯-丙烯腈-丁二烯-苯乙烯共聚物)(SiO2-RDP-MBS/(PC-ABS))阻燃合金配比

    Table  1   Formulations of SiO2-resorcinol bis(diphenylphosphate)-methyl methacrylate-butadiene-styrene/(polycarbonate-acrylonitrile-butadiene-styrene)(SiO2-RDP-MBS/(PC-ABS)) flame retardant blends wt%

    SamplePCABSRDPSiO2PTFEMBS
    10RDP/(PC-ABS) 62.7 26.9 10 0.4
    0.5SiO2-10RDP/(PC-ABS) 62.4 26.7 10 0.5 0.4
    1SiO2-10RDP/(PC-ABS) 62.0 26.6 10 1 0.4
    2SiO2-10RDP/(PC-ABS) 61.3 26.3 10 2 0.4
    3SiO2-10RDP/(PC-ABS) 60.6 26.0 10 3 0.4
    4SiO2-10RDP/(PC-ABS) 59.9 25.7 10 4 0.4
    5SiO2-10RDP/(PC-ABS) 58.9 25.2 10 5 0.4
    6SiO2-10RDP/(PC-ABS) 58.5 25.1 10 6 0.4
    7SiO2-10RDP/(PC-ABS) 57.8 24.8 10 7 0.4
    1SiO2/(PC-ABS) 69.0 29.6 1 0.4
    1SiO2-10RDP-5MBS/(PC-ABS) 58.5 25.1 10 1 0.4 5
    1SiO2-10RDP-10MBS/(PC-ABS) 55.0 23.6 10 1 0.4 10
    1SiO2-10RDP-15MBS/(PC-ABS) 51.5 22.1 10 1 0.4 15
    1SiO2-10RDP-20MBS/(PC-ABS) 48.0 20.6 10 1 0.4 20
    1SiO2-10RDP-25MBS/(PC-ABS) 44.5 19.1 10 1 0.4 25
    Note: PTFE—Polytetrafluoroethylene.
    下载: 导出CSV

    表  2   SiO2-RDP-MBS/(PC-ABS)阻燃合金的垂直燃烧 (UL94) 测试结果

    Table  2   Vertical combustion (UL94) results of SiO2-RDP-MBS/(PC-ABS) flame retardant blends

    Samplet1/st2/st1+t2/sDrippingUL94
    10RDP/(PC-ABS) 12.1 20.3 32.4 N V-1
    0.5SiO2-10RDP/(PC-ABS) 21.4 24.5 45.9 N V-1
    1SiO2-10RDP/(PC-ABS) 3.1 8.9 12.0 N V-0
    2SiO2-10RDP/(PC-ABS) 11.3 31.4 42.7 N V-1
    3SiO2-10RDP/(PC-ABS) 16.8 26.1 42.9 N V-1
    4SiO2-10RDP/(PC-ABS) 25.7 38.7 64.4 N V-1
    5SiO2-10RDP/(PC-ABS) >30.0 >60.0 >60.0 Y No-rating
    6SiO2-10RDP/(PC-ABS) >30.0 >60.0 >60.0 Y No-rating
    7SiO2-10RDP/(PC-ABS) >30.0 >60.0 >60.0 Y No-rating
    1SiO2/(PC-ABS) >30.0 >60.0 >60.0 N No-rating
    1SiO2-10RDP-5MBS/(PC-ABS) 16.2 24.5 40.7 N V-1
    1SiO2-10RDP-10MBS/(PC-ABS) 31.3 50.4 81.7 N V-2
    1SiO2-10RDP-15MBS/(PC-ABS) >30.0 >60.0 >60.0 Y No-rating
    1SiO2-10RDP-20MBS/(PC-ABS) >30.0 >60.0 >60.0 Y No-rating
    1SiO2-10RDP-25MBS/(PC-ABS) >30.0 >60.0 >60.0 Y No-rating
    Notes: t1—Self-extinguishing time after the first ignition; t2—Self-extinguishing time after the second ignition;Y—Yes; N—No.
    下载: 导出CSV

    表  3   SiO2-RDP/(PC-ABS)阻燃合金的锥形量热测试结果

    Table  3   Cone data for SiO2-RDP/(PC-ABS) flame retardant blends

    Sample10RDP/(PC-ABS)1SiO2-10RDP/(PC-ABS)1SiO2/(PC-ABS)
    tign/s 41.5±0.5 42.0±1.0 38.5±0.5
    tPHRR/s 155.0±5.0 167.5±2.5 70±0.1
    PHRR/(kW·m−2) 444.8±22.3 379.1±5.4 566.1±16.8
    THR/(MJ·m−2) 68.2±0.4 70.4±1.5 92.0±1.3
    AHRR/(kW·m−2) 135.9±2.1 142.7±0.6 224.3±2.3
    AMLR/(g·s−1) 0.060±0.001 0.062±0.002 0.082±0.002
    AEHC/(MJ·kg−1) 19.9±0.1 20.4±0.6 24.5±0.4
    ASEA/(m2·kg−1) 1 048.1±35.8 1 068.0±15.1 838.2±45.4
    ACOY/(kg·kg−1) 0.146±0.001 0.156±0.002 0.083±0.001
    ACO2Y/(kg·kg−1) 1.383±0.001 1.382±0.014 1.738±0.041
    TSR/(m2·m−2) 3 592.1±102.9 3 682.1±85.3 3 156.6±182.8
    CHR/% 6.86±0.03 6.94±0.53 5.76±0.98
    FGI/(kW·m−2·s−1) 2.87 2.26 8.09
    FPI/(m2·s·kW−1) 0.093 0.110 0.068
    Notes: PHRR—Peak heat release rate; THR—Total heat release at 600 s; AHRR—Average heat release rate; AMLR—Average mass loss rate; AEHC—Average effective heat of combustion; ASEA—Average specific extinction area; ACOY—Average yield of CO; ACO2Y—Average yield of CO2; TSR—Total smoke release; CHR—Char residue; FGI—Fire spread index; FPI—Fire performance index; tign—Time to ignition; tPHRR—Time to PHRR.
    下载: 导出CSV

    表  4   10RDP/(PC-ABS)、1SiO2-10RDP/(PC-ABS)和1SiO2/(PC-ABS)阻燃合金锥形量热测试后残炭的EDS分析

    Table  4   EDS analysis of char residues of 10RDP/(PC-ABS), 1SiO2-10RDP/(PC-ABS) and 1SiO2/(PC-ABS) flame retardant blends after Cone tests

    SampleElement/at%
    COPSi
    1SiO2/(PC-ABS) 83.89 16.09 0.03
    10RDP/(PC-ABS) 79.44 18.02 2.54
    1SiO2-10RDP/(PC-ABS) 54.17 36.71 7.24 1.88
    下载: 导出CSV

    表  5   SiO2-RDP-MBS/(PC-ABS)阻燃合金的缺口冲击强度、拉伸强度、断裂伸长率和弹性模量

    Table  5   Izod impact strength、tensil strength、elongation at break and tensile modulus of SiO2-RDP-MBS/(PC-ABS) flame retardant blends

    SampleIzod impact strength/(kJ·m−2)Tensile strength/MPaElongation at break/%Tensile modulus/MPa
    10RDP/(PC-ABS) 8.6±2.4 51.4±2.8 19.2±5.1 838.7±146.2
    1SiO2-10RDP/(PC-ABS) 6.0±1.1 50.9±3.7 18.6±3.1 893.2±168.4
    1SiO2-10RDP-5MBS/(PC-ABS) 8.1±0.6 47.8±2.4 14.9±3.1 372.2±366.1
    1SiO2-10RDP-10MBS/(PC-ABS) 13.1±3.5 39.8±2.9 25.1±6.8 504.1±84.6
    1SiO2-10RDP-15MBS/(PC-ABS) 15.4±1.5 36.9±2.9 37.9±5.8 406.2±178.5
    1SiO2-10RDP-20MBS/(PC-ABS) 26.8±3.5 32.3±3.3 29.1±4.1 414.9±105.9
    1SiO2-10RDP-25MBS/(PC-ABS) 23.1±0.9 27.7±2.6 24.5±8.1 468.1±149.1
    下载: 导出CSV
  • [1]

    LEE E J, PARK H J, KIM S M, et al. Effects of molecular weight of PC on mechanical properties of PC/ABS blends using high-shear rate processing[J]. Korean Chemical Engineering Research,2018,56(3):343-348.

    [2]

    PAWLOWSKI K H, SCHARTEL B. Flame retardancy mechanisms of aryl phosphates in combination with boehmite in bisphenol a polycarbonate/acrylonitrile-butadiene-styrene blends[J]. Polymer Degradation and Stability,2008,93(3):657-667. DOI: 10.1016/j.polymdegradstab.2008.01.002

    [3] 朱世东, 徐自强, 白真权 , 等. 纳米材料国内外研究进展Ⅱ: 纳米材料的应用与制备方法法[J]. 热处理技术与装备, 2010, 31(4):1-8. DOI: 10.3969/j.issn.1673-4971.2010.04.001

    ZHU Shidong, XU Ziqiang, BAI Zhenquan, et al. Research of the nano-materials at home and abroad Ⅱ: The applications and preparation of the nano-material[J]. Heat Treatment Technology and Equipment,2010,31(4):1-8(in Chinese). DOI: 10.3969/j.issn.1673-4971.2010.04.001

    [4]

    BEE S T, LIM K S, SIN L T, et al. Interactive effect of ammonium polyphosphate and montmorillonite on enhancing flame retardancy of PC/ABS composites[J]. Iranian Polymer Journal,2018,27(11):899-911. DOI: 10.1007/s13726-018-0664-z

    [5]

    ZHANG W, LI Y G, MA H J, et al. Novel phosphorus-nitrogen-silicon copolymers with double-decker silsesquioxane in the main chain and their flame retardancy application in PC/ABS[J]. Fire and Materials,2018,42(8):946-957. DOI: 10.1002/fam.2649

    [6]

    WEI P, TIAN G H, YU H Z, et al. Synthesis of a novel organic-inorganic hybrid mesoporous silica and its flame retardancy application in PC/ABS[J]. Polymer Degradation and Stability,2013,98(5):1022-1029. DOI: 10.1016/j.polymdegradstab.2013.02.006

    [7]

    ZHENG K, CHEN L, LI Y, et al. Praparation and thermal properties of silica-graft acrylonitrile-butadiene-styrene nanocomposites[J]. Polymer Engineering and Science,2004,44(6):1077-1082. DOI: 10.1002/pen.20100

    [8] 徐晓楠, 卢林刚, 殷全明, 等. 四苯基双酚A二磷酸酯及复配纳米SiO2体系阻燃PC/ABS合金的热动力学分析[J]. 火灾科学, 2009, 18(2):95-100. DOI: 10.3969/j.issn.1004-5309.2009.02.008

    XU Xiaonan, LU Lingang, YIN Quanming, et al. Kinetic study on pyrolysis of rolysis of bisphenol A diphosphate flame-retarded PC/ABS[J]. Fire Science,2009,18(2):95-100(in Chinese). DOI: 10.3969/j.issn.1004-5309.2009.02.008

    [9] 钟柳, 刘治国, 欧育湘. BDP阻燃PC/ABS及其复合材料的阻燃性和热降解动力学[J]. 中国塑料, 2008, 22(5):25-29.

    ZHONG Liu, LIU Zhiguo, OU Yuxiang. Flame retardancy and kinetics of thermal degradation of flame retardant PC/ABS and its nanocomposites[J]. China Plastics,2008,22(5):25-29(in Chinese).

    [10]

    ASTM International. Standard test method for measuring the minimum oxygen concentration to support candle-like combustion of plastics (oxygen index): ASTM D2863—19[S]. West Conshohocken: ASTM International, 2019.

    [11] 中国国家标准化管理委员会. 塑料 悬臂梁冲击强度的测定: GB/T 1843—2008[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People’s Republic of China. Plastics: Determination of izod impact strength: GB/T 1843—2008[S]. Beijing: China Standards Press, 2009(in Chinese).

    [12] 中国国家标准化管理委员会. 塑料 拉伸性能的测定 第2部分: 模塑和挤塑塑料的试验条件: GB/T 1040.2—2006[S]. 北京: 中国标准出版社, 2007.

    Standardization Administration of the People’s Republic of China. Plastics: Determination of tensile properties Part 2: Test conditions for moulding and extrusion plastics: GB/T 1040.2—2006[S]. Beijing: China Standards Press, 2007(in Chinese).

    [13]

    International Organization for Standardization. Reaction-to-fire tests: Heat release, smoke production and mass loss rate Part 1: Heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement): ISO 5660—1∶2015[S]. Geneva: International Organization for Standardization, 2015.

    [14]

    JANG B N, WILKIE C A. The thermal degradation of bisphenol A polycarbonate in air[J]. Thermochimica Acta,2005,426(1-2):73-84.

    [15]

    REALINHO V, HAURIE L, FORMOSA J, et al. Flame retardancy effect of combined ammonium polyphosphate and aluminium diethyl phosphinate in acrylonitrile-butadiene-styrene[J]. Polymer Degradation and Stability,2018,155:208-219. DOI: 10.1016/j.polymdegradstab.2018.07.022

    [16]

    FENG J, CARPANESE C, FINA A. Thermal decomposition investigation of ABS containing Lewis-acid type metal salts[J]. Polymer Degradation and Stability,2016,129:319-327. DOI: 10.1016/j.polymdegradstab.2016.05.013

    [17]

    PAPASPYRIDES C D, KILIARIS P. Polymer green flame retardants[M]. Elsevier, 2014.

    [18]

    QI Z, ZHANG W, HE X, et al. High-efficiency flame retardency of epoxy resin composites with perfect T8 caged phosphorus containing polyhedral oligomeric silsesquioxanes (P-POSSs)[J]. Composites Science and Technology,2016,127:8-19.

    [19]

    MONTERO B, RAMIREZ C, RICO M, et al. Effect of an epoxy octasilsesquioxane on the thermodegradation of an epoxy/amine system[J]. Polymer International,2010,59(1):112-118. DOI: 10.1002/pi.2698

    [20]

    LIU Y L, CHOU C I. The effect of silicon sources on the mechanism of phosphoruse-silicon synergism of flame retardation of epoxy resins[J]. Polymer Degradation and Stability,2005,90(3):515-522. DOI: 10.1016/j.polymdegradstab.2005.04.004

    [21] 王德义. 含磷共聚酯/无机纳米复合材料的制备、性能与阻燃机理研究[D]. 成都: 四川大学, 2007.

    WANG Deyi. Preparation, properties and flame retardant mechanism of phosphorus containing copolyester/inorganic nanocomposites[D]. Chengdu: Sichuan University, 2007(in Chinese).

    [22]

    YANG F, NELSON G L. PMMA/silica nanocomposite studies: Synthesis and properties[J]. Journal of Applied Polymer Science,2004,91(6):3844-3850. DOI: 10.1002/app.13573

    [23] 李斌, 王建祺. 聚合物材料燃烧性和阻燃性的评价: 锥形量热仪(CONE)法[J]. 高分子材料科学与工程, 1998, 14(5):15-19. DOI: 10.16865/j.cnki.1000-7555.1998.05.004

    LI Bin, WANG Jianqi. Utilization of CONE calorimeter for the appraisal of the flammability and flame retardancy of polymeric materials[J]. Polymer Materials Science and Engineering,1998,14(5):15-19(in Chinese). DOI: 10.16865/j.cnki.1000-7555.1998.05.004

    [24]

    KASHIWAGI T, GILMAN J W, BUTLER K M, et al. Flame retardant mechanism of silica gel/silica[J]. Fire and Materials,2000,24(6):277-289. DOI: 10.1002/1099-1018(200011/12)24:6<277::AID-FAM746>3.0.CO;2-A

    [25]

    CHIANG C L, MA C C M. Synthesis, characterization, thermal properties and flame retardance of novel phenolic resin/silica nanocomposites[J]. Polymer Degradation and Stability,2004,83(2):207-214. DOI: 10.1016/S0141-3910(03)00262-3

    [26]

    SONG R J, ZHANG B Y, HUANG B T, et al. Synergistic effect of supported nickel catalyst with intumescent flame-retardants on flame retardancy and thermal stability of polypropylene[J]. Journal of Applied Polymer Science,2006,102(6):5988-5993. DOI: 10.1002/app.25178

    [27]

    SPONTÓN M, MERCADO L A, RONGDA J C, et al. Preparation, thermal properties and flame retardancy of phosphorus and silicon containing epoxy resins[J]. Polymer Degradation and Stability,2008,93(11):2025-2031. DOI: 10.1016/j.polymdegradstab.2008.02.014

    [28]

    LI J, WEI P, LI L K, et al. Synergistic effect of mesoporous silica SBA-15 on intumescent flame-retardant polypropylene[J]. Fire and Materials,2011,35(2):83-91. DOI: 10.1002/fam.1040

    [29] 徐晓楠, 张健. 二氧化硅对膨胀型阻燃聚乙烯的性能影响研究[J]. 火灾科学, 2004, 13(3):168-172.

    XU Xiaonan, ZHANG Jian. Experimental study of the effect of SiO2 on performance of intumencent fire retardant PE[J]. Fire Safety Science,2004,13(3):168-172(in Chinese).

    [30]

    DEMIR H, ARKIŞ E, BALKÖSE D, et al. Synergistic effect of natural zeolites on flame retardant additives[J]. Polymer Degradation and Stability,2005,89(3):478-483. DOI: 10.1016/j.polymdegradstab.2005.01.028

    [31]

    PICOUET P A, FERNANDEZ A, REALINI C E, et al. Influence of PA6 nanocomposite films on the stability of vacuum-aged beef loins during storage inmodified atmospheres[J]. Meat Science,2014,96(1):574-580. DOI: 10.1016/j.meatsci.2013.07.020

  • 期刊类型引用(8)

    1. 吕艾娟,孙俊涛,胡青青,米欣,肖强. EDOT-含氟聚合物涂层的制备及其防腐蚀性能. 浙江师范大学学报(自然科学版). 2023(04): 408-415 . 百度学术
    2. 刘创华,胡青青,梁晓蕾,米欣,周强,朱伟东,肖强. 石墨烯/含氟聚丙烯酸酯复合材料涂层的制备及其防腐蚀性能. 浙江师范大学学报(自然科学版). 2021(03): 278-285 . 百度学术
    3. 梁晓蕾,刘创华,米欣,朱伟东,周强,肖强. SiO_2或TiO_2纳米粒子/含氟聚丙烯酸酯复合涂层的制备及其防腐蚀性能. 复合材料学报. 2020(08): 1832-1840 . 本站查看
    4. 王霞,侯丽,张代雄,周雯洁,古月. 聚苯胺在防腐方面的研究及应用现状. 表面技术. 2019(01): 208-215 . 百度学术
    5. 郝建军,李文若,林雪. (H_4N)_2S对电合成CoO/聚苯胺复合膜腐蚀性能的影响. 复合材料学报. 2019(07): 1618-1624 . 本站查看
    6. 李庆鲁,安成强,郝建军. 改性水性丙烯酸防腐涂料的研究进展. 电镀与涂饰. 2019(11): 555-560 . 百度学术
    7. 高晓辉,李玉峰,李继玉,祝晶晶. 磷化聚苯胺用量对复合涂层防腐蚀性能的影响. 精细化工. 2018(06): 934-940+948 . 百度学术
    8. 胡传波,厉英,孔亚州,丁玉石. 聚邻氯苯胺-纳米SiC/环氧树脂复合材料的制备与防腐性能. 复合材料学报. 2017(06): 1167-1176 . 本站查看

    其他类型引用(8)

图(6)  /  表(5)
计量
  • 文章访问数:  3146
  • HTML全文浏览量:  623
  • PDF下载量:  60
  • 被引次数: 16
出版历程
  • 收稿日期:  2019-12-27
  • 录用日期:  2020-02-01
  • 网络出版日期:  2020-03-11
  • 刊出日期:  2020-11-14

目录

    /

    返回文章
    返回