留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

韧皮纤维的层级结构及其力学行为研究进展

陈冰炜 阚玉娜 翟胜丞 潘明珠 王新洲 梅长彤

陈冰炜, 阚玉娜, 翟胜丞, 等. 韧皮纤维的层级结构及其力学行为研究进展[J]. 复合材料学报, 2022, 40(0): 1-14
引用本文: 陈冰炜, 阚玉娜, 翟胜丞, 等. 韧皮纤维的层级结构及其力学行为研究进展[J]. 复合材料学报, 2022, 40(0): 1-14
Bingwei CHEN, Yu’na KAN, Shengcheng ZHAI, Mingzhu PAN, Xinzhou WANG, Changtong MEI. Research progress on the hierarchical structure and mechanical behaviors of phloem fibers[J]. Acta Materiae Compositae Sinica.
Citation: Bingwei CHEN, Yu’na KAN, Shengcheng ZHAI, Mingzhu PAN, Xinzhou WANG, Changtong MEI. Research progress on the hierarchical structure and mechanical behaviors of phloem fibers[J]. Acta Materiae Compositae Sinica.

韧皮纤维的层级结构及其力学行为研究进展

基金项目: 国家自然科学基金青年项目(31400496);江苏省自然科学基金青年项目(BK20140981); 南京林业大学 “一流学科”建设经费(PNFD)
详细信息
    通讯作者:

    翟胜丞,博士,副教授,硕士生导师,研究方向为生物质材料微观结构与细观力学 E-mail:zhais@njfu.edu.cn

    梅长彤,博士,教授,博士生导师,研究方向为木质及生物质复合材料 E-mail:mei@njfu.edu.cn

  • 中图分类号: TB332;TS721

Research progress on the hierarchical structure and mechanical behaviors of phloem fibers

  • 摘要: 韧皮纤维是一种重要的非木质植物纤维,具有较好的力学性能和环境友好性,被广泛用于增强复合材料。在韧皮纤维细胞壁中,螺旋结构的纤维素被半纤维素、果胶、木质素等无定形基质聚合物包裹。随着纤维素微纤丝角度变化,形成了多薄层/壁层的细胞壁结构。这种不同层级细胞壁的组装构筑,对于韧皮纤维力学性能的产生与力学行为的表现均具有重要影响。本文总结了以麻为代表的韧皮纤维在组织层级、细胞层级、细胞壁层级以及分子层级的结构特点;重点分析了不同微观尺度的构造特征对单轴拉伸过程中纤维力学行为的影响;最后对研究存在的问题与发展方向提出了建议与展望,以期为韧皮纤维的利用以及仿生结构的构建提供新思路。

     

  • 图  1  不同天然材料的特性强度-模量图 (图片修改自参考文献[11])

    Figure  1.  The material property chart for natural materials (The chart was modified from [11])

    图  2  不同来源韧皮纤维层级结构示意图:(a)-(b) 成熟亚麻茎秆横截面显微构造及局部放大图[2];(c)-(d) 青檀(P. tatarinowii)幼茎树皮横截面显微构造及局部放大图(未发表图片);(e) 亚麻纤维束及其横断面扫描电镜图[14];(f) 纤维束与细胞壁模型;(g) 亚麻单根纤维横截面示意图,细胞壁层厚度和不同化学成分的相对含量;(h)-(j) 微纤丝、基元纤丝、纤维素示意图

    NCP,非纤维素多糖 (半纤维素、果胶等);Other,其它 (蜡、蛋白质、矿物质等)

    Figure  2.  The hierarchical structure of the different phloem fibers: (a)-(b) Anatomical structure of the mature flax and the magnified view of the fiber bundles[2]; (c)-(d) Anatomical structure of the juvenile bark of the wingceltis (P. tatarinowii) and the magnified view of the fiber bundles (unpublished images); (e) Flax fiber bundles and SEM image of the transverse section[14]; (f) Schematic of fiber bundles and the cell wall of the single phloem fiber; (g) Relative chemical content of different cell wall compositions in the flax cell wall, with marks about the thickness of different cell wall layers; (h)-(j) Schematic of microfibrils, element fibrils, and cellulose molecular chain NCP, Non-cellulosic polysaccharides (hemicellulose, pectin, etc.); Other (wax, proteins, minerals, etc.)

    图  3  韧皮纤维的多种缺陷及位错对断裂行为的影响:(a) 韧皮纤维中的缺陷可以分为两大类,即表面或整体的“不连续性”和“不均匀性”,如表面杂质、裂纹、层间分离、位错和扭曲[1];(b)-(c) 亚麻纤维束扭结带的显微图片及二次谐波成像图片[18];(d)-(e) 亚麻的断裂行为,裂纹由表面大缺陷开始沿纤维纵向扩展,断面出现分丝帚化[20]

    Figure  3.  Different defects present in the phloem fibers and the influence of dislocation on the fracture: (a) Schematic illustration of different kinds of defects present in plant fibers divided between discontinuities and inhomogeneities at the surface or in bulk: surface impurities, cracks, interlaminar decohesion, dislocations, and twisting[1]; (b)-(c) The SEM micrographs and SHG image of kink-band regions in flax fibers[18]; (d)-(e) Fracture behavior of a flax fiber. The cracks started from surface defects, extended longitudinally along the fiber, and the fibrillation occurred at the fractured ends[20]

    图  4  韧皮纤维细胞壁超微构造:(a) 不同生长阶段的亚麻韧皮纤维细胞壁具有不同厚度的G层与Gn层[2];(b) 亚麻韧皮纤维细胞壁层形成示意图及不同壁层的压弹模量[32];(c) 成熟大麻初生韧皮纤维显示多壁层结构[33];(d): 野梧桐(M. japonicus)韧皮纤维显示出厚-薄交替多层结构[36]

    P 初生壁;S次生壁;G胶质层;Gn新生胶质层

    Figure  4.  The ultrastructure of bast fiber cell wall: (a) The cell walls of flax phloem fibers at different growth stages showed different thicknesses of G and Gn layers[2]; (b) Atomic force microscopy (AFM) peak-force quantitative nano-mechanical (PF-QNM) mapping of the indentation modulus of developing flax fibers at top, middle, and bottom parts of the stem[32]; (c) Multilayered structure in the mature hemp primary phloem fibers[33]; (d) Multilayered structure in the phloem fibers of M. japonicas[36] P Primary wall; S Secondary wall; G Gelatinous layer; Gn Newly deposited layer of the gelatinous cell wall

    图  5  纵向加载时具有不同微纤丝排列取向的细胞壁显示不同力学行为:(a) Ⅰ-亚麻韧皮纤维断面显示微纤丝轴向取向[56],Ⅱ-山茱萸胶质纤维中G层内部到外部微纤丝取向逐渐变化[57];(b) 3 D打印模拟具有不同微纤丝角的细胞壁[55];(c) 应力-应变曲线[55];(d) 基于有限元模拟的基质、微纤丝与纤维的相对应变能密度(SED)[55]

    Figure  5.  Cell wall layers with different microfibril orientations display different mechanical behavior under longitudinal loading: (a) Ⅰ-Fracture surfaces of a flax fiber showing axial orientation of microfibrils[56]; Ⅱ-Gradual change in microfibril orientation from the inner to outer parts of the G-layer in Cornaceae spp.[57]; (b) Overview of model design[55]; (c) Experimental stress-strain curves and deformed configurations of 3 D-printed cylinders[55]; (d) Relative strain energy density (SED) adsorption in matrix, fibers, and fibrils from the finite element simulations[55]

    图  6  (a) Iβ型纤维素结构示意图[60];(b) 拉伸过程中纤维素分子链不同自由度的响应程度[61];(c) 分子杠杆机制[65];(d)-(f) 使用分子动力学模拟Iβ纤维素在三个正交方向和三种应变速率下的单轴拉伸变形的结构示意图[70]

    Figure  6.  (a) Crystal structure of cellulose Iβ[60]; (b) Response to tensile strain in different degrees of freedom[61]; (c) A molecular scale leverage effect[65]; (d-f) Schematic of cellulose Iβ deformation under uniaxial tensile at three orthogonal directions with three different strain rates by using molecular dynamics (MD) simulations[70]

    图  7  (a)-(d) 基于大麻韧皮纤维拉伸行为提出的假设[84]; (e) 微纤丝与半纤维素间界面的结构与相互作用机制[82]

    Figure  7.  (a)-(d) Schematic assumption based on the complex tensile behavior of hemp fiber[84]; (e) The structure and mechanics of the interfaces between hemicellulose and microfibrils[82]

  • [1] RICHELY E, BOURMAUD A, PLACET V, et al. A critical review of the ultrastructure, mechanics and modelling of flax fibres and their defects[J]. Progress in Materials Science,2022,124:100851. doi: 10.1016/j.pmatsci.2021.100851
    [2] GOUDENHOOFT C A, BOURMAUD A, Baley C. Flax (Linum usitatissimum L. ) Fibers for composite reinforcement: Exploring the link between plant growth, cell walls development, and fiber properties[J]. Front Plant Sci,2019,10:411. doi: 10.3389/fpls.2019.00411
    [3] ANGYALOSSY V, PACE M R, EVERT R F, et al. IAWA list of microscopic bark features[J]. IAWA Journal,2016,37(4):517-615. doi: 10.1163/22941932-20160151
    [4] Evert R F. Phloem: Secundary Phloem and its various Structures. Esaus Pflanzenanatomie: Meristeme, Zellen Und Gewebe Der Pflanzen Ihre Struktur, Funktion Und Entwicklung[M]. 2009: 373-390.
    [5] Evert R F. Phloem: Cell Types and Aspects of the Development. Esaus Pflanzenanatomie: Meristeme, Zellen Und Gewebe Der Pflanzen Ihre Struktur, Funktion Und Entwicklung [M]. 2009: 327-372.
    [6] BURGERT I. Exploring the micromechanical design of plant cell walls[J]. American Journal of Botany,2006,93(10):1391-1401. doi: 10.3732/ajb.93.10.1391
    [7] BURGERT I, FRÜHMANN K, KECKES J, et al. Structure-function relationships of four compression wood types: micromechanical properties at the tissue and fibre level[J]. Trees,2004,18(4):480-485.
    [8] AHMED M M, DHAKAL H N, ZHANG Z Y, et al. Enhancement of impact toughness and damage behaviour of natural fibre reinforced composites and their hybrids through novel improvement techniques: A critical review[J]. Composite Structures,2021,259:113496. doi: 10.1016/j.compstruct.2020.113496
    [9] GUAN Q F, YANG K P, HAN Z M, et al. Sustainable multiscale high-haze transparent cellulose fiber film via a biomimetic approach[J]. ACS Materials Letters,2021,4(1):87-92.
    [10] 贾云龙, FIEDLER Bodo. 吸湿对单向亚麻纤维复合材料力学性能的影响[J]. 复合材料学报, 2022, 39(2):616-624.

    JIA Y L, FIEDLER B. Influence of moisture absorption on the mechanical properties of unidirectional flax fibre composites[J]. Acta Materiae Compositae Sinica,2022,39(2):616-624(in Chinese).
    [11] WEGST U G K, ASHBY M. The mechanical efficiency of natural materials[J]. Philosophical Magazine,2004,84(21):2167-2186. doi: 10.1080/14786430410001680935
    [12] CHERNOVA T E, MIKSHINA P V, SALNIKOV V V, et al. Development of distinct cell wall layers both in primary and secondary phloem fibers of hemp (Cannabis sativa L. )[J]. Industrial Crops and Products,2018,117:97-109. doi: 10.1016/j.indcrop.2018.02.082
    [13] JAVIS M C, Structure of native cellulose microfibrils, the starting point for nanocellulose manufacture [J]. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 2018, 376(2112): 20170045-20170057.
    [14] AMIRI A, ULVEN C A, Huo S. Effect of chemical treatment of flax fiber and resin manipulation on service life of their composites using time-temperature superposition[J]. Polymers,2015,7(10):1965-1978. doi: 10.3390/polym7101493
    [15] HÄNNINEN T, MICHUD A, HUGHES M. Kink bands in bast fibres and their effects on mechanical properties[J]. Plastics, Rubber and Composites,2013,40(6-7):307-310.
    [16] RASK M, MADSEN B, SǾRENSEN B F, et al. In situ observations of microscale damage evolution in unidirectional natural fibre composites[J]. Composites Part a-Applied Science and Manufacturing,2012,43(10):1639-1649. doi: 10.1016/j.compositesa.2012.02.007
    [17] NYHOLM K, ANDER P, BARDAGE S, et al. Dislocations in pulp fibres-their origin, characteristics and importance-a revie[J]. Nordic Pulp and Paper Research Journal,2001,16(4):376-384. doi: 10.3183/npprj-2001-16-04-p376-384
    [18] MELELLI A, DURAND S, ARNOULD O, et al. Extensive investigation of the ultrastructure of kink-bands in flax fibres[J]. Industrial Crops and Products,2021,164:113368. doi: 10.1016/j.indcrop.2021.113368
    [19] THYGESEN LG, EDER M, BURGERT I. Dislocations in single hemp fibres—investigations into the relationship of structural distortions and tensile properties at the cell wall level[J]. Journal of Materials Science,2006,42(2):558-564.
    [20] ASLAN M, CHINGA-CARRASCO G, SǾRENSEN B F, et al. Strength variability of single flax fibres[J]. Journal of Materials Science,2011,46(19):6344-6354. doi: 10.1007/s10853-011-5581-x
    [21] PLACET V, TRIVAUDEY F, CISSE O, et al. Diameter dependence of the apparent tensile modulus of hemp fibres: A morphological, structural or ultrastructural effect?[J]. Composites Part A:Applied Science and Manufacturing,2012,43(2):275-287. doi: 10.1016/j.compositesa.2011.10.019
    [22] DUVAL A, BOURMAUD A, AUGIER L, et al. Influence of the sampling area of the stem on the mechanical properties of hemp fibers[J]. Materials Letters,2011,65(4):797-800. doi: 10.1016/j.matlet.2010.11.053
    [23] CHARLET K, JERNOTA J P, EVE S, et al. Multi-scale morphological characterisation of flax: From the stem to the fibrils[J]. Carbohydrate Polymers,2010,82(1):54-61. doi: 10.1016/j.carbpol.2010.04.022
    [24] FAN M. Characterization and performance of elementary hemp fibres: Factors influencing tensile strength[J]. Bioresources,2010,5(4):2307-2322. doi: 10.15376/biores.5.4.2307-2322
    [25] KIYOTO S, YOSHINAGA A, FERNANDEZ-TENDERO E, et al. Distribution of lignin, hemicellulose, and arabinogalactan protein in hemp phloem fibers[J]. Microsc Microanal,2018,24(4):442-452. doi: 10.1017/S1431927618012448
    [26] BEHR M, FALERI C, HAUSMAN J F, et al. Distribution of cell-wall polysaccharides and proteins during growth of the hemp hypocotyl[J]. Planta,2019,250(5):1539-1556. doi: 10.1007/s00425-019-03245-9
    [27] ROACH M J, MOKSHINA N Y, BADHAN A, et al. Development of cellulosic secondary walls in flax fibers requires beta-galactosidase[J]. Plant Physiol,2011,156(3):1351-63. doi: 10.1104/pp.111.172676
    [28] IBRAGIMOVA N, MOKSHINA N, AGEEVA M, et al. Rearrangement of the cellulose-enriched cell wall in flax phloem fibers over the course of the gravitropic reaction[J]. Int J Mol Sci,2020,21(15):5322-5344. doi: 10.3390/ijms21155322
    [29] ABDUL KHALIL H P S, YUSRA A F I, BHAT A H, et al. Cell wall ultrastructure, anatomy, lignin distribution, and chemical composition of Malaysian cultivated kenaf fiber[J]. Industrial Crops and Products,2010,31(1):113-121. doi: 10.1016/j.indcrop.2009.09.008
    [30] Qi H H, CHEN K W, MAO Z D, et al. Investigation of the structure of ramie fibers by enzymatic peeling[J]. Cellulose,2019,26(5):2955-2968. doi: 10.1007/s10570-019-02309-z
    [31] GORSHKOVA T A, GURJANOV O P, MIKSHINA P V, et al. Specific type of secondary cell wall formed by plant fibers[J]. Russian Journal of Plant Physiology,2010,57(3):328-341. doi: 10.1134/S1021443710030040
    [32] GOUDENHOOFT C, SINISCALCO D, ARNOULD O, et al. Investigation of the mechanical properties of flax cell walls during plant development: The relation between performance and cell wall structure[J]. Fibers,2018,6(1):6. doi: 10.3390/fib6010006
    [33] BLAKE A W, MARCUS S E, COPELAND J E, et al. In situ analysis of cell wall polymers associated with phloem fibre cells in stems of hemp, Cannabis sativa L[J]. Planta,2008,228(1):1-13. doi: 10.1007/s00425-008-0713-5
    [34] JIN K, LIU X, WANG K, et al. Imaging the dynamic deposition of cell wall polymer in xylem and phloem in Populus × euramericana[J]. Planta,2018,248(4):849-858. doi: 10.1007/s00425-018-2931-9
    [35] NAKAGAWA K. , YOSHINAGA A, TAKABE K. Anatomy and lignin distribution in reaction phloem fibres of several Japanese hardwoods[J]. Ann Bot,2012,110(4):897-904. doi: 10.1093/aob/mcs144
    [36] NAKAGAWA K, A. YOSHINAGA A, TAKABE K. Xylan deposition and lignification in the multi-layered cell walls of phloem fibres in Mallotus japonicus (Euphorbiaceae)[J]. Tree Physiol,2014,34(9):1018-29. doi: 10.1093/treephys/tpu061
    [37] CHEN M, DAI C, LIU R, et al. Influence of cell wall structure on the fracture behavior of bamboo (Phyllostachys edulis) fibers[J]. Industrial Crops and Products,2020,155:112787-112792. doi: 10.1016/j.indcrop.2020.112787
    [38] GHISLAIN B, CLAIR B. Diversity in the organisation and lignification of tension wood fibre walls - A review[J]. IAWA Journal,2017,38(2):245-265. doi: 10.1163/22941932-20170170
    [39] AIZENBERG J, WEAVER J C, THANAWALA M S, et al. Skeleton of Euplectella sp. : Structural hierarchy from the nanoscale to the macroscale[J]. Science,2005,309(5732):275-278. doi: 10.1126/science.1112255
    [40] MELELLI A, ARNOULD O, BEAUGRAND J, et al. The middle lamella of plant fibers used as composite reinforcement: Investigation by atomic force microscopy[J]. Molecules,2020,25(3):632. doi: 10.3390/molecules25030632
    [41] BALEY C, PERROT Y, BUSNEL F, et al. Transverse tensile behaviour of unidirectional plies reinforced with flax fibres[J]. Materials Letters,2006,60(24):2984-2987. doi: 10.1016/j.matlet.2006.02.028
    [42] ZAMIL M S, GEITMANN A. The middle lamella-more than a glue[J]. Physical Biology,2017,14(1):015004. doi: 10.1088/1478-3975/aa5ba5
    [43] MIKSHINA P, CHERNOVA T, CHEMIKOSOVA S, et al. Cellulosic fibers: Role of matrix polysaccharides in structure and function, in cellulose - fundamental aspects. 2013.
    [44] FRATZL P, ELBAUM R, BURGERT I. Cellulose fibrils direct plant organ movements[J]. Faraday Discuss,2008,139:275-82. doi: 10.1039/b716663j
    [45] BOURMAUD A, MORVAN C, BOUALI A, et al. Relationships between micro-fibrillar angle, mechanical properties and biochemical composition of flax fibers[J]. Industrial Crops and Products,2013,44:343-351. doi: 10.1016/j.indcrop.2012.11.031
    [46] RONGPIPI S, YE D, GOMEZ E, et al. Progress and opportunities in the characterization of cellulose - An important regulator of cell wall growth and mechanics[J]. Frontiers in Plant Science,2019,9:1894. doi: 10.3389/fpls.2018.01894
    [47] ZHANG T, ZHENG Y Z, COSGROVE D J. Spatial organization of cellulose microfibrils and matrix polysaccharides in primary plant cell walls as imaged by multichannel atomic force microscopy[J]. Plant Journal,2016,85(2):179-192. doi: 10.1111/tpj.13102
    [48] SAXE F, EDER M, BENECKE G, et al. Measuring the distribution of cellulose microfibril angles in primary cell walls by small angle X-ray scattering[J]. Plant Methods,2014,10:25. doi: 10.1186/1746-4811-10-25
    [49] MÜLLER M, CZIHAK C, VOGL G, et al. Direct observation of microfibril arrangement in a single native cellulose fiber by microbeam small-angle X-ray scattering[J]. Macromolecules,1998,31(12):3953-3957. doi: 10.1021/ma980004c
    [50] WANG C, WANG N, LIU S, et al. Investigation of microfibril angle of flax fibers using X-ray diffraction and scanning electron microscopy[J]. Journal of Natural Fibers,2018,17(7):1001-1010.
    [51] CHEN B, ZHAI S, KAN Y, et al. New insights into Chinese traditional handmade paper: influence of growth age on morphology and cellulose structure of phloem fibers from Pteroceltis tatarinowii[J]. Cellulose,2021,28(15):9943-9957. doi: 10.1007/s10570-021-04150-9
    [52] MELELLI A, JAMME F, LEGLAND D, et al. , Microfibril angle of elementary flax fibres investigated with polarised second harmonic generation microscopy[J]. Industrial Crops and Products,2020,156:112847. doi: 10.1016/j.indcrop.2020.112847
    [53] 孙海燕, 苏明垒, 吕建雄, 等. 细胞壁微纤丝角和结晶区对木材物理力学性能影响研究进展[J]. 西北农林科技大学学报(自然科学版), 2019, 47(5):50-58.

    SUN H, SU M, LV J, et al. Research progress on effect of microfibril angle and crystalline area in cell wall on wood physical and mechanical properties[J]. Journal of Northwest A& F University(Nat. Sci Ed. ),2019,47(5):50-58(in Chinese).
    [54] DONALDSON L. Microfibril angle: Measurement, variation and relationships - a Review[J]. IAWA Journal,2008,29(4):345-386. doi: 10.1163/22941932-90000192
    [55] ZORZETTO L, RUFFONI D. Wood-inspired 3 D-printed helical composites with tunable and enhanced mechanical performance[J]. Advanced Functional Materials,2019,29(1):1805888-1805896. doi: 10.1002/adfm.201805888
    [56] BALEY C. Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase[J]. Composites Part A:Applied Science and Manufacturing,2002,33(7):939-948. doi: 10.1016/S1359-835X(02)00040-4
    [57] HIGAKI A, YOSHINAGA A, TAKABE K. Heterogeneous distribution of xylan and lignin in tension wood G-layers of the S1+G type in several Japanese hardwoods[J]. Tree Physiology,2017,37(12):1767-1775. doi: 10.1093/treephys/tpx144
    [58] SALMÉN L, BURGERT I. Cell wall features with regard to mechanical performance. A review COST Action E35 2004-2008: Wood machining-micromechanics and fracture[J]. Holzforschung,2009,63(2):121-129.
    [59] STURCOVA A, HIS I, APPERLEY D C, et al. Structural details of crystalline cellulose from higher plants[J]. Biomacromolecules,2004,5(4):1333-1339. doi: 10.1021/bm034517p
    [60] WOHLERT M, BENSELFELT T, WÅGBERG L, et al. Cellulose and the role of hydrogen bonds: not in charge of everything[J]. Cellulose,2021,29(1):1-23.
    [61] DJAHEDI C, L. A. BERGLUND L A, WOHLERT J. Molecular deformation mechanisms in cellulose allomorphs and the role of hydrogen bonds[J]. Carbohydr Polym,2015,130:175-82. doi: 10.1016/j.carbpol.2015.04.073
    [62] HINTERSTOISSER B, AKERHOLM M, SALMÉN L. Effect of fiber orientation in dynamic FTIR study on nativecellulose[J]. Carbohydrate Research,2001,334:27-37. doi: 10.1016/S0008-6215(01)00167-7
    [63] GIERLINGER N, SCHWANNINGER M, REINECKE A, et al. Molecular changes during tensile deformation of single wood fibers followed by Raman microscopy[J]. Macromolecules,2006,7(7):2077-2081.
    [64] GIERLINGER N, LUSS S, KONIG C, et al. Cellulose microfibril orientation of Picea abies and its variability at the micron-level determined by Raman imaging[J]. Journal of Experimental Botany,2010,61(2):587-595. doi: 10.1093/jxb/erp325
    [65] ALTANER C M, THOMAS L H, FERNANDES A N, et al. How cellulose stretches: synergism between covalent and hydrogen bonding[J]. Biomacromolecules,2014,15(3):791-798. doi: 10.1021/bm401616n
    [66] MÜLLER M M, BURGHAMMER M, SUGIYAMA J, Direct investigation of the structural properties of tension wood cellulose microfibrils using microbeam X-ray fibre diffraction [J]. Holzforschung, 2006, 60(5): 474-479.
    [67] VIËTOR R J, NEWMAN R H, HA M A, et al. Conformational features of crystal-surface cellulose from higher plants[J]. The Plant Journal,2002,30(6):721-731. doi: 10.1046/j.1365-313X.2002.01327.x
    [68] STURCOVÁ A, HIS I, APPERLEY D C, et al. Structural details of crystalline cellulose from higher plants[J]. Biomacromolecules,2004,5:13333-13339.
    [69] BONATTI P M, FERRARI C, FOCHER B, et al. Histochemical and supramolecular studies in determining quality of hemp fibres for textile applications[J]. Euphytica,2004,140:55-64. doi: 10.1007/s10681-004-4755-x
    [70] WU X, MOON R J, MARTINI A. Tensile strength of Iβ crystalline cellulose predicted by molecular dynamics simulation[J]. Cellulose,2014,21(4):2233-2245. doi: 10.1007/s10570-014-0325-0
    [71] GIRAULT R, BERT F, RIHOUEY C, et al. Galactans and cellulose in flax fibres putative contributions to the tensile strength[J]. Int. J. Biol. Macromol,1997,21:179-188. doi: 10.1016/S0141-8130(97)00059-7
    [72] DUCHEMIN B, THUAULT A, VICENTE A, et al. Ultrastructure of cellulose crystallites in flax textile fibres[J]. Cellulose,2012,19(6):1837-1854. doi: 10.1007/s10570-012-9786-1
    [73] MOKSHINA N N, IBRAGIMOVA V V, AMENITSKII S I, et al. Galactosidase of plant fibers with gelatinous cell wall: Identification and localization[J]. Russian Journal of Plant Physiology,2012,59(2):246-254. doi: 10.1134/S1021443712020082
    [74] GORSHKOVA T, MORVAN C. Secondary cell-wall assembly in flax phloem fibres: role of galactans[J]. Planta,2006,223(2):149-58. doi: 10.1007/s00425-005-0118-7
    [75] BOWLING A J, VAUGHN K C. Immunocytochemical characterization of tension wood: Gelatinous fibers contain more than just cellulose[J]. Am J Bot,2008,95(6):655-63. doi: 10.3732/ajb.2007368
    [76] COSGROVE D J, JARVIS M C. Comparative structure and biomechanics of plant primary and secondary cell walls[J]. Front Plant Sci,2012,3:204.
    [77] MARROT L, LEFEURE A, PONTOIRE B, et al. Analysis of the hemp fiber mechanical properties and their scattering (Fedora 17)[J]. Industrial Crops and Products,2013,51:317-327. doi: 10.1016/j.indcrop.2013.09.026
    [78] 许凤, 张逊, 周霞, 等. 农林生物质预处理过程中细胞壁主要组分溶解机理研究进展[J]. 林业工程学报, 2016, 1(4):1-9.

    XU F, ZHANG X, ZHOU X, et al. An investigation of dissolution mechanism of major components in cell walls of agricultural and forest biomass[J]. Journal of Forestry Engineering,2016,1(4):1-9(in Chinese).
    [79] DONALDSON L A. Lignification and lignin topochemistry — an ultrastructural view[J]. Phytochemistry,2001,57(6):859-873. doi: 10.1016/S0031-9422(01)00049-8
    [80] ÅKERHOLM M, SALMÉN L. The oriented structure of lignin and its viscoelastic properties studied by static and dynamic FT-IR Spectroscopy[J]. Holzforschung,2003,57:459-465. doi: 10.1515/HF.2003.069
    [81] KECKES J, BURGERT I, FRÜHMANN, et al. Cell-wall recovery after irreversible deformation of wood[J]. Nature Materials,2003,2(12):810-814. doi: 10.1038/nmat1019
    [82] BARTHELAT F, YIN Z, BUEHLER M J. Structure and mechanics of interfaces in biological materials[J]. Nature Reviews Materials,2016,1(4):16007. doi: 10.1038/natrevmats.2016.7
    [83] ASTLEY O M, DONALD A M. The tensile deformation of flax fibres as studied by X-ray scattering[J]. Journal of Materials Science,2003,38:165-171. doi: 10.1023/A:1021186421194
    [84] PLACET V O, CISSÉ O, LAMINE BOUBAKAR M. Nonlinear tensile behaviour of elementary hemp fibres. Part I: Investigation of the possible origins using repeated progressive loading with in situ microscopic observations[J]. Composites Part A:Applied Science and Manufacturing,2014,56:319-327. doi: 10.1016/j.compositesa.2012.11.019
  • 加载中
计量
  • 文章访问数:  81
  • HTML全文浏览量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-22
  • 录用日期:  2022-05-04
  • 修回日期:  2022-04-21
  • 网络出版日期:  2022-05-20

目录

    /

    返回文章
    返回