留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

LaMnO3/GA复合材料活化PMS降解四环素的性能和反应机制探究

李天雪 徐伟伟 焦丹花 路文娟 蔡晓东

李天雪, 徐伟伟, 焦丹花, 等. LaMnO3/GA复合材料活化PMS降解四环素的性能和反应机制探究[J]. 复合材料学报, 2024, 42(0): 1-13.
引用本文: 李天雪, 徐伟伟, 焦丹花, 等. LaMnO3/GA复合材料活化PMS降解四环素的性能和反应机制探究[J]. 复合材料学报, 2024, 42(0): 1-13.
LI Tianxue, XU Weiwei, JIAO Danhua, et al. Investigation of the performance and reaction mechanism of tetracycline degradation by LaMnO3/GA composites activated PMS[J]. Acta Materiae Compositae Sinica.
Citation: LI Tianxue, XU Weiwei, JIAO Danhua, et al. Investigation of the performance and reaction mechanism of tetracycline degradation by LaMnO3/GA composites activated PMS[J]. Acta Materiae Compositae Sinica.

LaMnO3/GA复合材料活化PMS降解四环素的性能和反应机制探究

基金项目: 国家自然科学基金(22165004);贵州省科技计划项目(黔科合基础[ZK[2021] 一般248;ZK[2021] 一般055).
详细信息
    通讯作者:

    徐伟伟,博士,副教授,硕士生导师,研究方向为半导体材料计算 E-mail: xuweiwei@gzmu.edu.cn

    焦丹花,博士,副教授,硕士生导师,研究方向为生物质复合材料制备与改性 E-mail: jiaodanhua0411@163.com

    蔡晓东,博士,副教授,硕士生导师,研究方向为生物基聚酯改性 E-mail: caixiaodong@gzmu.edu.cn

  • 中图分类号: TB333

Investigation of the performance and reaction mechanism of tetracycline degradation by LaMnO3/GA composites activated PMS

Funds: Natural Science Foundation of China (22165004); Guizhou Provincial Science and Technology Projects (ZK[2021]248, ZK[2021]055).
  • 摘要: 本研究采用溶胶凝胶法和水热法制备了石墨烯气凝胶(GA)负载的LaMnO3复合催化剂,研究了其对过一硫酸盐(PMS)降解四环素(TC)的催化性能。采用SEM、TEM、XPS、拉曼光谱等手段对样品的形貌结构、元素组成和化学形态进行了表征,结果显示构成了LaMnO3/GA复合催化剂。实验结果表明,与LaMnO3纯样相比(降解率为58%),LaMnO3/GA25复合材料活化PMS降解TC的催化性能可提高至83%以上。这种增强效果可归因于GA的引入,加快了电荷的迁移速率并提升了活性位点的电荷浓度。自由基捕获试验验证了O2, 1O2, •OH作为活性物质在TC降解过程中的重要性。此外,通过探究LaMnO3/GA25/PMS体系对多种无机阴离子(如${{\text{H}}_{\text{2}}}\text{PO}_{\text{4}}^{{-}} $, $\text{SO}_{\text{4}}^{{2-}} $, Cl, Urea, $\text{HCO}_{\text{3}}^{{-}} $)和腐殖酸(HA)的抗干扰活性以及和循环使用性能,证明了LaMnO3/GA25/PMS体系用于复杂水体中污染物处理的可行性,并为充分利用锰矿资源解决环境污染问题提供了新的思路。

     

  • 图  1  SEM图像(a) 石墨烯气凝胶(GA);(b) LaMnO3;(c-d) LaMnO3/GA25;(e) LaMnO3/GA25的TEM图像和(f) HRTEM图像

    Figure  1.  SEM images of (a) graphene aerogel (GA); (b) LaMnO3; (c-d) LaMnO3/GA25; (e) TEM images and (f) HRTEM images of LaMnO3/GA25

    图  2  (a) 制备的LaMnO3/GA样品图;LaMnO3、GA和LaMnO3/GA25的(b) XRD谱图(c) 拉曼光谱图;(d) N2吸附-脱附曲线和孔径分布图像(插图)

    Figure  2.  (a) Diagram of prepared LaMnO3/GA samples; (b) XRD spectra (c) Raman spectra of LaMnO3, GA and LaMnO3/GA25; (d) N2 adsorption-desorption curves and pore size distribution images (insert)

    图  3  LaMnO3/GA25的XPS高分辨测量谱图:(a) La 3d;(b) Mn 2p;(c) O 1s

    Figure  3.  XPS high-resolution measurement spectra of LaMnO3/GA25: (a) La 3d; (b) Mn 2p; (c) O 1s

    图  4  (a) TC在不同催化剂下的降解曲线;(b) 相关动力学速率常数;(c) 不同体系的TOC去除效率(实验条件:催化剂用量为0.1 g/L;PMS用量为0.2 g/L;初始TC浓度为0.02 g/L)

    Figure  4.  (a) Degradation curves of TC under different conditions; (b) associated kinetic rate constants; (c) TOC removal efficiency of different systems (experimental conditions: catalyst dosage of 0.1 g/L; PMS dosage of 0.2 g/L; initial TC concentration of 0.02 g/L)

    图  5  TC降解活性的影响规律:(a) LaMnO3/GA25浓度的影响;(b)PMS浓度的影响;(c) 初始TC浓度的影响;(d) 溶液pH值的影响;实验条件:[LaMnO3/GA25] = 0.1 g/L (b, c, d); [PMS] = 0.2 g/L (a, c, d); [TC] = 100 mL 0.02 g/L (a, b, d)

    Figure  5.  Patterns of influence of TC degradation activity: (a) effect of LaMnO3/GA25 concentration; (b) effect of PMS concentration; (c) effect of initial TC concentration; (d) effect of solution pH. experimental conditions: [LaMnO3/GA25] = 0.1 g/L (b, c, d); [PMS] = 0.2 g/L (a, c, d); [TC] = 100 mL 0.02 g/L(a, b, d)

    图  6  无机阴离子和有机物的影响(a) HA;(b) ${{\text{H}}_{\text{2}}}\text{PO}_{\text{4}}^{{-}} $;(c) $\text{SO}_{\text{4}}^{{2-}} $;(d) Cl;(e) Urea;(f) HCO3;实验条件:[LaMnO3/GA25] = 0.1 g/L;[PMS] = 0.2 g/L; [TC] = 100 mL 0.02 g/L

    Figure  6.  Effects of inorganic anions and organic matter (a) HA; (b) ${{\text{H}}_{\text{2}}}\text{PO}_{\text{4}}^{{-}} $; (c) $\text{SO}_{\text{4}}^{{2-}} $; (d) Cl; (e) Urea; (f) HCO3. Experimental conditions:[LaMnO3/GA25] = 0.1 g/L; [PMS] = 0.2 g/L; [TC] = 100 mL 0.02 g/L

    图  7  不同催化体系下的(a) LSV曲线;(b) 电化学阻抗谱;(c) Tafel极化曲线

    Figure  7.  (a) LSV curves; (b) electrochemical impedance spectra; (c) Tafel polarisation curves for different systems

    图  8  牺牲剂存在下LaMnO3/GA25对TC的降解效果图Fig. 8 Plot of the degradation effect of LaMnO3/GA25 on TC in the presence of sacrificial agent

    图  9  (a-c) LaMnO3/GA25在DMPO和TEMP自旋捕获下不同时间间隔的EPR图谱

    Figure  9.  (a-c) EPR profiles of LaMnO3/GA25 at different time intervals under DMPO and TEMP spin trapping

    图  10  在LaMnO3/GA25/PMS体系中TC的降解过程

    Figure  10.  Degradation process of TC in the LaMnO3/GA25/PMS system

    图  11  LaMnO3/GA25的催化机制示意图

    Figure  11.  Schematic representation of the catalytic mechanism of LaMnO3/GA25

    图  12  (a) LaMnO3/GA25的稳定性实验;(b) La和Mn金属的浸出浓度

    Figure  12.  (a) Stability experiments with LaMnO3/GA25; (b) Leaching concentrations of La and Mn metals.

  • [1] BILGIN SIMSEK E, TUNA Ö. Boosting redox cycle and increased active oxygen species via decoration of LaMnO3 spheres with CeO2 flowers to promote Fenton-like catalytic degradation of various organic contaminants[J]. Optical Materials, 2023, 137: 113564. doi: 10.1016/j.optmat.2023.113564
    [2] LIU S, HU Q, QIU J, et al. Enhanced Photocatalytic Degradation of Environmental Pollutants under Visible Irradiation by a Composite Coating[J]. Environmental Science & Technology, 2017, 51(9): 5137-5145.
    [3] WU H, XU X, SHI L, et al. Manganese oxide integrated catalytic ceramic membrane for degradation of organic pollutants using sulfate radicals[J]. Water Research, 2019, 167: 115110. doi: 10.1016/j.watres.2019.115110
    [4] SARMAH A K, MEYER M T, BOXALL A B A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment[J]. Chemosphere, 2006, 65(5): 725-759. doi: 10.1016/j.chemosphere.2006.03.026
    [5] PASTOR-NAVARRO N, MAQUIEIRA Á, PUCHADES R. Review on immunoanalytical determination of tetracycline and sulfonamide residues in edible products[J]. Analytical and Bioanalytical Chemistry, 2009, 395(4): 907-920. doi: 10.1007/s00216-009-2901-y
    [6] XU R, YANG Z-H, ZHENG Y, et al. Metagenomic analysis reveals the effects of long-term antibiotic pressure on sludge anaerobic digestion and antimicrobial resistance risk[J]. Bioresource Technology, 2019, 282: 179-188. doi: 10.1016/j.biortech.2019.02.120
    [7] SABIO E, ZAMORA F, Gñan J, et al. Adsorption of p-nitrophenol on activated carbon fixed-bed[J]. Water Research, 2006, 40(16): 3053-3060. doi: 10.1016/j.watres.2006.06.018
    [8] RENE E R, KENNES C, NGHIEM L D, et al. New insights in biodegradation of organic pollutants[J]. Bioresource Technology, 2022, 347: 126737. doi: 10.1016/j.biortech.2022.126737
    [9] ZHOU J, LI X, YUAN J, et al. Efficient degradation and toxicity reduction of tetracycline by recyclable ferroferric oxide doped powdered activated charcoal via peroxymonosulfate (PMS) activation[J]. Chemical Engineering Journal, 2022, 441: 136061. doi: 10.1016/j.cej.2022.136061
    [10] GHANBARI F, MORADI M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review[J]. Chemical Engineering Journal, 2017, 310: 41-62. doi: 10.1016/j.cej.2016.10.064
    [11] GIANNAKIS S, LIN K-Y A, GHANBARI F. A review of the recent advances on the treatment of industrial wastewaters by Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs)[J]. Chemical Engineering Journal, 2021, 406: 127083. doi: 10.1016/j.cej.2020.127083
    [12] LEE J, VON GUNTEN U, KIM J-H. Persulfate-Based Advanced Oxidation: Critical Assessment of Opportunities and Roadblocks[J]. Environmental Science & Technology, 2020, 54(6): 3064-3081.
    [13] HU P, LONG M. Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications[J]. Applied Catalysis B: Environmental, 2016, 181: 103-117. doi: 10.1016/j.apcatb.2015.07.024
    [14] SAPUTRA E, PINEM J A, BUDIHARDJO M A, et al. Carbon-supported manganese for heterogeneous activation of peroxymonosulfate for the decomposition of phenol in aqueous solutions[J]. Materials Today Chemistry, 2020, 16: 100268. doi: 10.1016/j.mtchem.2020.100268
    [15] HU J, LI Y, ZOU Y, et al. Transition metal single-atom embedded on N-doped carbon as a catalyst for peroxymonosulfate activation: A DFT study[J]. Chemical Engineering Journal, 2022, 437: 135428. doi: 10.1016/j.cej.2022.135428
    [16] LU X, ZHAI T, ZHANG X, et al. WO3–x@Au@MnO2 Core–Shell Nanowires on Carbon Fabric for High-Performance Flexible Supercapacitors[J]. Advanced Materials, 2012, 24(7): 938-944. doi: 10.1002/adma.201104113
    [17] TAUJALE S, BARATTA L R, HUANG J, et al. Interactions in Ternary Mixtures of MnO2, Al2O3, and Natural Organic Matter (NOM) and the Impact on MnO2 Oxidative Reactivity[J]. Environmental Science & Technology, 2016, 50(5): 2345-2353.
    [18] ZHANG H, WANG Y, ZHAI C. Construction of a novel p-n heterojunction CdS QDs/LaMnO3 composite for photodegradation of oxytetracycline[J]. Materials Science in Semiconductor Processing, 2022, 144: 106568. doi: 10.1016/j.mssp.2022.106568
    [19] LUO J, CHEN J, GUO R, et al. Rational construction of direct Z-scheme LaMnO3/g-C3N4 hybrid for improved visible-light photocatalytic tetracycline degradation[J]. Separation and Purification Technology, 2019, 211: 882-894. doi: 10.1016/j.seppur.2018.10.062
    [20] XIAO L, DENG Y, ZHOU H, et al. Activated carbon fiber mediates efficient activation of peroxymonosulfate systems: Modulation of manganese oxides and cycling of manganese species[J]. Chinese Chemical Letters, 2023, 34(12): 108407. doi: 10.1016/j.cclet.2023.108407
    [21] SHAO J-J, CAI B, ZHANG C-R, et al. One-pot synthesis of a cellulose-supported CoFe2O4 catalyst for the efficient degradation of sulfamethoxazole[J]. International Journal of Biological Macromolecules, 2022, 219: 166-174. doi: 10.1016/j.ijbiomac.2022.08.003
    [22] SU L, OU L, WEN Y, et al. High-efficiency degradation of quinclorac via peroxymonosulfate activated by N-doped CoFe2O4/Fe0@CEDTA hybrid catalyst[J]. Journal of Industrial and Engineering Chemistry, 2021, 102: 177-185. doi: 10.1016/j.jiec.2021.06.040
    [23] YU W, LI Y, SHU M, et al. CS/CoFe2O4 nanocomposite as a high-effective and steady chainmail catalyst for tetracycline degradation with peroxymonosulfate activation: performance and mechanism[J]. Environmental Geochemistry and Health, 2024, 46(2): 40. doi: 10.1007/s10653-023-01785-4
    [24] JIA Y, YANG K, ZHANG Z, et al. Heterogeneous activation of peroxymonosulfate by magnetic hybrid CuFe2O4@N-rGO for excellent sulfamethoxazole degradation: Interaction of CuFe2O4 with N-rGO and synergistic catalytic mechanism[J]. Chemosphere, 2023, 313: 137392. doi: 10.1016/j.chemosphere.2022.137392
    [25] OLOWOJOBA G B, ESLAVA S, GUTIERREZ E S, et al. In situ thermally reduced graphene oxide/epoxy composites: thermal and mechanical properties[J]. Applied Nanoscience, 2016, 6(7): 1015-1022. doi: 10.1007/s13204-016-0518-y
    [26] LIU C, LIU H, XIONG T, et al. Graphene Oxide Reinforced Alginate/PVA Double Network Hydrogels for Efficient Dye Removal. Polymers, 2018.
    [27] LIU X, PANG K, YANG H, et al. Intrinsically microstructured graphene aerogel exhibiting excellent mechanical performance and super-high adsorption capacity[J]. Carbon, 2020, 161: 146-152. doi: 10.1016/j.carbon.2020.01.065
    [28] LIU Y, LIU X, ZHAO Y, et al. Aligned α-FeOOH nanorods anchored on a graphene oxide-carbon nanotubes aerogel can serve as an effective Fenton-like oxidation catalyst[J]. Applied Catalysis B: Environmental, 2017, 213: 74-86. doi: 10.1016/j.apcatb.2017.05.019
    [29] DONG Q, WANG J, DUAN X, et al. Self-assembly of 3D MnO2/N-doped graphene hybrid aerogel for catalytic degradation of water pollutants: Structure-dependent activity[J]. Chemical Engineering Journal, 2019, 369: 1049-1058. doi: 10.1016/j.cej.2019.03.139
    [30] ALKHOUZAAM A, QIBLAWEY H, KHRAISHEH M, et al. Synthesis of graphene oxides particle of high oxidation degree using a modified Hummers method[J]. Ceramics International, 2020, 46(15): 23997-24007. doi: 10.1016/j.ceramint.2020.06.177
    [31] LUO H, GUO J, SHEN T, et al. Study on the catalytic performance of LaMnO3 for the RhB degradation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 109: 15-25. doi: 10.1016/j.jtice.2020.01.011
    [32] KUMAR S R, ABINAYA C V, AMIRTHAPANDIAN S, et al. Enhanced visible light photocatalytic activity of porous LaMnO3 sub-micron particles in the degradation of rose bengal[J]. Materials Research Bulletin, 2017, 93: 270-281. doi: 10.1016/j.materresbull.2017.05.024
    [33] KARUPPIAH C, ThIRUMALRAJ B, ALAGAR S, et al. Solid-State Ball-Milling of Co3O4 Nano/Microspheres and Carbon Black Endorsed LaMnO3 Perovskite Catalyst for Bifunctional Oxygen Electrocatalysis. Catalysts, 2021.
    [34] MARINESCU C, BEN ALI M, HAMDI A, et al. Cobalt phthalocyanine-supported reduced graphene oxide: A highly efficient catalyst for heterogeneous activation of peroxymonosulfate for rhodamine B and pentachlorophenol degradation[J]. Chemical Engineering Journal, 2018, 336: 465-475. doi: 10.1016/j.cej.2017.12.009
    [35] STANKOVICH S, DIKIN D A, PINER R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45(7): 1558-1565. doi: 10.1016/j.carbon.2007.02.034
    [36] PRIYATHARSHNI S, RAJESH Kumar S, VISWANATHAN C, et al. Morphologically tuned LaMnO3 as an efficient nanocatalyst for the removal of organic dye from aqueous solution under sunlight[J]. Journal of Environmental Chemical Engineering, 2020, 8(5): 104146. doi: 10.1016/j.jece.2020.104146
    [37] LI J-J, YU E-Q, CAI S-C, et al. Noble metal free, CeO2/LaMnO3 hybrid achieving efficient photo-thermal catalytic decomposition of volatile organic compounds under IR light[J]. Applied Catalysis B: Environmental, 2019, 240: 141-152. doi: 10.1016/j.apcatb.2018.08.069
    [38] KUMAR P, ŠILHAVíK M, ZAFAR Z A, et al. Universal Strategy for Reversing Aging and Defects in Graphene Oxide for Highly Conductive Graphene Aerogels[J]. The Journal of Physical Chemistry C, 2023, 127(22): 10599-10608. doi: 10.1021/acs.jpcc.3c01534
    [39] ZHANG X, YANG X, CHEN S, et al. Unravelling the synergy of Eu dopant and surface oxygen vacancies confined in bimetallic oxide for peroxymonosulfate activation[J]. Chemical Engineering Journal, 2023, 452: 139192. doi: 10.1016/j.cej.2022.139192
    [40] LI Z, WANG M, JIN C, et al. Synthesis of novel Co3O4 hierarchical porous nanosheets via corn stem and MOF-Co templates for efficient oxytetracycline degradation by peroxymonosulfate activation[J]. Chemical Engineering Journal, 2020, 392: 123789. doi: 10.1016/j.cej.2019.123789
    [41] CHEN F, HUANG G-X, YAO F-B, et al. Catalytic degradation of ciprofloxacin by a visible-light-assisted peroxymonosulfate activation system: Performance and mechanism[J]. Water Research, 2020, 173: 115559. doi: 10.1016/j.watres.2020.115559
    [42] DU A, FU H, WANG P, et al. Enhanced catalytic peroxymonosulfate activation for sulfonamide antibiotics degradation over the supported CoSx-CuSx derived from ZIF-L(Co) immobilized on copper foam[J]. Journal of Hazardous Materials, 2022, 426: 128134. doi: 10.1016/j.jhazmat.2021.128134
    [43] MA J, CHEN L, LIU Y, et al. Oxygen defective titanate nanotubes induced by iron deposition for enhanced peroxymonosulfate activation and acetaminophen degradation: Mechanisms, water chemistry effects, and theoretical calculation[J]. Journal of Hazardous Materials, 2021, 418: 126180. doi: 10.1016/j.jhazmat.2021.126180
    [44] WANG J, WANG S. Effect of inorganic anions on the performance of advanced oxidation processes for degradation of organic contaminants[J]. Chemical Engineering Journal, 2021, 411: 128392. doi: 10.1016/j.cej.2020.128392
    [45] JIA J, LIU D, TIAN J, et al. Visible-light-excited humic acid for peroxymonosulfate activation to degrade bisphenol A[J]. Chemical Engineering Journal, 2020, 400: 125853. doi: 10.1016/j.cej.2020.125853
    [46] DING X, GUTIERREZ L, CROUE J-P, et al. Hydroxyl and sulfate radical-based oxidation of RhB dye in UV/H2O2 and UV/persulfate systems: Kinetics, mechanisms, and comparison[J]. Chemosphere, 2020, 253: 126655. doi: 10.1016/j.chemosphere.2020.126655
    [47] ZHANG X, YANG Y, HAO Ngo H, et al. Urea removal in reclaimed water used for ultrapure water production by spent coffee biochar/granular activated carbon activating peroxymonosulfate and peroxydisulfate[J]. Bioresource Technology, 2022, 343: 126062. doi: 10.1016/j.biortech.2021.126062
    [48] LI H, SHANG H, CAO X, et al. Oxygen Vacancies Mediated Complete Visible Light NO Oxidation via Side-On Bridging Superoxide Radicals[J]. Environmental Science & Technology, 2018, 52(15): 8659-8665.
    [49] CAO J, YANG Z, XIONG W, et al. Three-dimensional MOF-derived hierarchically porous aerogels activate peroxymonosulfate for efficient organic pollutants removal[J]. Chemical Engineering Journal, 2022, 427: 130830. doi: 10.1016/j.cej.2021.130830
    [50] SUN H, GUO F, PAN J, et al. One-pot thermal polymerization route to prepare N-deficient modified g-C3N4 for the degradation of tetracycline by the synergistic effect of photocatalysis and persulfate-based advanced oxidation process[J]. Chemical Engineering Journal, 2021, 406: 126844. doi: 10.1016/j.cej.2020.126844
  • 加载中
计量
  • 文章访问数:  73
  • HTML全文浏览量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-21
  • 修回日期:  2024-06-24
  • 录用日期:  2024-07-05
  • 网络出版日期:  2024-07-30

目录

    /

    返回文章
    返回