Tensile failure mechanism of carbon fiber/epoxy composite winding joint
-
摘要: 通过试验及数值模拟对碳纤维/环氧树脂复合材料缠绕接头轴向拉伸失效机制进行研究。基于ABAQUS有限元软件,通过连续介质损伤模型及内聚区模型,分别对碳纤维/环氧树脂复合材料缠绕接头各部件及界面进行模拟,编写用户自定义材料子程序(UMAT),建立复合材料的渐进损伤模型,最终得到碳纤维/环氧树脂复合材料缠绕接头的应力分布和载荷-位移曲线,并与试验结果对比确定结构的失效机制。结果表明:有限元分析所得碳纤维/环氧树脂复合材料缠绕接头损伤部位及失效模式与试验吻合,失效载荷与试验值相差较小,证明仿真分析方法的有效性。通过对比失效模式发现,拉伸载荷作用下,链环是主承力部件,其弧形端部是应力集中处,纤维断裂即从此处开始发生并向外扩展,导致链环断裂及整体结构破坏。Abstract: The axial tensile failure mechanism of carbon fiber/epoxy composite winding joint was studied by means of experiment and simulation. Based on ABAQUS, the continuum damage model and cohesive zone model were used to simulate each part and interface of the carbon fiber/epoxy composite winding joint, respectively. The progressive damage model of the carbon fiber/epoxy composite was established by writing user-defined material subroutine(UMAT). As a result, the stress distribution and load-displacement curve of the carbon fiber/epoxy composite winding joint were obtained and the failure mechanism of the structure was determined by comparison with the experimental results. The results show that the calculated damage position and failure modes of the carbon fiber/epoxy composite winding joint agree well with the experimental results, and the difference between the calculated value and test value of the failure load is small, which proves the validity of the simulation analysis method. By comparing the failure modes, it is found that under tensile load, the loop plies are the main bearing component, and the curved end of which is the position where the stress is concentrated. The fiber fracture starts from here and gradually spreads outward until the loop plies fracture, which leads to the structural damage.
-
Keywords:
- winding joint /
- composite /
- axial tensile /
- failure mechanism /
- cohesive zone model
-
-
表 1 碳纤维/环氧树脂复合材料的性能参数
Table 1 Properties of carbon fiber/epoxy composite
CCF300/BA9916-Ⅱ CF3031/BA9916-Ⅱ E11/GPa 120 60 E22/GPa 7.7 59 E33/GPa 7.7 7.7 μ12=μ13=μ23 0.27 0.05 G12=G13/GPa 5.5 6.4 G23/GPa 5.5 6.4 XT/MPa 1 400 500 XC/MPa 1 300 450 YT/MPa 35 450 YC/MPa 160 455 ZT/MPa 35 50 ZC/MPa 160 155 S12=S13/MPa 163 105 S23/MPa 86 83 Notes: Eii (i, j=1, 2, 3)—Elastic modulus in direction of fibre, perpendicular to fibre in plane and out of plane; XT, YT, ZT—Tensile strength in the three directions above, respectively; XC, YC, ZC—Compress strength in the three directions above, respectively; μij, Gij, Sij (i, j=1, 2, 3)—Poisson’s ratio, shear modulus and shear strength for 1-2, 1-3, 2-3 plane, respectively. 表 2 碳纤维/环氧树脂复合材料缠绕接头轴向拉伸试验结果
Table 2 Axial tensile load test results of carbon fiber/epoxy composite winding joint
Specimen number Failure load/kN Average load/kN Coefficient of variation/% T-1 41.94 41.07 6.49 T-2 38.73 T-3 38.56 T-4 45.06 表 3 碳纤维/环氧树脂复合材料缠绕接头性能退化方式
Table 3 Degradation modes of carbon fiber/epoxy composite winding joint
Failure mode Stiffness degradation of material Tensile fracture of fiber E′11=0.07E11 Compression fracture of fiber E′11=0.14E11 Tensile cracking of matrix E′22=0.2E22,G′12=0.2G12,G′23=0.2G23 Compression cracking of matrix E′22=0.4E22,G′12=0.4G12,G′23=0.4G23 Delamination E′33=G′13=G′23=v′13=v′23=0 表 4 J-116B结构胶材料属性
Table 4 Material properties of J-116B
E/Enn/(MPa⋅mm−1) G1/Ess/(MPa⋅mm−1) G2/Ett/(MPa⋅mm−1) t0n/MPa t0s/MPa t0t/MPa GC/(J⋅m−2) 1 000 300 300 20 30 30 2 Notes:E/Enn, G1/Ess, G2/Ett—Interface stiffness for three directions, respectively; t0n, t0t, t0t—Interface strength for three directions, respectively. 表 5 碳纤维/环氧树脂复合材料缠绕接头部分测点应变仿真值与试验值对比
Table 5 Comparison of simulation and test values of some stain gauges on carbon fiber/epoxy composite winding joint
Strain gauge number Simulation value/10−6 Test value/10−6 Error/% 7 −420 −745 43.62 9 619 479 29.23 11 1 993 1 861 7.09 23 4 124 4 285 3.76 25 1 863 1 754 6.21 -
[1] 杨乃宾, 章怡宁. 复合材料飞机结构设计[M]. 北京: 航空工业出版社, 2002. YANG N B, ZHANG Y N. Composite structure design of aircraft[M]. Beijing: Aviation Industry Press, 2002(in Chinese).
[2] HOLZWARTH R C. The structural cost and weight reduction potential of more unitized aircraft structure: AIAA-98-1872[R]. Reston: American Institute of Aeronautics and Astronautics, 1998.
[3] BUTLER B, FELLOW A. Composites affordability initiative: AIAA-2000-1379[R]. Reston: American Institute of Aeronautics and Astronautics, 2000.
[4] ENGELSTAD S P, BERRY O T, RENIERI G D, et al. A high fidelity composite bonded joint analysis validation study Part Ⅰ: Analysis: AIAA-2005-2166[R]. Reston: American Institute of Aeronautics and Astronautics, 2005.
[5] PHILIPS H J, SHENOI R A. Damage tolerance of laminated tee-joints in FRP structures[J]. Composites Part A: Applied Science <italic>&</italic> Manufacturing,1998,29 (4):465-478.
[6] 王国平, 黄领才, 王冠. 复合材料层板多钉连接设计与试验研究[C]//第19届全国直升机年会论文. 哈尔滨: 中国航空学会, 2003: 65-70. WANG G P, HUANG L C, WANG G. Design and experimental research of composite laminate multi-bolted joint[C]//The 19th National Helicopter Conference. Harbin: Chinese Society of Aeronautics and Astronautics, 2003: 65-70(in Chinese).
[7] 孙旋, 童明波, 陈智, 等. 碳纤维复合材料接头力学性能试验与仿真分析[J]. 复合材料学报, 2016, 33(11):2517-2527. SUN X, TONG M B, CHEN Z, et al. Test and simulation analysis of mechanical properties for joint of carbon fiber composites[J]. Acta Materiae Compositae Sinica,2016,33(11):2517-2527(in Chinese).
[8] 石好男, 王继辉, 张桂明. 复合材料L型接头的损伤与破坏模式研究[J]. 玻璃钢/复合材料, 2019(3):16-20. SHI H N, WANG J H, ZHANG G M. The research on damage and failure modes of composite L-joint[J]. Fiber Reinforced Plastics/Composites,2019(3):16-20(in Chinese).
[9] CHANG F K, SCOTT R A, SPRINGER G S. Strength of mechanically fastened composite joints[J]. Journal of Composite Materials,1982,16(6):470-494. DOI: 10.1177/002199838201600603
[10] WOLFF R V, LEMON G H. Reliability prediction for composite joints-bonded and bolted: AD-A026408[R]. [s. l.]: [s. n.], 1976.
[11] KASSAPOGLOU C, TOWNSEND W A. Failure prediction of composite lugs under axial loads[J]. AIAA Journal,2003,41(11):2239-2243. DOI: 10.2514/2.6816
[12] WALLIN M, SAARELA O, LAW B, et al. RTM composite lugs for high load transfer applications[C]//Congress of the International Council of the Aeronautical Sciences. Hamburg: Helsinki University of Technology, 2006.
[13] 史坚忠, 黄维扬. 复合材料缠绕接头几种受力状态的解析分析[J]. 南京航空航天大学学报, 1999, 31(6):722-726. SHI J Z, HUANG W Y. Analysis of winding composite joints at several load conditions[J]. Journal of Nanjing University of Aeronautics <italic>&</italic> Astronautics,1999,31(6):722-726(in Chinese).
[14] 史坚忠, 黄维杨. 复合材料承力接头设计的相关理论与应用概述[J]. 洪都科技, 1999(1):1-7. SHI J Z, HUANG W Y. A survey of related theory and application of bearing-load joints of composite materials[J]. Hongdu Science and Technology,1999(1):1-7(in Chinese).
[15] 程家林. 层压复合材料连接接头设计及其在大飞机中的应用[J]. 航空学报, 2008, 29(3):640-644. DOI: 10.3321/j.issn:1000-6893.2008.03.017 CHENG J L. Design of composite laminated joint and its application in large aircrafts[J]. Acta Aeronautica et Astronautica Sinica,2008,29(3):640-644(in Chinese). DOI: 10.3321/j.issn:1000-6893.2008.03.017
[16] 张文荣. 复合材料耳片接头承载能力试验[J]. 洪都科技, 2001(1):38-42, 54. ZHANG W R. Test for load-bearing capacity of lug connector of composite material[J]. Hongdu Science and Technology,2001(1):38-42, 54(in Chinese).
[17] 王强, 王建华, 黎小宝, 等. 环绕型复合材料接头层间开裂问题分析和改进措施[J]. 教练机, 2013(2):62-65. WANG Q, WANG J H, LI X B, et al. Analysis and improvement on laminated cracking of circular composite joint[J]. Trainer,2013(2):62-65(in Chinese).
[18] HAVAR T, WERCHNER C, MIDDENDORF J. Design and manufacturing of composite aerospace load introduction structures[C]//AIAA/ASME/ASCE/AHS /ASC Structures, Structural Dynamics and Materials Conference. Reston: American Institute of Aeronautics and Astronautics, 2011.
[19] HAVAR T, DRECHSLER K. Design and progressive failure analysis of 3D-reinforced composite force introduction loops[C]//49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: American Institute of Aeronautics and Astronautics, 2008.
[20] 雷良超, 周光明, 陆方舟, 等. 复合材料缠绕接头拉伸失效性能有限元分析[J]. 兵器装备工程学报, 2018, 39(4):174-178. DOI: 10.11809/bqzbgcxb2018.04.037 LEI L C, ZHOU G M, LU F Z, et al. Finite element analysis on tensile properties of composite winding joint[J]. Journal of Ordnance Equipment Engineering,2018,39(4):174-178(in Chinese). DOI: 10.11809/bqzbgcxb2018.04.037
[21] 雷良超. 复合材料缠绕接头力学性能研究[D]. 南京: 南京航空航天大学, 2018. LEI L C. Research on mechanical properties of the winding composite lug[D]. Nanjing: Nanjing University of Aeronautics & Astronautics, 2018(in Chinese).
[22] 王耀先. 复合材料力学与结构设计[M]. 上海: 华东理工大学出版社, 2012. WANG Y X. Mechanics and structural design of composite materials [M]. Shanghai: East China University of Science and Technology Press, 2012(in Chinese).
[23] HASHIN Z. Fatigue failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics,1981,48(4):846-852. DOI: 10.1115/1.3157744
[24] CAMANHO P P, DÁVILA C G. Mixed-mode decohesion elements for the simulation of delamination in composite materials: NASA/TM-2002-211737[R]. Washington: NASA, 2002.
[25] 陈丁丁, 朱萌, 胡其高, 等. 含拼接铺层碳纤维增强树脂复合材料拉伸破坏机制[J]. 复合材料学报, 2020, 37(6):1312-1320. CHEN D D, ZHU M, HU Q G, et al. Tensile failure mechanism of carbon fiber reinforced polymer composites with ply splice[J]. Acta Materiae Compositae Sinica,2020,37(6):1312-1320(in Chinese).
-
期刊类型引用(8)
1. 吕艾娟,孙俊涛,胡青青,米欣,肖强. EDOT-含氟聚合物涂层的制备及其防腐蚀性能. 浙江师范大学学报(自然科学版). 2023(04): 408-415 . 百度学术
2. 刘创华,胡青青,梁晓蕾,米欣,周强,朱伟东,肖强. 石墨烯/含氟聚丙烯酸酯复合材料涂层的制备及其防腐蚀性能. 浙江师范大学学报(自然科学版). 2021(03): 278-285 . 百度学术
3. 梁晓蕾,刘创华,米欣,朱伟东,周强,肖强. SiO_2或TiO_2纳米粒子/含氟聚丙烯酸酯复合涂层的制备及其防腐蚀性能. 复合材料学报. 2020(08): 1832-1840 . 本站查看
4. 王霞,侯丽,张代雄,周雯洁,古月. 聚苯胺在防腐方面的研究及应用现状. 表面技术. 2019(01): 208-215 . 百度学术
5. 郝建军,李文若,林雪. (H_4N)_2S对电合成CoO/聚苯胺复合膜腐蚀性能的影响. 复合材料学报. 2019(07): 1618-1624 . 本站查看
6. 李庆鲁,安成强,郝建军. 改性水性丙烯酸防腐涂料的研究进展. 电镀与涂饰. 2019(11): 555-560 . 百度学术
7. 高晓辉,李玉峰,李继玉,祝晶晶. 磷化聚苯胺用量对复合涂层防腐蚀性能的影响. 精细化工. 2018(06): 934-940+948 . 百度学术
8. 胡传波,厉英,孔亚州,丁玉石. 聚邻氯苯胺-纳米SiC/环氧树脂复合材料的制备与防腐性能. 复合材料学报. 2017(06): 1167-1176 . 本站查看
其他类型引用(8)
-