留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

羟基磷灰石/Ti-13Nb-13Zr复合材料的组织性能与细胞相容性评价

王唯 孟增东 罗丽琳 张玉勤 蒋业华

王唯, 孟增东, 罗丽琳, 等. 羟基磷灰石/Ti-13Nb-13Zr复合材料的组织性能与细胞相容性评价[J]. 复合材料学报, 2023, 40(1): 428-436. doi: 10.13801/j.cnki.fhclxb.20220211.002
引用本文: 王唯, 孟增东, 罗丽琳, 等. 羟基磷灰石/Ti-13Nb-13Zr复合材料的组织性能与细胞相容性评价[J]. 复合材料学报, 2023, 40(1): 428-436. doi: 10.13801/j.cnki.fhclxb.20220211.002
WANG Wei, MENG Zengdong, LUO Lilin, et al. Microstructure, properties and cytocompatibility evaluation of hydroxyapatite/Ti-13Nb-13Zr composites[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 428-436. doi: 10.13801/j.cnki.fhclxb.20220211.002
Citation: WANG Wei, MENG Zengdong, LUO Lilin, et al. Microstructure, properties and cytocompatibility evaluation of hydroxyapatite/Ti-13Nb-13Zr composites[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 428-436. doi: 10.13801/j.cnki.fhclxb.20220211.002

羟基磷灰石/Ti-13Nb-13Zr复合材料的组织性能与细胞相容性评价

doi: 10.13801/j.cnki.fhclxb.20220211.002
基金项目: 国家自然科学基金项目(31660262)
详细信息
    通讯作者:

    张玉勤,博士,教授,博士生导师,研究方向为生物医用材料 E-mail: zyqkust@163.com

  • 中图分类号: TB332

Microstructure, properties and cytocompatibility evaluation of hydroxyapatite/Ti-13Nb-13Zr composites

Funds: National Natural Science Foundation of China (31660262)
  • 摘要: 为了改善Ti-13Nb-13Zr医用钛合金的生物活性与细胞相容性,利用放电等离子烧结(SPS)技术制备了Ti-13Nb-13Zr合金和羟基磷灰石(HA)含量5wt%的5HA/Ti-13Nb-13Zr复合材料并进行退火处理,研究了两种材料的显微组织、力学性能、表面润湿性、体外矿化行为及细胞增殖与凋亡等生物学性能。结果表明:合金主要由β-Ti和α-Ti相组成,复合材料由β-Ti、α-Ti、HA相及少量陶瓷反应相(Ca3(PO4)2、CaZrO3、CaO)组成,退火后部分初生α-Ti转变为β-Ti且组织更均匀,HA的加入会使得晶粒细化;退火后两种材料抗压强度、屈服强度、屈强比和弹性模量均略微下降;HA的加入提高了复合材料亲水性、类骨磷灰石形成能力、细胞增殖率并降低了细胞凋亡率;综合分析,退火后的5HA / Ti-13Nb-13Zr复合材料抗压强度、屈服强度和弹性模量分别为(1744±9) MPa、(1493±12) MPa和(43±1.6) GPa,具有优异的类骨磷灰石形成能力,同时细胞增殖率达到99.1%±0.8%,表明HA的加入明显提高了Ti-13Nb-13Zr合金的生物活性与细胞相容性。

     

  • 图  1  Ti-13Nb-13Zr合金和5-羟基磷灰石(HA)/Ti-13Nb-13Zr复合材料退火前后的物相分析

    Figure  1.  Phase analysis of Ti-13Nb-13Zr alloy and 5-hydroxyapatite (HA)/Ti-13Nb-13Zr composite before and after annealing

    TCP—Ca3(PO4)2

    图  2  退火前后Ti-13Nb-13Zr合金和5HA/Ti-13Nb-13Zr复合材料的微观形貌:((a)、(b)) 烧结态合金;((c)、(d)) 退火态合金;((e)、(f)) 烧结态复合材料;((g)、(h)) 退火态复合材料

    Figure  2.  Microstructure of Ti-13Nb-13Zr alloy and 5HA/Ti-13Nb-13Zr composite before and after annealing: ((a), (b)) Sintered alloy; ((c), (d)) Annealed alloy; ((e), (f)) Sintered composite; ((g), (h)) Annealed composite

    图  3  退火前后Ti-13Nb-13Zr合金和5HA/Ti-13Nb-13Zr复合材料的力学性能

    Figure  3.  Mechanical properties of Ti-13Nb-13Zr alloy and 5HA/Ti-13Nb-13Zr composite before and after annealing

    Rm—Compressive strength; RP0.2—Yield strength

    图  4  纯H2O和NaCl溶液在Ti-13Nb-13Zr合金和5HA/Ti-13Nb-13Zr复合材料的表面接触角

    Figure  4.  Contact angle of pure water and NaCl solution on the surface of Ti-13Nb-13Zr alloy and 5HA/Ti-13Nb-13Zr composite

    图  5  退火态Ti-13Nb-13Zr合金和5HA/Ti-13Nb-13Zr复合材料在模拟人工体液(SBF)溶液中浸泡7天的微观形貌图:(a) 合金;(b) 复合材料

    Figure  5.  Microstructure of Ti-13Nb-13Zr alloy and 5HA/Ti-13Nb-13Zr composite after annealing immersed in simulated artificial body fluid (SBF) solution for 7 days: (a) Alloy; (b) Composite

    图  6  退火态Ti-13Nb-13Zr合金和5HA/Ti-13Nb-13Zr复合材料的光密度(OD)值(a)和细胞增殖率(b) (*p< 0.05;**p< 0.01)

    Figure  6.  Optical density (OD) values (a) and cell viabilities (b) of Ti-13Nb-13Zr alloy and 5HA/Ti-13Nb-13Zr composite after annealing (*p< 0.05; **p< 0.01)

    图  7  退火态Ti-13Nb-13Zr合金和5HA/Ti-13Nb-13Zr复合材料浸提液诱导人成骨肉瘤细胞(MG63 细胞)凋亡实验:(a)合金;(b)复合材料 (X轴、Y轴分别表示PI 和 Annexin V,一般认为PI单染的细胞是已经死亡的细胞,Annexin V单染的细胞是凋亡早期的细胞,而双染是凋亡中期的细胞;Q1区表示死细胞;Q2表示凋亡晚期细胞;Q3表示正常细胞;Q4表示凋亡早期细胞)

    Figure  7.  Apoptosis experiment of Human osteosarcoma cells (MG63 cells) induced by extraction of Ti-13Nb-13Zr alloy and 5HA/Ti-13Nb-13Zr composite after annealing: (a) Alloy; (b) Composite (X and Y axes indicate PI and annexin V respectively. It is generally accepted that the cells with PI mono-staining are dead cells, the cells with annexin V mono-staining are cells in the early apoptotic stage, and the cells with double staining are cells in the middle apoptotic stage; Q1 represents dead cells; Q2 represents late apoptotic cells; Q3 represents normal cells; Q4 represents early apoptotic cells)

    图  8  Ti-13Nb-Zr合金和5HA/Ti-13Nb-13Zr复合材料诱导MG63细胞凋亡率统计图 (*p< 0.05;**p< 0.01)

    Figure  8.  Cell apoptosis rate statistical graph of MG63 cells induced by extraction of Ti-13Nb-Zr alloy and 5HA/Ti-13Nb-13Zr composite (*p< 0.05; **p< 0.01)

    表  1  两组材料在SBF溶液浸泡后的表面成分分析

    Table  1.   Surface composition analysis of two groups of materials soaked in SBF solution

    MaterialElement/at%
    TiONaCaPClK
    Point A1.119.639.738.31.1
    Point B0.646.615.710.16.813.37.5
    下载: 导出CSV
  • [1] BOYER R, WELSCH G, COLLINGS E W. Materials properties handbook: Titanium alloys[M]. Ohio: ASM International, Materials Park, 1994.
    [2] GEETHA M, SINGH A K, ASOKAMANI R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review[J]. Progress in Materials Science,2009,54(3):397-425. doi: 10.1016/j.pmatsci.2008.06.004
    [3] CHEN Q, THOUAS G A. Metallic implant biomaterials[J]. Materials Science and Engineering: R: Reports,2015,87:1-57. doi: 10.1016/j.mser.2014.10.001
    [4] 王莉丽, 王秀峰, 丁旭, 等. Ti/HA生物复合材料的研究进展[J]. 材料导报, 2012, 26(17):80-82. doi: 10.3969/j.issn.1005-023X.2012.17.017

    WANG Lili, WANG Xiufeng, DING Xu, et al. Research progress of Ti/HA biocomposites[J]. Journal of Materials Review,2012,26(17):80-82(in Chinese). doi: 10.3969/j.issn.1005-023X.2012.17.017
    [5] CHANG B S, LEE C K, HONG K S, et al. Osteoconduction at porous hydroxyapatite with various pore configurations[J]. Biomaterials,2000,21(12):1291-1298. doi: 10.1016/S0142-9612(00)00030-2
    [6] 刘宣勇. 生物医用钛材料及其表面改性[M]. 北京: 化学工业出版社, 2009.

    LIU Xuanyong. Study on surface modification and selective biological effects of titanium implant materials[M]. Beijing: Publishing House of Chemical Industry, 2009(in Chinese).
    [7] 陈菲. 羟基磷灰石生物医用陶瓷材料的研究与发展[J]. 中国陶瓷, 2006, 42(4):8-10. doi: 10.3969/j.issn.1001-9642.2006.04.002

    CHEN Fei. Research and development of hydroxyapatite biomedical ceramic materials[J]. Chinese Ceramics,2006,42(4):8-10(in Chinese). doi: 10.3969/j.issn.1001-9642.2006.04.002
    [8] MARDER R, ESTOURNES C, CHEVALLIER G, et al. Spark and plasma in spark plasma sintering of rigid ceramic nanoparticles: A model system of YAG[J]. Journal of the European Ceramic Society,2015,35(1):211-218. doi: 10.1016/j.jeurceramsoc.2014.08.001
    [9] 何远怀. 羟基磷灰石/Ti-13Nb-13Zr生物材料的制备和性能研究[D]. 昆明: 昆明理工大学, 2018.

    HE Yuanhuai. Preparation and properties of hydroxyapatite/Ti-13Nb-13Zr biomaterials[D]. Kunming: Kunming University of Science and Technology, 2018(in Chinese).
    [10] 刘万理, 张玉勤, 蒋业华, 等. 固溶温度对SPS烧结Ti-24Nb-4Zr-8Sn合金组织和力学性能的影响[J]. 金属热处理, 2017, 42(4):99-103.

    LIU Wanli, ZHANG Yuqin, JIANG Yehua, et al. Effect of solution temperature on microstructure and mechanical properties of SPS sintered Ti-24Nb-4Zr-8Sn alloy[J]. Heat Treatment of Metals,2017,42(4):99-103(in Chinese).
    [11] 雷晓飞, 董利民, 张志强, 等. 退火工艺对TC6钛合金棒材显微组织和力学性能的影响[J]. 稀有金属材料与工程, 2017, 46(S1):80-84.

    LEI Xiaofei, DONG Limin, ZHANG Zhiqiang, et al. Effect of annealing process on microstructure and mechanical properties of TC6 titanium alloy bars[J]. Rare Metal Materials and Engineering,2017,46(S1):80-84(in Chinese).
    [12] 雷雨涛, 朱斌, 张玉勤, 等. 退火温度对HA/Ti-24Nb-4Zr复合材料组织与性能的影响[J]. 金属热处理, 2020, 45(10):94-98.

    LEI Yutao, ZHU Bin, ZHANG Yuqin, et al. Effect of annealing temperature on microstructure and properties of HA/Ti-24Nb-4Zr composites[J]. Heat Treatment of Metals,2020,45(10):94-98(in Chinese).
    [13] 王海, 魏芬绒, 邓家彬, 等. 影响钛合金屈强比的因素及作用机理探讨[J]. 热加工工艺, 2016, 45(22):109-115.

    WANG Hai, WEI Fenrong, DENG Jiabin, et al. Discussion on the factors affecting the strength ratio of titanium alloy and the mechanism of action[J]. Hot Working Technology,2016,45(22):109-115(in Chinese).
    [14] 熊汉城, 黄海广, 李志敏, 等. 退火温度对大口径 TC4 合金无缝管组织与性能的影响[J]. 金属热处理, 2019, 44(12):107-111.

    XIONG Hancheng, HUANG Haiguang, LI Zhimin, et al. The effect of annealing temperature on the microstructure and properties of large-diameter TC4 alloy seamless pipes[J]. Heat Treatment of Metals,2019,44(12):107-111(in Chinese).
    [15] 中国国家标准化管理委员会. 钛及钛合金牌号和化学成分: GB/T 3620.1—2016[S]. 北京: 中国标准出版社, 2016.

    Standardization Administration of the People’s Republic of China. Designation and composition of titanium and titanium alloy: GB/T 3620.1—2016[S]. Beijing: China Standards Press, 2016(in Chinese).
    [16] 姜久仰, 刘宏宇, 徐吉林, 等. 医用Ti-6Al-4V合金表面超疏水涂层的制备及生物学性能[J]. 稀有金属材料与工程, 2019, 48(6): 1884-1891.

    JIANG Jiuyang, LIU Hongyu, XU Jilin, et al. Preparation and biological properties of the fluoroalkyl silane superhydrophobic coatings on biomedical Ti-6Al-4V alloy[J]. Rare Metal Materials and Engineering, 2019, 48(6): 1884-1891(in Chinese).
    [17] NING C Q, ZHOU Y. In vitro bioactivity of a biocomposite fabricated from HA and Ti powders by powder metallurgy method[J]. Biomaterials,2002,23(14):2909-2915. doi: 10.1016/S0142-9612(01)00419-7
    [18] 吴泽恩, 胡锐, 张铁邦, 等. 间隙原子O对高Nb-TiAl合金显微组织与相转变的影响[J]. 金属学报, 2013, 49(11):1381-1386.

    WU Zeen, HU Rui, ZHANG Tiebang, et al. Effect of interstitial atom O on microstructure and phase transition of high Nb-TiAl alloy[J]. Journal of Metals,2013,49(11):1381-1386(in Chinese).
    [19] GIBSON L J. The mechanical behaviour of cancellous bone[J]. Journal of Biomechanics,1985,18(5):317-328. doi: 10.1016/0021-9290(85)90287-8
    [20] MENZIES K L, JONES L. The impact of contact angle on the biocompatibility of biomaterials[J]. Optometry and Vision Science,2010,87(6):387-399. doi: 10.1097/OPX.0b013e3181da863e
    [21] OZASA K, NEMOTO S, LI Y Z, et al. Contact angle and biocompatibility of sol-gel prepared TiO2 thin films for their use as semiconductor based cell viability sensors[J]. Surface and Interface Analysis,2008,40(3-4):579-583. doi: 10.1002/sia.2729
    [22] JIANG L, WANG R, YANG B, et al. Binary cooperative complementary nanoscale interfacial materials[J]. Pure and Applied Chemistry,2000,72(1-2):73-81. doi: 10.1351/pac200072010083
    [23] CHA T G, YI J W, MOON M W, et al. Nanoscale patterning of microtextured surfaces to control superhydrophobic robustness[J]. Langmuir,2010,26(11):8319-8326. doi: 10.1021/la9047402
    [24] CHAU T T, BRUKARD W J, KOH P T L, et al. A review of factors that affect contact angle and implications for flotation practice[J]. Advances in Colloid and Interface Science,2009,150(2):106-115. doi: 10.1016/j.cis.2009.07.003
    [25] 杜晨光, 夏帆, 王树涛, 等. 仿生智能浸润性表面研究的新进展[J]. 高等学校化学学报, 2010, 31(3): 421-431.

    DU Chenguang, XIA Fan, WANG Shutao, et al, Advances in bio-inspired smart surfaces with special wettability[J]. Chemistry Journal of Chinese Universities, 2010, 31(3): 421-431(in Chinese).
    [26] KOKUBO T, KIM H M, KAWASHITA M. Novel bioactive materials with different mechanical properties[J]. Biomaterials,2003,24(13):2161-2175. doi: 10.1016/S0142-9612(03)00044-9
    [27] HALLAB N J, BUNDY K J, O'CONNOR K, et al. Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characterization for directed cell adhesion[J]. Tissue Engineering,2001,7(1):55-71. doi: 10.1089/107632700300003297
    [28] TANAKA T, HIROSE M, KOTOBUKI N, et al. Nano-scaled hydroxyapatite/silk fibroin sheets support osteogenic differentiation of rat bone marrow mesenchymal cells[J]. Materials Science and Engineering: C,2007,27(4):817-823. doi: 10.1016/j.msec.2006.09.019
    [29] LIU K, LIU P C, LIU R, et al. Dual AO/EB staining to detect apoptosis in osteosarcoma cells compared with flow cytometry[J]. Medical Scicence Monitor Basic Research,2015,21:15-20. doi: 10.12659/MSMBR.893327
    [30] DU PLESSIS L H, HAMMAN J H. In vitro evaluation of the cytotoxic and apotogenic properties of aloe whole leaf and gel materials[J]. Drug and Chemical Tocicology,2014,37(2):169-177. doi: 10.3109/01480545.2013.834356
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  804
  • HTML全文浏览量:  364
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-15
  • 修回日期:  2021-12-27
  • 录用日期:  2022-01-15
  • 网络出版日期:  2022-02-14
  • 刊出日期:  2023-01-15

目录

    /

    返回文章
    返回