Effect of ball milling time on microstructure and oxidation resistance of self-passivating W alloys
-
摘要:
钨具有高熔点、高热导率、高密度、低膨胀系数、低物理溅射系数及低氚滞留等优异的物理化学性能,常用作高温工作的关键部件材料。但由于钨的抗高温氧化性能差,严重阻碍了它的实际应用。Si是一种具有自钝化功能的元素,本文将Si引入到W中,采用机械合金化法(MA)结合放电等离子体烧结技术(SPS)制备了具有自钝化功能的W-Si合金,研究了不同机械合金化时间对合金显微组织结构的影响,并探究了它们的抗高温氧化性能。合金均由W、W5Si3和SiOx组成。球磨时间短制得的合金中W5Si3相为连续相。在1000 ℃氧化10 h后,球磨时间短制得的合金氧化增重为37.4 mg,氧化层厚度为167.0 μm,比球磨时间长制得的合金具有更优异的抗氧化性能,这是由于其W5Si3相原位氧化成的WO3/SiO2复合氧化层为连续相,有效抑制了合金的内氧化。 1000 ℃氧化2 h的(a) 球磨4 h粉末制得的合金和(b) 球磨20 h粉末制得的合金截面的背散射SEM图像 Abstract: Self-passivating W alloys exhibit excellent high temperature oxidation resistance and are expected to be used in key components in high temperature environments. In order to reveal the relationship between the microstructure and high temperature oxidation resistance of the alloy, a self-passivating W-Si alloy was prepared by mechanical alloying method combined with spark plasma sintering. The effect of different mechanical alloying time on the microstructure of the alloy was studied. And the high temperature oxidation resistance of the alloys was investigated. The results show that the alloys are composed of W, W5Si3 and SiOx phases. When the ball milling time increases from 4 h to 20 h, the content of SiOx in the alloys increases from 16.2% to 23.6%, while the content of W5Si3 decreases from 57.8% to 43.6%, and the grain sizes of W and W5Si3 are both reduced. The grain refinement contributes to the improvement of the microhardness of the alloys. After oxidized at 1000 ℃ for 10 h, the weight gain of the alloy prepared by ball milling for 4 h is 37.4 mg, while that of the alloy prepared by ball milling for 20 h reaches 141.6 mg, and their oxide layer thicknesses are about 167.0 μm and 415.7 μm, respectively. The alloy prepared with short ball milling time has better oxidation resistance, because the W5Si3 in this alloy is a continuous phase. The WO3/SiO2 composite oxide formed by in situ oxidation of W5Si3 is also a continuous phase, forming a protective oxide layer and effectively inhibiting the internal oxidation of the alloy.-
Key words:
- self-passivating /
- W-Si alloy /
- mechanical alloying /
- spark plasma sintering /
- oxidation resistance
-
图 7 W-Si合金在1000℃氧化不同时间的氧化层的SEM图像:(a) 球磨4 h粉末制得的合金;(b) 球磨20 h粉末制得的合金;(1) 氧化0 h的合金表面;(2) 氧化2 h的合金表面;(3) 氧化2 h的氧化层侧表面
Figure 7. SEM images of the oxide layer of the W-Si alloys oxidized for different time: (a) Alloy made from the powder milled for 4 h; (b) Alloy made from the powder milled for 20 h; (1) Surface oxidized for 0 h; (2) Surface oxidized for 2 h; (3) Side surface oxidized for 2 h
表 1 分别球磨4 h和20 h的W-Si粉末的W的晶粒尺寸和固溶度
Table 1. Grain size and solid solubility of W in the W-Si powders ball milled for 4 h and 20 h, respectively
Ball milling time Grain size/nm Solid solubility/at% 4 h 41.82 6.81 20 h 18.91 6.86 表 2 不同球磨时间制得的W-Si合金中各个相的面积含量
Table 2. Area content of each phases in the W-Si alloys prepared by different ball milling time
W-Si alloy SiOx W5Si3 W Alloy made from the
powder milled for 4 h16.2% 57.8% 26.0% Alloy made from the
powder milled for 20 h23.6% 43.6% 32.8% -
[1] 王猛, 杨明川, 荣光, 等. 穿甲过程中钨合金杆式弹失效模式及数值模拟[J]. 稀有金属材料与工程, 2015, 44(9):2170-2174.WANG Meng, YANG Mingchuan, RONG Guang, et al. Failure model and numerical simulation of the tungsten alloy long rod when piercing into armor target[J]. Rare Metal Materials and Engineering,2015,44(9):2170-2174(in Chinese). [2] ZHOU Y, WANG K, LIU R, et al. High performance tungsten synthesized by microwave sintering method[J]. International Journal of Refractory Metals and Hard Materials,2012,34:13-17. doi: 10.1016/j.ijrmhm.2012.02.016 [3] WANG Y J, PENG H X, ZHOU Y, et al. Influence of ZrC content on the elevated temperature tensile properties of ZrCp/W composites[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2011,528(3):1805-1811. doi: 10.1016/j.msea.2010.11.029 [4] 蔡圳阳, 沈鸿泰, 刘赛男, 等. 难熔金属合金及其高温抗氧化涂层研究现状与展望[J]. 中国有色金属学报, 2020, 30(9):1991-2010. doi: 10.11817/j.ysxb.1004.0609.2020-37623CAI Zhenyang, SHEN Hongtai, LIU Sainan, et al. Review and prospect of refractory metal alloys and high temperature oxidation resistance coatings[J]. The Chinese Journal of Nonferrous Metals,2020,30(9):1991-2010(in Chinese). doi: 10.11817/j.ysxb.1004.0609.2020-37623 [5] LV Y Q, FAN Y, ZHAO S Q, et al. The microstructure evolution, damage behavior and failure analysis of fine-grained W-Y2O3 composites under high transient thermal shock[J]. International Journal of Refractory Metals and Hard Materials,2022,107:105905. doi: 10.1016/j.ijrmhm.2022.105905 [6] MAISONNIERR D, COOK I, PIERRE S, et al. The European power plant conceptual study[J]. Fusion Engineering and Design,2005,75-79(SUPPL):1173-1179. [7] 谭晓月, 王武杰, 吴眉, 等. 自钝化钨合金在未来核聚变装置中的潜在应用与研究现状[J]. 材料热处理学报, 2019, 40(11):13-21.TAN Xiaoyue, WANG Wujie, WU Mei, et al. Potential application and research status of self-passivation tungsten alloy in future fusion devices[J]. Transactions of Materials and Heat Treatment,2019,40(11):13-21(in Chinese). [8] TERENTYEV D, JENUS P, SAL E, et al. Development of irradiation tolerant tungsten alloys for high temperature nuclear applications[J]. Nuclear Fusion,2022,62(8):086035. doi: 10.1088/1741-4326/ac75fe [9] WEBB WW, NORTON JT, WAGNER C. Oxidation of tungsten[J]. Journal of the Electrochemical Society,1956,103(2):107-111. doi: 10.1149/1.2430238 [10] BLACKBURN P E, ANDREW K F, GULBRANSEN E A, et al. Oxidation of Tungsten and Tungsten Based Alloys [R]. Arlington: AEMED SERVICES TECHNICAL INFORMATION AGENCY, 1961. [11] CIFUENTES S C, MONGE M A, PÉREZ P. On the oxidation mechanism of pure tungsten in the temperature range 600-800℃[J]. Corrosion Science,2012,57:114-121. doi: 10.1016/j.corsci.2011.12.027 [12] KOCH F, BOLT H. Self-passivating W-based alloys as plasma facing material for nuclear fusion[J]. Revstat-Statistical Journal,2007,T128:100-105. [13] WU B D, YANG X S, ZHOU Y Z, et al. Laser melting deposited self-passivating 90 W-10 Cr coatings on reduced activation ferritic/martensitic steel using 90 W-7 Ni-3 Fe interlayers[J]. Journal of Nuclear Materials,2021,553:153029. doi: 10.1016/j.jnucmat.2021.153029 [14] YAN J, LI X, WANG Z L, et al. Comparison of surface morphologies and helium retention of nanocrystalline W and W-Cr films prepared by magnetron sputtering[J]. Nuclear Materials and Energy,2020,22:100733. doi: 10.1016/j.nme.2020.100733 [15] KLEIN F, GILBERT M R, LITNOVSKY A, et al. Tungsten-chromium-yttrium alloys as first wall armor material: Yttrium concentration, oxygen content and transmutation elements[J]. Fusion Engineering and Design,2020,158:111667. doi: 10.1016/j.fusengdes.2020.111667 [16] MACKOVA A, FERNANDES S, MATEJICEK J, et al. Radiation damage evolution in pure W and W-Cr-Hf alloy caused by 5 MeV Au ions in a broad range of dpa[J]. Nuclear Materials and Energy,2021,29:101085. doi: 10.1016/j.nme.2021.101085 [17] CALVO A, GARCIA-ROSALES C, KOCH F et al. Manufacturing and testing of self-passivating tungsten alloys of different composition[J]. Nuclear Materials and Energy,2016,9(C):422-429. [18] LITNOVSKY A, WEGENER T, KLEIN F et al. Advanced smart tungsten alloys for a future fusion power plant[J]. Plasma Physics and Controlled Fusion,2017,59(6):1-1. [19] WEGENER T, KLEIN F, LITNOYSKY A, et al. Development and analyses of self-passivating tungsten alloys for DEMO accidental conditions[J]. Fusion Engineering and Design,2017,124:183-186. doi: 10.1016/j.fusengdes.2017.03.072 [20] LIU W, DI J, ZHANG W X, et al. Oxidation resistance behavior of smart W-Si bulk composites[J]. Corrosion Science,2022,163:108222. [21] 柳炜. 面向等离子体自钝化W-Si合金的制备与性能研究[D]. 华中科技大学, 2020.LIU WEI. Preparation and Properties of Self-passivating Tungsten-Silicon Alloys for Plasma Facin[D]. Huazhong University of Science and Technology, 2020(in Chinese). [22] 韩勇, 范景莲, 刘涛, 等. 球磨改性和表面活性剂添加对超细98 W-1 Ni-1 Fe粉末性能的影响[J]. 中国有色金属学报, 2012, 22(12):3409-3415.HAN Yong, FAN Jinglian, LIU Tao, et al. Effect of ball milling modification and surfactant addition on properties of ultrafine 98 W-1 Ni-1 Fe powder[J]. The Chinese Journal of Nonferrous Metals,2012,22(12):3409-3415(in Chinese). [23] OKAMOTO H, Supplemental literature review of binary phase diagrams: Al-Mg, Bi-Sr, Ce-Cu, Co-Nd, Cu-Nd, Dy-Pb, Fe-Nb, Nd-Pb, Pb-Pr, Pb-Tb, Pd-Sb, and Si-W [J]. Journal of Phase Equilibria and Diffusion, 2015, 36: 183-195. [24] LIU W, DI J, XUE L H, et al. Phase evolution progress and properties of W-Si composites prepared by spark plasma sintering[J]. Journal of Alloys and Compounds,2018,766:739-747. doi: 10.1016/j.jallcom.2018.07.038 [25] GULBRANSEN E A, ANDREW K F. Kinetics of the oxidation of pure tungsten from 500° to 1300 ℃[J]. Journal of the Electrochemical Society,1960,107(7):619-628. doi: 10.1149/1.2427787 -