采用新颖的纳米掺杂工艺成功制备了BaTiO3 基MLCC 超细抗还原瓷料。TG-DTA、XRD、TEM 分析表明, 通过水基溶胶-凝胶法合成了高分散、高活性的纳米掺杂剂, 平均粒度约40.2 nm。根据传统工艺与纳米掺杂工艺的比较, 对纳米掺杂机理进行了研究。实验发现, 由于纳米粉体的特殊效应, 纳米掺杂工艺能更有效地提高掺杂原子的取代改性作用, 从而更显著地改善瓷料的微观结构和宏观介电性能。样品经测试符合EIAX7R/ X8R 标准, 其介电常数K25 ℃ > 2800 、介质损耗tanδ< 110 %、绝缘电阻率I R = 10.2 Ω ·cm、平均晶粒尺寸Gav≈0.3μm。
为了模拟天然骨组织的结构和成分, 以羟基磷灰石(HA)为钙磷源, 以壳聚糖(CS)为大分子基质材料, 在酸性环境中形成均相溶液, 通过Sol-gel相转变矿化方法和陈化处理, 原位构建了纳米HA/CS复合多孔支架材料, 研究了共沉积时体系的pH值和陈化时间对支架压缩强度、晶相组成及形貌等的影响。结果表明体系pH为10和11时, 支架的力学强度远高于未矿化壳聚糖支架强度, 但是随着体系pH的升高强度逐渐下降。XRD分析结果表明陈化处理有利于磷酸钙盐向HA转化, 随着陈化时间的延长, 纳米HA沿c轴择优生长。SEM观察显示支架材料具有相互贯穿的多孔结构, 纳米级的短棒状或颗粒状HA晶体颗粒均匀分散在孔壁上, 随着陈化处理以及陈化时间的延长, 形成致密的纳米无机/有机均匀复合体。这种快速深度矿化方法为骨支架材料的制备提供了新思路。
以单层厚度为0.04 mm的碳纤维/树脂(T300/5228,CFRP)超薄单向预浸料,采用真空袋-固化炉成型方法制备了一系列不同铺层复合材料“Ω”型可折叠管件半片,并采用ANSYS软件进行了有限元分析,通过实验和数值模拟方法研究了铺层方式及取向误差对变形的影响,制备的四种铺层方式制件实验测量其变形趋势与相应模拟分析结果一致,得到了铺层取向误差对变形影响较小的铺层方式。研究发现:±45°铺层比0°铺层的铺层取向误差对变形影响更大,增加90°铺层可以在一定程度上控制因铺层取向误差导致的可折叠管件半片的变形。研究结果表明通过铺层设计可以在一定程度上实现对CFRP可折叠管件半片变形的控制。
针对含薄壁钢内衬碳纤维增强聚合物基复合材料(CFRP)多角度交替缠绕复合圆筒的剩余应力计算问题,基于正交各向异性材料的厚壁圆筒理论和弹性叠加理论,提出了考虑卸去芯模影响的多角度交替缠绕下CFRP各层和钢内衬剩余应力的逐层叠加算法,研究了恒缠绕张力下,芯模厚度和螺旋层缠绕角对CFRP各层和钢内衬剩余应力的影响。计算表明:芯模厚度越大则CFRP层剩余应力越低,但芯模厚度过大将减弱缠绕张力对钢内衬的强化效应;螺旋层缠绕角约65°时,环向层剩余应力出现极小值,螺旋层剩余应力和内衬剩余应力均出现极大值。针对缠绕张力对钢内衬的强化效应,通过水压试验加载过程中钢内衬声发射特征与复合圆筒外壁应变测试,测得的钢内衬屈服载荷与理论预测值一致,基本证实了算法的有效性。为提高CFRP层缠绕质量,基于等剩余应力假设,提出了多角度交替缠绕张力制度优化设计思路,适用于内压管的张力制度优化。
通过有限元方法研究了相同孔隙率下孔隙的分布、尺寸和形状等微观特征对碳纤维增强环氧树脂复合材料单向板横向拉伸强度的影响。首先使用Matlab对复合材料微观图像进行处理,提取孔隙的半径分布。然后通过C++编写多种孔隙随机分布算法,包括可以生成不同分布孔隙、不同尺寸孔隙以及不同形状孔隙的随机分布算法。最后通过Python参数化生成代表性体积单元(RVE),用有限元方法研究相同孔隙率下孔隙的分布、尺寸和形状对碳纤维/环氧树脂复合材料单向板横向拉伸强度的影响。研究结果显示,孔隙率相同时,碳纤维/环氧树脂复合材料的孔隙形状对横向弹性模量的影响较大,孔隙尺寸和形状对横向拉伸强度有较大的影响。
采用溶剂热法制备了具有超高长径比的羟基磷灰石(HAP)纳米纤维,并将其与甲基丙烯酸酐改性明胶(GelMA)结合,利用紫外光交联制备了HAP纳米纤维/GelMA复合水凝胶。通过SEM、XRD、力学测试、溶胀测试、降解测试、细胞培养等对HAP纳米纤维/GelMA复合水凝胶进行结构表征和性能测试。SEM断面观察表明,HAP纳米纤维/GelMA水凝胶呈三维孔隙贯通的多孔结构。力学实验表明,HAP纳米纤维能有效增强水凝胶的弹性模量,且随着HAP纳米纤维添加量的增加,力学性能增强效果越明显。溶胀实验表明,当HAP纳米纤维质量分数为5.2wt%~14.2wt%时,HAP纳米纤维复合水凝胶的溶胀率变化不明显,当质量分数为18.2wt%时,溶胀率降低。降解实验表明,HAP纳米纤维的加入能有效保持水凝胶结构形态,使其更加稳定可控。细胞包裹培养实验表明,HAP纳米纤维/GelMA复合水凝胶能为细胞提供良好的三维生长环境,表现出优良的生物相容性。本实验制备的HAP纳米纤维/GelMA复合水凝胶在组织工程领域有着良好的应用前景。
采用Al-K2TiF6-KBF4混合盐原位自生反应法,制备了不同Mg质量分数的3wt% TiB2/Al-4.5Cu复合材料。采用SEM、TEM、HM硬度测试和室温拉伸等方法研究了Mg含量和多级热处理对3wt% TiB2/Al-4.5Cu复合材料微观组织和力学性能的影响。微观组织观察发现:Mg质量分数为3wt%时,经过多级热处理后,TiB2颗粒的团聚现象明显改善,反应生成的TiB2颗粒平均尺寸约为130 nm,基体内伴随有大量弥散分布的纳米级颗粒,且α-Al的晶粒尺寸也明显减小。力学测试结果表明:多级热处理后,3wt% TiB2/Al-4.5Cu复合材料的硬度和抗拉强度随Mg含量的增加而提高,但过量的Mg (≥4wt%)会造成TiB2颗粒细化效果下降。分析表明:Mg的加入能够降低TiB2/α-Al界面能,减少脆性相Al3Ti、Al2B的生成,并通过反应生成的MgAl2O4使界面结构变成TiB2/MgAl2O4/α-Al,从而有效抑制了TiB2的团聚,改善了TiB2颗粒与Al液界面的润湿性,提高了形核率,进一步细化了α-Al晶粒尺寸。
本文主要研究分析了不规则形状孔隙对复合材料单向板横向拉伸力学性能的影响。首先通过C++编写不规则孔隙随机分布算法。然后通过Python参数化生成包含随机分布纤维和不规则孔隙的重复胞元(Repeating unit cell,RUC)。最后使用有限单元法(Finite element method)分析研究了不规则孔隙对单向板横向拉伸性能(横向弹性模量和横向拉伸强度)的影响。研究结果显示,孔隙的形状会影响单向板的初始损伤、损伤扩展和最终破坏。随着孔隙率的增大,横向弹性模量和横向拉伸强度都减小。相对于横向弹性模量,孔隙率对横向拉伸强度的影响较大。
为了研究废胎胶粉经过氧化氢(H2O2)溶液处理后其孔结构和表观形貌的变化及对所制备橡胶-沥青高温性能的影响,采用三种不同比例的H2O2溶液对废胎胶粉进行表面改性处理,并制备橡胶-沥青。通过胶粉气体吸附试验、扫描电镜试验、沥青旋转黏度试验和动态剪切流变试验分析了不同比例的H2O2溶液对胶粉的孔隙结构、微观形貌和所制备橡胶-沥青的黏度、黏弹性等宏观力学性能的影响规律。结果表明:胶粉经H2O2溶液处理后,平均孔径明显变小,孔体积和孔面积的变化呈现一定的规律;随H2O2溶液比例的增加,胶粉颗粒间接触面增加,表面絮状物和孔隙增多,加强了胶粉与沥青的界面结合度。这使得胶粉中的橡胶烃在沥青中的溶解度增加,炭黑颗粒释放增多,胶粉颗粒的强度、弹性和耐磨性等力学性能下降,导致橡胶-沥青的弹性、黏度和高温抗车辙能力降低。
针对自行研制的树脂传递模塑工艺(RTM)快速成型环氧树脂,利用唯象动力学模型、DiBenedetto方程和凝胶模型研究了树脂体系的等温及非等温固化动力学,构建了时间-温度-转变(TTT)的关系图,表明树脂体系兼具较长的适用期与快速固化特性。以此设计RTM快速成型工艺,考察了树脂体系对碳纤维织物的浸润流动行为,并评价了快速成型碳纤维/环氧树脂复合材料的界面力学性能与微观形貌。结果表明,注射温度下树脂体系的浸润填充性良好,RTM快速成型碳纤维/环氧树脂复合材料的力学性能和内部成型质量较好。
准确预测和控制变刚度结构的固化变形是合理进行变刚度设计的关键环节,复合材料结构的固化变形不仅会影响结构的刚度强度特性、同时会对结构的装配性能产生影响。基于自动铺放技术,提出面向过程的丝束-路径-面板多级三维变刚度有限元模型算法。结合Kamal自催化固化动力学模型和广义Maxwell黏弹性本构模型进行热-化学-力多场耦合分析,计算固化过程中结构内部温度场、固化度场和残余应力场的变化,最终得到变刚度层合板的固化变形特性。通过参数化分析,研究了自动铺放过程中轨迹控制参数T0、T1和覆盖法则对结构固化变形产生的影响。研究结果表明:T0=45°时,当T1<T0变刚度结构的固化变形随着T1的增大而增大,当T1>T0,变刚度结构的固化变形随着
太阳能界面水蒸发技术在解决目前人类所面临的能源和淡水资源短缺方面具有广阔的应用前景。水输运是太阳能水蒸发过程中十分重要的一环。理想状态下的水输运是输送适量的水来维持太阳能蒸发层高效、稳定的水蒸发。而蒸发层所拥有的多孔结构所产生的毛细管作用力决定了其水输运的能力。因此,蒸发层内部的孔隙结构非常重要。本文以聚偏氟乙烯(PVDF)为基体,借助碳纳米管(CNTs)的优异光吸收能力,通过羟乙基纤维素(HEC)掺杂并与戊二醛进行交联制备了可用于太阳能界面水蒸发的CNTs-HEC/PVDF多孔复合膜。CNTs-HEC/PVDF复合膜的多孔结构形成的微通道提高了水输运和蒸汽逸出能力,从而增强了太阳能界面水蒸发性能。在1 kW·m−2的太阳光照射下,其水蒸发速率达到1.81 kg·m−2·h−1,相应的光热转化效率为95%。相关实验结果还展现出该复合膜具有优异的循环使用性能、化学稳定性和高效的污水净化能力。
纤维增强金属复合材料在冲击作用下往往会出现冲击损伤及破坏,主要表现在纤维断裂、树脂基体碎裂脱落、金属基延性损伤以及层间的分层脱胶等,进而导致材料宏观力学性能及抗冲击性能下降。为了减小材料层间开裂脱胶程度从而增强材料的抗冲击性能,本研究通过将金属板冲孔,使用碳纤维和芳纶纤维交替穿编后在真空高温下与环氧树脂基体进行浸润固化,制备了一种三维复合材料纤维金属互穿式复合板(FMICP)。本研究利用轻气炮冲击设备进行冲击试验研究FMICP在低速冲击下的力学响应过程。
本研究首先利用真空辅助成型工艺对试验材料进行加工处理,得到了制备成型的FWMIP,之后通过轻气炮冲击设备、速度测量设备、高速图像采集设备进行了试件的冲击试验,基于高速图像采集设备得到了不同冲击速度下的试件冲击变形过程以及弹体的冲击路径变化情况;采用高速水流切割的方法得到了试件变形破坏横截面图像;使用在试件同等变形处取点位后平滑连接的方法得到了试件在不同变形程度的变形区域;利用图像处理软件,提取不同变形区域的像素点后计算出各相应区域的变形面积;通过测量试件横截面的变形得到不同截面的挠度曲线,研究分析了FMICP在不同冲击速度、不同冲击面积和冲孔样式下的宏观力学性能。
通过研究分析不同冲击速度、不同冲击面积和冲孔样式下FWMIP试件的冲击响应过程、试件不同变形区域与试件横截面变形效果图可以发现:(1)FMICP在低速冲击下的破坏模式可分为整体面板塑形变形和冲击中心区域的局部变形,主要包括金属板的剪切破坏,纤维的拉伸断裂,树脂基体的损伤裂缝、断裂和剥落。试件未出现穿透前,能量吸收方式主要为整体塑形变形和树脂基体裂缝的开展;穿透后,能量耗散的方式为局部剪切冲塞破坏和试件的反复振动。(2)通过拟合计算得出FWMIP试件的理论弹道极限速度在33.85m/s,冲击速度增大后试件被贯穿导致试件的刚度会急剧下降。冲击速度从35.19m/s增加至78.08m/s时,纤维发挥桥接拉伸作用逐渐显著,吸收能量从30.78J增加至70.67J,发生贯穿的面积仅仅增加126.94mm,通过对比和分析变形损伤面积可知,FMICP整体变形对速度敏感性较低,贯穿边界处的局部变形受速度影响较大。(3)弹体冲击面积对能量吸收的影响较大,随着冲击面积的减小,FMICP冲切破坏逐渐明显,纤维拉伸耗能逐渐减小。在相同能量49J冲击作用下,当冲击面积较小时,等效变形轮廓图较为密集,FMICP产生的局部破坏较明显。冲击面积从177mm增加至491mm后,吸收能量增加了10.08J。(4)金属板冲孔类型对试件吸能能力有较大的影响,冲孔类型改变了应力传播路径和金属基所占比例。圆矩型和椭圆型的孔洞边缘较为平滑,矩型的孔洞边角容易发生应力集中,因而矩型的吸能能力较差;矩型和圆矩型的胞元孔洞面积为15.14mm和16mm,高于椭圆型孔洞20.54%和27.39%,使椭圆型孔洞FMICP有较高的金属板质量占比,椭圆型(41.11J)相比于圆矩型(35.10J)和矩型(34.08J)因此有较好的吸能能力。
三维复合材料纤维金属互穿式复合板是将使用穿编后固化的方法,使得纤维之间首先形成初步自锁,在固化之前与金属基互锁进一步增强纤维-金属整体性,最终通过固化的方式再次加强材料的整体连接性,减小复合材料在冲击作用下的分层脱胶程度,从而增强其抗冲击性能;纤维金属互穿式复合板具有轻质、耐腐蚀以及抗冲击整体性能较好的特点,可以通过改变材料类型、冲孔数量等应用于不同的场景。
纤维增强金属复合材料除了有高比强度和高比模量、良好的耐热性能以外还具有良好的抗疲劳性、抗冲击性和损伤容度,受到广泛的关注和研究。然而由于纤维层和金属层之间的界面粘结强度受不同材料的影响,在冲击荷载作用下容易发生金属层和纤维层分层从而严重影响复合材料的力学性能。
本研究的创新点和亮点主要有三点:(1)试件设计:碳纤维在荷载作用下裂纹增长率较低,芳纶纤维抗疲劳损伤性能较好,铝合金板轻质高强,通过将铝合金板冲孔,碳纤维和芳纶纤维双向交替穿编的方法,制备了一种三维复合材料纤维金属互穿式复合板(FMICP),使纤维与金属两种材料形成互锁,增强FMICP整体性和抗冲击性能。(2)试件制备:纤维通过平纹穿编成型,穿编过程中能够通过纤维预应力张拉进行纤维应力调控;铝基合金板为纤维提供了穿编基体,能够进行二次加工冲孔,可控调节冲孔尺寸、样式以及数量。(3)研究方法:利用轻气炮冲击系统进行了低速冲击试验,研究了FMICP在不同冲击速度、不同冲击面积、不同金属板冲孔类型变量下的动态力学响应。通过研究发现,FMICP在不同冲击速度下都没有出现大面积的脱胶现象,仅在冲击点附近出现微小的树脂剥落;冲击面积的增大使参与拉伸作用的纤维数量增多,降低了FMICP的局部变形程度,吸收了更多的冲击能量;椭圆形孔洞FMICP的吸收能量的能力更优。
纤维增强金属复合材料受到冲击时容易发生金属与纤维分层从而影响力学性能,为了缓解此类现象,将金属板冲孔,使用碳纤维和芳纶纤维交替穿编,制备了一种三维复合材料纤维金属互穿式复合板(Fiber Metal Interpenetrating Composite Plate,FMICP)。进行了低速冲击试验,研究了FMICP在不同冲击速度、冲击面积和冲孔样式下的力学性能。研究表明:当冲击速度在35.19~78.08 m/s之间时,FMICP发生了贯穿破坏,吸收了39.78~70.67 J的冲击能量;受到恒定49 J冲击能量时,冲击面积为491 mm2的FMICP最高能够吸收42.77 J能量;随着冲击面积的增大,FMICP中受到拉伸的纤维数量增多,冲击造成的冲切破坏和局部损伤减小;冲孔类型改变了FMICP中金属基的占比和应力传递方式,椭圆冲孔FMICP (41.11 J)相对矩型冲孔FMICP (34.08 J)能够起到更好的吸收能量的作用。本研究结果可为FMICP的推广应用提供参考。